CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Reinforcement Learning

slides from
Pieter Abbeel, Sergey Levine, Dan Klein

Outline

= Review: Q-Learning
" Policy Optimization
= Actor-Critic

(Tabular) Q-Learning

Algorithm:
Start with QO(S, a,) forall's, a.
Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s’ is terminal:
target = R(s,a,s’)
Sample new initial state s’
else:

target = R(s,a,s’) +ymaxQ(s’,a’)
Qri1(s,a) + (1 —a)Qr(s,a) + «a|target]
s+ s

Approximate Q-Learning

= Instead of a table, we have a parametrized Q function: (s, a)
= Can be a linear function in features:

QG(Sa CL) — HOfO(Sa CL) - Hlfl(sa a) T T enfn(sa CL)

= Or acomplicated neural net

s Learning rule:
= Remember: target(s’) = R(s,a,s') +ymax Qg (s',a’)
= Update:

1

(9k+1 < Hk — OKVQ 5

(Qo(s,a) — target(s’))Q}

0=0,

Connection to Tabular Q-Learning

s Suppose 0 € R|S|X|A|, QQ(S,CL) = 054

Vo., | 5(Qu(s.0) - target()*

1
= V., [—

3 (00— target(s)?
= 0, — target(s’)
= Plugintoupdate: ¢ < 0., — a(f,, — target(s’))
= (1 — a)f,, + aftarget(s’)]
s Compare with Tabular Q-Learning update:
Qri1(s,a) + (1 — a)Qr(s,a) + a[target(s’)]

Policy Optimization?

» Often the policy can be simpler than Q or V
= E.g., Robotic grasp
" V: doesn’t prescribe actions

* We need the dynamic model (+ compute 1 Bellman back-up)

" Q: need to be able to efficiently find the best action for every Q
state

= Challenge: What happens when actions are high-dimensional or
continuous

Policy Optimization

= Solution: learn policies that maximize rewards, not the values that predict them
" On policy learning — learn directly from actions

= Any model that can be trained, could be a policy: Allows continuous
action spaces, learning a stochastic policy

= Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function
" Nudge each feature weight up and down and see if your policy is better than before

" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!

" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Policy Optimization Notation

state

Environment]4—

Figure source: Sutton & Barto, 1998]

m Consider control policy parameterized
by parameter vector 6

max E[; R(s¢)|m]

action
Ut

m Stochastic policy class (smooths out
the problem):

7o (u|s) : probability of action u in state s

Example (Playing Pong)

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP) maximize:
(x2,DOWN) (A
(X3,UP) 2 log POl
raw pixels hidden layer

L L ‘\\’/ ‘ probability of
. ﬁ:?%' moving UP

N AYAV. AN

| ' o
// N @

Reinforcement Learning

Let’s just act according to our current policy...

raw pixels hidden layer
ob_ability of Rollout the policy
S = O | and collect an

episode

SERALS
»ef%«\‘w

WIN

Pretend every action we took here Pretend every action we took
was the correct label. here was the wrong label.
maximize: logp(y,- | x,~) maximize: (—1) * logp(y,- | X;)
o .@ 20N UP UP DOWN_ o DOWN o DOWN UP WIN
DOWN o UP UP DOWN UP UP L OSE
UP UP DOWN o DOWN o DOWN o DOWN UP | OSE
PP UP DOWN UP UP WIN

!

Supervised Learning

Zi log p(yi |x:)

For images x_| and their
labels y_1I.

Reinforcement Learning

1) we have no labels so we sample:

yi ~ p(-|xi)

2) once we collect a batch of rollouts:
maximize:

2. Ai * log p(yi|x;)

/

We call this the advantage, it's a
number, like +1.0 or -1.0 based on how
this action eventually turned out.

Supervised Learning

Zi log p(yi|x;)

For images x_I and their
labels y_1I.

Reinforcement Learning

1) we have no labels so we sample:

yi ~ p(-|xi)

2) once we collect a batch of rollouts:
maximize:

2. Ai * log p(yi|x;)
/

+ve advantage will make that action more
likely in the future, for that state.

-ve advantage will make that action less
likelv in the future. for that state.

Vanilla Policy Optimization Algorithm

Initialize the policy
For iterations=1,2,...
Collect a set of trajectories by executing the current policy
At each time step of the trajectory, compute the advantage A
Update the policy using a policy gradient estimate, which is
VoA;. logP(ylx;,0)
End for

Policy Optimization vs. Dynamic Programming

Policy Optimization Dynamic Programming
modified
policy iteration
Policy Gradients Policy Iteration Value lteration

/

Q-Learning

N

Actor-Critic
Methods

Asynchronous Advantage Actor-Critic (A3C)

= Asynchronous:

= Multiple workers (agents)

= Actor-Critic:
" Policy optimization + Value lteration
= Networks for Policy and V function

—

Worker 1

!

Environment 1

Global Network

Policy 1i(s) V(s)

—

Worker 2

!

Environment 2 Environment3 ...

Network

Input (s)

—

Worker 3

!

—

Worker n

!

Environment n

A3C Actor-Critic

= Asynchronous:

= Multiple workers to increase efficiency and diversity

= Unlike Q-Learning and Policy gradient with single agent
= Global Network for policy
" Independent local networks for each worker
= Actor-Critic:
= Actor: computes policy(s): probability over actions
= Critic: Computes V(s): how good a certain state is to be in

A3C

" Constructing the global network

= convolutional layers to process
spatial dependencies

= LSTM layer to process temporal
dependencies

= value and policy output layers.

5. Worker q
updates global 1. Worker reset

network with to global
gradients network

4. Worker 2. Worker
gets interacts
gradients with
from losses environment
3. Worker
calculates
value and

policy loss

o

1on

Iterat

[Video: GAE]

Conclusion

= Done with Search and Control

= Move on to Probabilistic Inference

