
CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Reinforcement Learning

slides from
Pieter Abbeel, Sergey Levine, Dan Klein

Outline

§ Review: Q-Learning
§ Policy Optimization
§ Actor-Critic

(Tabular) Q-Learning(Tabular)	Q-Learning
Algorithm:

Start	with	 for	all	s,	a.
Get	initial	state	s
For	k =	1,	2,	…	till	convergence

Sample	action	a,	get	next	state	s’
If	s’	is	terminal:

Sample	new	initial	state	s’
else:

Q0(s, a)

target = R(s, a, s0) + �max
a0

Qk(s
0, a0)

target = R(s, a, s0)

s s0
Qk+1(s, a) (1� ↵)Qk(s, a) + ↵ [target]

Approximate Q-Learning

n Instead	of	a	table,	we	have	a	parametrized	Q	function:

n Can	be	a	linear	function	in	features:	

n Or	a	complicated	neural	net

n Learning	rule:

n Remember:	

n Update:

Approximate	Q-Learning
Q✓(s, a)

Q✓(s, a) = ✓0f0(s, a) + ✓1f1(s, a) + · · ·+ ✓nfn(s, a)

target(s0) = R(s, a, s0) + �max
a0

Q✓k(s
0, a0)

✓k+1 ✓k � ↵r✓

1

2
(Q✓(s, a)� target(s0))2

�����
✓=✓k

Connection to Tabular Q-LearningConnection	to	Tabular	Q-Learning
n Suppose	

n Plug	into	update:

n Compare	with	Tabular	Q-Learning	update:

✓ 2 R|S|⇥|A|, Q✓(s, a) ⌘ ✓sa

r✓sa

1

2
(Q✓(s, a)� target(s0))2

�

= r✓sa

1

2
(✓sa � target(s0))2

�

= ✓sa � target(s0)

Qk+1(s, a) (1� ↵)Qk(s, a) + ↵ [target(s0)]

✓sa ✓sa � ↵(✓sa � target(s0))

= (1� ↵)✓sa + ↵[target(s0)]

Policy Optimization?

§ Often the policy can be simpler than Q or V
§ E.g., Robotic grasp

§ V: doesn’t prescribe actions
§ We need the dynamic model (+ compute 1 Bellman back-up)

§ Q: need to be able to efficiently find the best action for every Q
state
§ Challenge: What happens when actions are high-dimensional or

continuous

Policy Optimization

§ Solution: learn policies that maximize rewards, not the values that predict them
§ On policy learning – learn directly from actions
§ Any model that can be trained, could be a policy: Allows continuous

action spaces, learning a stochastic policy

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or Q-function
§ Nudge each feature weight up and down and see if your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

§ Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

Policy Optimization NotationPolicy	OpQmizaQon	
n  Consider	control	policy	parameterized	

by	parameter	vector	

	

n  StochasQc	policy	class	(smooths	out	
the	problem):	
																				:	probability	of	acQon	u	in	state	s		

✓

max
✓

E[
HX

t=0

R(st)|⇡✓]

⇡✓(u|s)

⇡✓(u|s)

ut

[Figure	source:	SuTon	&	Barto,	1998]	

Policy	OpQmizaQon	
n  Consider	control	policy	parameterized	

by	parameter	vector	

	

n  StochasQc	policy	class	(smooths	out	
the	problem):	
																				:	probability	of	acQon	u	in	state	s		

✓

max
✓

E[
HX

t=0

R(st)|⇡✓]

⇡✓(u|s)

⇡✓(u|s)

ut

[Figure	source:	SuTon	&	Barto,	1998]	

Example (Playing Pong)
Suppose we had the training labels…
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)
...

maximize:

Reinforcement Learning

Let’s just act according to our current policy...

Rollout the policy
and collect an
episode

ExamplePretend every action we took here
was the correct label.

Pretend every action we took
here was the wrong label.

maximize: maximize:

Supervised Learning
maximize:

For images x_i and their
labels y_i.

Reinforcement Learning

maximize:

1) we have no labels so we sample:

2) once we collect a batch of rollouts:

We call this the advantage, it’s a
number, like +1.0 or -1.0 based on how
this action eventually turned out.

Supervised Learning
maximize:

For images x_i and their
labels y_i.

Reinforcement Learning

maximize:

1) we have no labels so we sample:

2) once we collect a batch of rollouts:

+ve advantage will make that action more
likely in the future, for that state.
-ve advantage will make that action less
likely in the future, for that state.

Vanilla Policy Optimization Algorithm

Initialize the policy
For iterations=1,2,…

Collect a set of trajectories by executing the current policy
At each time step of the trajectory, compute the advantage Ai
Update the policy using a policy gradient estimate, which is

∇"#$. &'() *$ +,, .
End for

Policy Optimization vs. Dynamic ProgrammingPolicy	OpQmizaQon	in	the	RL	Landscape	

Asynchronous Advantage Actor-Critic (A3C)

§ Asynchronous:
§ Multiple workers (agents)

§ Actor-Critic:
§ Policy optimization + Value Iteration
§ Networks for Policy and V function

A3C Actor-Critic

§ Asynchronous:
§ Multiple workers to increase efficiency and diversity

§ Unlike Q-Learning and Policy gradient with single agent
§ Global Network for policy

§ Independent local networks for each worker

§ Actor-Critic:
§ Actor: computes policy(s): probability over actions
§ Critic: Computes V(s): how good a certain state is to be in

A3C

§ Constructing the global network.
§ convolutional layers to process

spatial dependencies
§ LSTM layer to process temporal

dependencies
§ value and policy output layers.

RL: Learning Locomotion

[Video: GAE][Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

RL: Learning Soccer

[Bansal et al, 2017]

Conclusion

§ Done with Search and Control

§ Move on to Probabilistic Inference

