CSE 573: Artificial Intelligence Winter 2019

Hanna Hajishirzi Reinforcement Learning

slides from Pieter Abbeel, Sergey Levine, Dan Klein

Outline

- Review: Q-Learning
- Policy Optimization
- Actor-Critic

(Tabular) Q-Learning

Algorithm:

Start with $Q_0(s,a)$ for all s, a. Get initial state s

For k = 1, 2, ... till convergence

Sample action a, get next state s'

If s' is terminal:

target = R(s, a, s')Sample new initial state s'

else:

$$\operatorname{target} = R(s, a, s') + \gamma \max_{a'} Q_k(s', a')$$
$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \text{ [target]}$$
$$s \leftarrow s'$$

Approximate Q-Learning

- Instead of a table, we have a parametrized Q function: $Q_{\theta}(s, a)$
 - Can be a linear function in features:

 $Q_{\theta}(s,a) = \theta_0 f_0(s,a) + \theta_1 f_1(s,a) + \dots + \theta_n f_n(s,a)$

- Or a complicated neural net
- Learning rule:
 - Remember: $\operatorname{target}(s') = R(s, a, s') + \gamma \max_{a'} Q_{\theta_k}(s', a')$
 - Update:

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left[\frac{1}{2} (Q_{\theta}(s, a) - \operatorname{target}(s'))^2 \right] \Big|_{\theta = \theta_k}$$

Connection to Tabular Q-Learning

• Suppose $\theta \in \mathbb{R}^{|S| \times |A|}$, $Q_{\theta}(s, a) \equiv \theta_{sa}$

$$\nabla_{\theta_{sa}} \left[\frac{1}{2} (Q_{\theta}(s, a) - \operatorname{target}(s'))^2 \right]$$
$$= \nabla_{\theta_{sa}} \left[\frac{1}{2} (\theta_{sa} - \operatorname{target}(s'))^2 \right]$$
$$= \theta_{sa} - \operatorname{target}(s')$$

- Plug into update: $\theta_{sa} \leftarrow \theta_{sa} \alpha(\theta_{sa} \operatorname{target}(s'))$ = $(1 - \alpha)\theta_{sa} + \alpha[\operatorname{target}(s')]$
- Compare with Tabular Q-Learning update:

$$Q_{k+1}(s,a) \leftarrow (1-\alpha)Q_k(s,a) + \alpha \left[\text{target}(s') \right]$$

Policy Optimization?

- Often the policy can be simpler than Q or V
 - E.g., Robotic grasp
- V: doesn't prescribe actions
 - We need the dynamic model (+ compute 1 Bellman back-up)
- Q: need to be able to efficiently find the best action for every Q state
 - Challenge: What happens when actions are high-dimensional or continuous

Policy Optimization

- Solution: learn policies that maximize rewards, not the values that predict them
 - On policy learning learn directly from actions
 - Any model that can be trained, could be a policy: Allows continuous action spaces, learning a stochastic policy

 Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Policy Optimization Notation

Consider control policy parameterized
 by parameter vector θ

 $\max_{\theta} E\left[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}\right]$

Stochastic policy class (smooths out the problem):

 $\pi_{ heta}(u|s)$: probability of action u in state s

Example (Playing Pong)

Suppose we had the training labels... (we know what to do in any state)

maximize:

 $\sum_{i} \log p(y_i | x_i)$

Reinforcement Learning

Let's just act according to our current policy...

Rollout the policy and collect an episode

WIN

Pretend every action we took here was the correct label.

maximize: $\log p(y_i \mid x_i)$

Pretend every action we took here was the wrong label.

maximize:
$$(-1) * \log p(y_i \mid x_i)$$

Supervised Learning

maximize:

 $\sum_{i} \log p(y_i | x_i)$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot | x_i)$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_i * \log p(y_i | x_i)$$

We call this the **advantage**, it's a number, like +1.0 or -1.0 based on how this action eventually turned out.

Supervised Learning

maximize:

 $\sum_{i} \log p(y_i | x_i)$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot|x_i)$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_i * \log p(y_i | x_i)$$

+ve advantage will make that action more likely in the future, for that state.
-ve advantage will make that action less likely in the future, for that state.

Vanilla Policy Optimization Algorithm

Initialize the policy

For iterations=1,2,...

Collect a set of trajectories by executing the current policy At each time step of the trajectory, compute the advantage A_i Update the policy using a policy gradient estimate, which is $\nabla_{\theta}A_i \cdot logP(y_i|x_i, \theta)$ End for

Policy Optimization vs. Dynamic Programming

Asynchronous Advantage Actor-Critic (A3C)

- Asynchronous:
 - Multiple workers (agents)
- Actor-Critic:
 - Policy optimization + Value Iteration
 - Networks for Policy and V function

A3C Actor-Critic

Asynchronous:

- Multiple workers to increase efficiency and diversity
 - Unlike Q-Learning and Policy gradient with single agent
- Global Network for policy
 - Independent local networks for each worker
- Actor-Critic:
 - Actor: computes policy(s): probability over actions
 - Critic: Computes V(s): how good a certain state is to be in

A3C

- Constructing the global network
 - convolutional layers to process spatial dependencies
 - LSTM layer to process temporal dependencies
 - value and policy output layers.

Conclusion

Done with Search and Control

Move on to Probabilistic Inference