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573 Outline

= We're done with Part |: Search and Planning!

= Part |I: Probabilistic Reasoning
= Diagnosis
= Speech recognition
» Tracking objects
= Robot mapping
» Genetics
* Error correcting codes
= ... lots more!



Outline

= Probability review
= Random Variables and Events
» Joint / Marginal / Conditional Distributions
* Product Rule, Chain Rule, Bayes’ Rule
= Probabilistic Inference
* |ndependence




Probability Summary

. . P(z,y)
P(xly) =
Conditional probability (z|y) P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3]|X1,X2)...

1
- n P(X;|X1,.-.,- Xi-1)
i=1

X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if: XIY|Z
Va,y,z . P(x,y|z) = P(z|z)P(y|z)



Inference in Ghostbusters

= A ghostis in the grid
somewhere
= Sensor readings tell
how close a square
IS to the ghost
= On the ghost: red
= 1 or 2 away: orange
= 3 or4 away: yellow

= 5+ away: green
= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty

» R =Isitraining?
= D = How long will it take to drive to work?
» L =WhereamI?

= \We denote random variables with capital letters

= Random variables have domains
= Rin {true, false}
= Din[0, 1)
= L in possible locations, maybe {(0,0), (0,1), ...}



Unobserved random variables have distributions

Probability Distribution

P(T)
T P
hot | 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

P(W =rain) = 0.1

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

Musthave: Vg P(X =z)>0 and » P(X=uz)=1
Wi




Joint Distributions

= A joint distribution over a set of random variables: X1, Xo,... Xn
specifies a real number for each outcome (ie each assignment):

P(X1 =21, X0 =zo,... X5 = zn) P(T. W)
P(z1,x2,...7n) —T T 5

= Must obey: hot | sun | 0.4
Y P(x1,22,...2n) >0 T T o

cold | sun 0.2

> P(x1,z0,...20) = 1

cold | rain 0.3

(x1,22,...2n)

=  Sijze of distribution if n variables with domain sizes d?

= A probabilistic model is a joint distribution over variables of interest
= For all but the smallest distributions, impractical to write out



Events

= An outcome is a joint assignment for all the variables

(.GC]_,CUQ, <o .CCn)

= An eventis a set E of outcomes

P(E)= Y P(ay...zn) L L
(21..an)EE hot sun 04
. C hot rain 0.1
* From a joint distribution, we can od | sun 02
calculate the probability of any event '
cold rain 0.3

» Probability that it's hot AND sunny?
» Probability that it's hot?
= Probability that it's hot OR sunny?




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(X1=uz1) =) P(X1=u21,Xp =)

i)
P(T)
P(T, W) T P
- W = hot 0.5
cold 0.5

hot | sun 04| P(t) =) P(t,w)
hot rain 0.1 w P(W)
cold sun 0.2] ———l W P
cold | rain 0.3] P(w) = Z P(t,w) sun 0.6
t rain 0.4




Quiz: Marginal Distribution

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
X +y 0.4
X -y 0.1

e ——
P(z) =) P(z,y)
Yy

——
P(y) =) P(x,y)

P(X)

+X

P(Y)

+y
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Conditional Probability

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(alb) = P(a,b)
P(b)
P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)

P(W:S‘T:C):P(W:S,T:C) :E
P(T = c) 0.5

- —

=PW=s,T=c)4+P(W=r,T =c)
=0.24+0.3 =0.5
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

- P(W|T = hot) P(T,W)
W P T W P
- sun 0.8 hot | sun 0.4
& rain 0.2 hot | rain 0.1
é P(W|T = cold) cold sun 0.2
R v S cold rain 0.3
su.n 0.4 Pl lx ) — P(xq, 1)
rain 0.6 1142 P(x5)




Homework: Conditional
Distribution

= P(+x | +y)?

P(X.,Y)
X Y P
+X +y 0.2 = P(-x | +y)?
+X -y 0.3
-X +y 0.4
-X -y 0.1

" P(y[+x)?



= A trick to get a whole conditional distribution at once:
= Select the joint probabilities matching the evidence

Normalization Trick

= Normalize the selection (make it sum to one)

P(Ta W) Select Normalize
T W P |—> pP(T,r)y =—> P(T|r)
hot sun | 04 T R P T P
hot rain | 0.1 | hot | rain | 0.1(| hot | 0.25
cold sun | 0.2 [cold| rain | 0.3|| cold | 0.75
cold rain | 0.3
= Why does this work? Sum of selection is P(evidence)! (P(r), here)
P(xq,x P(xq,x
Plefra) = E3(1562)2) - le(Péﬂ?LQﬂ)?Q)




Normalization Trick

P(W=S|T=c):P(W:83T:C)

P(T =r¢)
. P(W =s,T =c)
P(T,W) T PW=s5T=c)+PW=nrT=c)
0.2
T w P 02103 P(W|T = c)

hot sun 0.4

hot rain 0.1

sun 0.4

cold sun 0.2

P(WW=rT= rain 0.6
cold rain 0.3 PW=rT=c¢)= ( " ¢)

. P(W=nrT =c¢)
 P(W=sT=c)+P(W=rT=c)
03
02403

= 0.6




Normalization Trick

P(W =s,T=c)
P(T =¢)
PW =s5T=c)

TPW=sT=c)+P(W=nrT=c)
0.2

P(W=sT=c¢c)=

0.4

To02403°
P(T, W) SELECT the joint NORMALIZE the
probabilities selection P(WIT = ¢
T W P matching the P(c, W) (make it sum to (W )

hot sun 0.4 evidence Tl w | p one) W P
hot rain 0.1 - cold | sun o2 > sun | 0.4
cold sun 0.2 cold | rain 1 03 rain | 0.6
cold rain 0.3

P(W=rT=c)

T P(T=c)

_ P(W =r,T=c)

T PW=sT=c)+PW=r,T=c)
0.3

= ———=06
02+4+0.3

PW=rT=c)=




Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection P(WIT = ¢
T w P matching the P(Ca W) (make it sum to ( | )
hot | sun 0.4 evidence T 1w | p one) W P
hot rain 0.1 m— cold l sun 102 > sun | 0.4
cold sun 0.2 cold ! rain | 0.3 rain | 0.6

cold rain 0.3

=  Why does this work? Sum of selection is P(evidence)! (P(T=c),

here
) P(ry,x0) _  P(x1,22)

P(xq|zo) = P(z) >oaq P(x1,72)




= (Dictionary) To bring or restore [to a normal cong

Procedure:

To Normalize

ition

AN

All entries sum to ONE

= Step 1: Compute Z = sum over all entries

= Step 2: Divide every entry by Z

= [ nmpln, 1
W P~ Normalize
sun 0.2 ﬁ
rain 0.3 Z=05

W P
sun 0.4
rain 0.6

=  Example 2

T W P
hot sun 20
hot rain 5
cold | sun 10
cold | rain 15

Normaliie

Z =250

T W P
hot sun 0.4
hot rain 0.1
cold | sun 0.2
cold | rain 0.3




Terminology

Marginal Probability
Y Mg Ty .
} p(X =mx;) = %
| Conditional
Joint Probability Probability
p(X::cz-,Y:yﬂ:% P(Y:yﬂX:x@'):nC_ij

LX value is given



Probabilistic Inference

Diagnosis
Speech recognition
Tracking objects

Robot mapping
Genetics

Error correcting codes
... lots more!
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Probabilistic Inference

* Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(on time | no reported accidents) = 0.90
» These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

0.11 0.11 0.11

' . 0.05 !
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Inference by Enumeration

= P(sun)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

* P(sun | winter, hot)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= (General case:

= Evidence variables: FEi...E, =e1...¢ep X1,Xo,...Xn
= Query* variable: Q .
= Hidden variables: Hy...H, All variables

= Wewant: P(Qley ...ex)
=  First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

P(Q.hy.. hreq...
P(Qae].'"ek) — hl.Zh \(Q 1 \;61 e;i
X1, Xo, ... Xn

= Finally, normalize the remaining entries to conditionalize



Problems with Enumeration

= Obvious problems:
» Worst-case time complexity O(d")

» Space complexity O(d") to store the
joint distribution

= Solutions

= Better techniques
= Better representation
= Simplifying assumptions
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The Product Rule

= Sometimes have conditional distributions but want the joint

Paly) = L ]fg;f (= P(z,y) = P(aly)P(y)

= Example:

P(D,W)

P(W) P(D|W)

W ()




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions?

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(x1,z2,...zn) = || P(ailay .. 2-1)
1

= Why is this always true?



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(y|x)P(x) That's my ruleJ

= Dividing, we get:
P(y|x)
P(x|y) =
="

= Why is this at all helpful?
» |ets us build a conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ll see later

P(x)

* |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(Effect|Cause) P(Cause)
P(Effect)

P(Cause|Effect) =

= Example:

= m is meningitis, s is stiff neck P(s\m) = 0.8 Example
P(m) = 0.0001 givens

P(s) =0.1

J—

__ P(sjm)P(m) _ 0.8 x 0.0001
— P(s) - 0.1

= Note: posterior probability of meningitis still very small

P(m|s) = 0.0008

= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes Rule

= Glven:
P(W)
R P
sun 0.8
rain 0.2

= Whatis P(W | dry) ?

P(D|W)

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain | 0.3
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Ghostbusters, Revisited

Let's say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R =yellow | G=(1,1)) = 0.1

= We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

P(g|r) o< P(r|g)P(g) .



Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(x)P(y)

» This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Va,y : P(x|ly) =

= Wewrite: X || YV

* Independence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent
» What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P(T)
T P
hot 0.5
Py (T, W) cold 0.5
T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3 P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

 P(X1,Xp,... Xp)

\




Conditional Independence

» P(Toothache, Cavity, Catch)

= |f | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)
* The same independence holds if | don’t have a cavity:
» P(+catch | +toothache, -cavity) = P(+catch| —cavity)
Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)
= Equivalent statements:
» P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily



Conditional Independence

» Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z : P(z,ylz) = P(z]z)P(y|2)

XY\ Z
Vi, y,z o Px]z,y) = P(x|2) |

» \What about this domain:
= Traffic
= Umbrella
= Raining



Probability Summary

. . P(z,y)
P(xly) =
Conditional probability (z|y) P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3]|X1,X2)...

1
- n P(X;|X1,.-.,- Xi-1)
i=1

X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if: XIY|Z
Va,y,z . P(x,y|z) = P(z|z)P(y|z)
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