
CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Reinforcement Learning

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Announcements

§ PS3 is due tonight.
§ Quiz1 is graded.
§ Project – Part I will be released tonight.

§ Groups of one or two
§ You can do your own project if relevant to this class.

§ Survey
§ Paper report
§ Review sessions with TAs?

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Reinforcement Learning - Neat property: Learn and Plan

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Model-Free Learning

§ Model-free (temporal difference) learning
§ Experience world through episodes

§ Update estimates each transition

§ Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Passive Reinforcement Learning:
Temporal Difference Learning

§ Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

§ Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Active Reinforcement Learning

§ Full reinforcement learning: optimal policies (like value iteration)
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You choose the actions now
§ Goal: learn the optimal policy / values

§ In this case:
§ Learner makes choices!
§ Fundamental tradeoff: exploration vs. exploitation
§ This is NOT offline planning! You actually take actions in the world and

find out what happens…

Q-Learning

§ We’d like to do Q-value updates to each Q-state:

§ But can’t compute this update without knowing T, R

§ Instead, compute average as we go
§ Receive a sample transition (s,a,r,s’)
§ This sample suggests

§ But we want to average over results from (s,a) (Why?)
§ So keep a running average

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough

§ You have to eventually make the learning rate

small enough

§ … but not decrease it too quickly

§ Basically, in the limit, it doesn’t matter how you select actions (!)

(Tabular) Q-Learning(Tabular)	Q-Learning
Algorithm:

Start	with	 for	all	s,	a.
Get	initial	state	s
For	k =	1,	2,	…	till	convergence

Sample	action	a,	get	next	state	s’
If	s’	is	terminal:

Sample	new	initial	state	s’
else:

Q0(s, a)

target = R(s, a, s0) + �max
a0

Qk(s
0, a0)

target = R(s, a, s0)

s s0
Qk+1(s, a) (1� ↵)Qk(s, a) + ↵ [target]

How to sample actions?

n Choose random actions?

n Choose action that maximizes (i.e.	greedily)?

n ɛ-Greedy:	choose	random	action	with	prob.	ɛ,	otherwise	choose	
action	greedily

How	to	sample	actions?

Qk(s, a)

How to Sample Actions (Explore)?

§ Several schemes for forcing
exploration
§ Simplest: random actions (e-greedy)

§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on

current policy

§ Problems with random actions?
§ You do eventually explore the space, but

keep thrashing around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions

Q-Learn Epsilon Greedy

Exploration Functions
§ When to explore?

§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

§ Exploration function
§ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

§ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

Regret

§ Even if you learn the optimal policy, you still make mistakes along the way!

§ Regret is a measure of your total mistake cost:
§ the difference between your (expected) rewards and optimal (expected) rewards

§ Minimizing regret goes beyond learning to be optimal
§ it requires optimally learning to be optimal

§ Example: random exploration and exploration functions both end up
optimal,
§ but random exploration has higher regret

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Q-Learning	Demo:	Crawler

• States:	discretized	value	of	2d	state:	(arm	angle,	hand	angle)
• Actions:	Cartesian	product	of	{arm	up,	arm	down}	and	{hand	up,	hand	down}
• Reward:	speed	in	the	forward	direction

Can Tabular Methods Scale?

n Discrete	environments

Can	tabular	methods	scale?

Tetris
10^60

Atari
10^308 (ram) 10^16992 (pixels)

Gridworld
10^1

Can Tabular Methods Scale?
n Continuous	environments	(by	crude	discretization)

Crawler
10^2

Hopper
10^10

Humanoid
10^100

Can	tabular	methods	scale?

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Generalizing Across States

§ Basic Q-Learning keeps a table of all q-values

§ In realistic situations, we cannot possibly learn about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

§ Instead, we want to generalize (Approximate Q-Learning)
§ Learn about some small number of training states from experience
§ Generalize that experience to new, similar situations
§ This is a fundamental idea in machine learning, and we’ll see it over and over again

Feature-Based Representations

§ Solution: describe a state using a vector of

features (properties)

§ Features are functions from states to real numbers

(often 0/1) that capture important properties of the

state

§ Example features:

§ Distance to closest ghost

§ Distance to closest dot

§ Number of ghosts

§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)

§ …… etc.

§ Can also describe a q-state (s, a) with features (e.g.

action moves closer to food)

Linear Value Functions

§ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

§ Advantage: our experience is summed up in a few powerful numbers

§ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

Approximate Q-Learning

n Instead	of	a	table,	we	have	a	parametrized	Q	function:

n Can	be	a	linear	function	in	features:	

n Or	a	complicated	neural	net

n Learning	rule:

n Remember:	

n Update:

Approximate	Q-Learning
Q✓(s, a)

Q✓(s, a) = ✓0f0(s, a) + ✓1f1(s, a) + · · ·+ ✓nfn(s, a)

target(s0) = R(s, a, s0) + �max
a0

Q✓k(s
0, a0)

✓k+1 ✓k � ↵r✓

1

2
(Q✓(s, a)� target(s0))2

�����
✓=✓k

Engineered Approximate Example: Tetris
n state:	naïve	board	configuration	+	shape	of	the	falling	piece	~1060 states!

n action:	rotation	and	translation	applied	to	the	falling	piece

n 22	features	aka	basis	functions	

n Ten	basis	functions,	0,	.	.	.	,	9,	mapping	the	state	to	the	height	h[k]	of	each	column.

n Nine	basis	functions,	10,	.	.	.	,	18,	each	mapping	the	state	to	the	absolute	difference	
between	heights	of	successive	columns:	|h[k+1]	−	h[k]|,	k	=	1,	.	.	.	,	9.

n One	basis	function,	19,	that	maps	state	to	the	maximum	column	height:	maxk h[k]

n One	basis	function,	20,	that	maps	state	to	the	number	of	‘holes’	in	the	board.

n One	basis	function,	21,	that	is	equal	to	1	in	every	state.

[Bertsekas &	Ioffe,	1996	(TD);	Bertsekas &	Tsitsiklis 1996	(TD);	Kakade 2002	(policy	gradient);	Farias &	Van	Roy,	2006	(approximate	LP)]

V̂�(s) =
21X

i=0

�i⇥i(s) = �>⇥(s)

�i

Engineered	Approximation	Example:	Tetris

Deep Reinforcement Learning
DQN on ATARI

Pong Enduro Beamrider Q*bert

• 49 ATARI 2600 games.
• From pixels to actions.
• The change in score is the reward.
• Same algorithm.
• Same function approximator, w/ 3M free parameters.
• Same hyperparameters.
• Roughly human-level performance on 29 out of 49 games.

DQN on ATARI

Pong Enduro Beamrider Q*bert

• 49 ATARI 2600 games.
• From pixels to actions.
• The change in score is the reward.
• Same algorithm.
• Same function approximator, w/ 3M free parameters.
• Same hyperparameters.
• Roughly human-level performance on 29 out of 49 games.

Recap: Approximate Q-Learning

Atari Network ArchitectureATARI Network Architecture

Stack of 4 previous
 frames Convolutional layer

 of rectified linear units
Convolutional layer

 of rectified linear units

Fully-connected layer
 of rectified linear units

Fully-connected linear
output layer16 8x8 filters

32 4x4 filters 256 hidden units

4x84x84

● Convolutional neural network architecture:
○ History of frames as input.
○ One output per action - expected reward for that action Q(s, a).
○ Final results used a slightly bigger network (3 convolutional + 1 fully-connected hidden layers).

[Out of the scope of this class]

Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they

still produced good decisions
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)

§ Solution: learn policies that maximize rewards, not the values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or Q-function
§ Nudge each feature weight up and down and see if your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

§ Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

Why Policy Optimization?

§ Often the policy can be simpler than Q or V
§ E.g., Robotic grasp

§ V: doesn’t prescribe actions
§ We need the dynamic model (+ compute 1 Bellman back-up)

§ Q: need to be able to efficiently find the best action for every Q
state
§ Challenge: What happens when actions are high-dimensional or

continious

Policy OptimizationPolicy	OpQmizaQon	
n  Consider	control	policy	parameterized	

by	parameter	vector	

	

n  StochasQc	policy	class	(smooths	out	
the	problem):	
																				:	probability	of	acQon	u	in	state	s		

✓

max
✓

E[
HX

t=0

R(st)|⇡✓]

⇡✓(u|s)

⇡✓(u|s)

ut

[Figure	source:	SuTon	&	Barto,	1998]	

RL: Learning Locomotion

[Video: GAE][Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

RL: Learning Soccer

[Bansal et al, 2017]

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

n  Conceptually:	

Policy	OpQmizaQon					Dynamic	Programming	

n  Empirically:	

Optimize what you care
about

Indirect, exploit the problem
structure, self-consistency

More compatible with rich
architectures (including
recurrence)

More versatile

More compatible with
auxiliary objectives

More compatible with
exploration and off-policy
learning

More sample-efficient when
they work

Example: Sidewinding

[Andrew Ng] [Video: SNAKE – climbStep+sidewinding]

