CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Reinforcement Learning

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Announcements

PS3 is due tonight.
Quizl is graded.
Project — Part | will be released tonight.

" Groups of one or two
" You can do your own project if relevant to this class.

Survey
Paper report
Review sessions with TAs?

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, n* Value / policy iteration
\ Evaluate a fixed policy Policy evaluation /
Unknown MDP: Model-Based Unknown MDP: Model-Free
2) 4)
Goal Technique Goal Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
\Evaluate a fixed policy PE on approx. MDP/ \Evaluate a fixed policy Value Learning /

Reinforcement Learning - Neat property: Learn and Plan

Example: Model-Based Learning

Input Policy &t

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

' +
\D, exit, X, 10)

Episode 2

-
B, east, C, -1
C, east, D, -1

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, -10)

Learned Model

T(s,a,s")

-

-

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Model-Free Learning

* Model-free (temporal difference) learning

= Experience world through episodes

(s,a,r,s,a" ,r', s" a" r" s"...)

» Update estimates each transition (S, a, T, s’)

= Over time, updates will mimic Bellman updates

Passive Reinforcement Learning:
Temporal Difference Learnin

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!

= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: V7T(s) «+ V™(s) + a(sample — V7 (s))

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" You choose the actions now
= Goal: learn the optimal policy / values

" |n this case:

= |Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qit1(s,0) « L T(s,0.8) [R(s,a,8) +7 maxQu(s',)|
/ a

S
= But can’t compute this update without knowing T, R vvv

u Instead, compute daverage asS we go MMA
= Receive a sample transition (s,a,r,s’) v v
= This sample suggests A A B

Qs,a) ~ v+ ymaxQ(s',)

a

= But we want to average over results from (s,a) (Why?) AAAA

u SO keep a running average Q-VALUES AFTER 1000 EPISODES

Qs,0) — (1~)Q(s,0) + (@) |1 + 7 MaxQ(s',)

Q-Learning Final Solution

* QQ-learning produces tables of g-values:

Qt1(5,0) ¢ Y T(s,0,8) | R(sa.8) + 7 max Qu(s',)

S

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

S E
= Caveats: i

= You have to explore enough

" You have to eventually make the learning rate
small enough
= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

(Tabular) Q-Learning

Algorithm:
Start with QO(S, a,) forall's, a.
Get initial state s
Fork=1, 2, ... till convergence
Sample action a, get next state s’
If s’ is terminal:
target = R(s,a,s’)
Sample new initial state s’
else:

target = R(s,a,s’) +ymaxQ(s’,a’)
Qri1(s,a) + (1 —a)Qr(s,a) + «a|target]
s+ s

How to sample actions?

Choose random actions?

Choose action that maximizes Qk (S, a) (i.e. greedily)?

e-Greedy: choose random action with prob. g, otherwise choose
action greedily

How to Sample Actions (Explore)?

= Several schemes for forcing
exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on
current policy
" Problems with random actions?

" You do eventually explore the space, but
keep thrashing around once learning is done

CURRENT QO-VALUES

= One solution: lower € over time
= Another solution: exploration functions

Q-Learn Epsilon Greedy

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s',a’)
Modified Q-Update: Q(s,a) <—a R(s,a,s") +ymax f(Q(s",a’), N(s',a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

Regret

Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost:

= the difference between your (expected) rewards and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal

= it requires optimally learning to be optimal

Example: random exploration and exploration functions both end up
optimal,

= but random exploration has higher regret

The Crawler!

» States: discretized value of 2d state: (arm angle, hand angle)
* Actions: Cartesian product of {arm up, arm down} and {hand up, hand down}
* Reward: speed in the forward direction

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Step Delay: 0.10000
Discount: 0.800

— ") -3 Epsilon: 0.500 € +)
- — — -

Learning Rate: 0.800

Can Tabular Methods Scale?

m Discrete environments

|
][]
H
gi=

[[EEIEC]
(=]
a
OIS E]E]
00®

-10.00|(|-10.00(|(-10.00|||-10.00|||-10.00

Gridworld Tetris Atari
10M 10760 107308 (ram) 10716992 (pixels)

000
O
[] J 0])])

;

Can Tabular Methods Scale?

= Continuous environments (by crude discretization)

Crawler
1072

Humanoid
10700

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

" |n realistic situations, we cannot possibly learn about every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

" |nstead, we want to generalize (Approximate Q-Learning)
= Learn about some small number of training states from experience
= Generalize that experience to new, similar situations
= This is a fundamental idea in machine learning, and we’ll see it over and over again

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CI,) — wlfl(sa a,)—l—’UJQfQ(S, CL)"‘ . °+wnf’n(87 a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QGs,0) = wifi(s @) bwafals,)+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)

difference = [r + 7 max Q(s, a’)] — Q(s,a)

a

Q(s,a) «— Q(s,a) + «[difference] Exact Q's
w; <+ w; + « [difference] f;(s,a) Approximate Q’s

" |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) —]..OfGST(S,CL)

2 5
fpor(s,NORTH) = 0.5
a = NORTH S,
r = —500
fasT(s,NORTH) = 1.0
/ _
Q(S,NORTH) = +1 Q(S,,-) —0

r+ymaxQ(s’,a’) = —-50040
CL/
4. —501[0.5
difference = —501 :> wpor < 4.0+ a[-501]
wagsT < —1.0 +a[-501]1.0

Q(Sa a’) — 3°OfDOT(57 CL) — 3°OfGST(Sa CL)

)

40r

20

Linear Approximation: Regression™

20

f1(x)

Prediction: Prediction:

y = wo + wi f1(x) Y; = wo + w1 f1(x) + woafolx)

Optimization: Least Squares*

1

2
total error =Y (y; — §:)° =3 (yz - Zw&(w))
- k

. Error or “residual”
Observation Y

Prediction g

0 f1(x) :

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(az))
k
0 egror(w) = — (y — Z’L%fk(@) fm(x)
Wi, k

Wi, <= Wm + (y — Zwkfk($)> fm(x)
k
Approximate g update explained:

Wm < Wm + & [7“ + max Q(S/a CL,) — Q(s, a)} fm(s,a)

“target” “prediction”

Approximate Q-Learning

= Instead of a table, we have a parametrized Q function: Qg(s, a)
= Can be a linear function in features:

QG(Sa CL) — HOfO(Sa CL) - Hlfl(sa a) T T enfn(sa CL)

= Or acomplicated neural net

= Learning rule:
= Remember: target(s’) = R(s,a,s') +ymax Qg (s',a’)
= Update:

1

(9k+1 < Hk — OKVQ 5

(Qo(s,a) — target(s’))Q}

0=0,

Engineered Approximate Example: Tetris

state: naive board configuration + shape of the falling piece ~10%° states!

action: rotation and translation applied to the falling piece

22 features aka basis functions ¢z
= Ten basis functions, O, . .., 9, mapping the state to the height h[k] of each column.

= Nine basis functions, 10, . .., 18, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] - h[k]|, k=1,..., 9.

= One basis function, 19, that maps state to the maximum column height: max, h[k]
= One basis function, 20, that maps state to the number of ‘holes’ in the board.

= One basis function, 21, that is equal to 1 in every state.

Vo(s) = ZHN%(S) = 0" ¢(s)

[Bertsekas & loffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

aad

000

[]
800 e
8000ae.

O0E000..
0880080
([

O0@

Deep Reinforcement Learning

Pong Enduro Beamrider

» 49 ATARI 2600 games.
From pixels to actions.
» The change in score is the reward.
+ Same algorithm.
- Same function approximator, w/ 3M free parameters.
« Same hyperparameters.
Roughly human-level performance on 29 out of 49 games.

Algorithm:
Start with Qo (S, CL) for all s, a.
Get initial state s
For k=1, 2, ... till convergence

Sample action a, get next state s’
If s’ is terminal: Chasing a nonstationary target!

/
target = R(s,a,s"
Sample new initial state s’

else:

target = R(s, a,s’) + ymax Qx(s’,a’)

9k+1 — 0 — OZVGES’NP(S’ls,a) [(Q()(Sv CL) - target(sl))z} |9:0k

s« g
Updates are correlated within a trajectory!

Atari Network Architecture

e Convolutional neural network architecture:

o History of frames as input.
o One output per action - expected reward for that action O¢s, a).
Final results used a slightly bigger network (3 convolutional + 1 fully-connected hidden layers).

@
32 4xA4 filters 256 hidden units Fully-cotnnicited linear
16 8x8 filters OUtPU™ tayer
4x84x84
Stack of 4 previous ,] Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units

frames of rectified linear units of rectified linear units

[Out of the scope of this class]

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

= E.g.your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

" Nudge each feature weight up and down and see if your policy is better than before

" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Why Policy Optimization?

= Often the policy can be simpler than Q or V
= E.g., Robotic grasp
" V: doesn’t prescribe actions

= We need the dynamic model (+ compute 1 Bellman back-up)

" Q: need to be able to efficiently find the best action for every Q
state

= Challenge: What happens when actions are high-dimensional or
continious

Policy Optimization

s Consider control policy parameterized
by parameter vector 6

max E[» R(s¢)|mo]

m Stochastic policy class (smooths out
the problem):

7o (u|s) : probability of action u in state s

o

1on

Iterat

[Video: GAE]

Policy Optimization |Dynamic Programming
= Conceptually: Optimize what you care Indirect, exploit the problem
about structure, self-consistency
x Empirically: More compatible with rich More compatible with
architectures (including exploration and off-policy
recurrence) learning
More versatile More sample-efficient when
they work
More compatible with
auxiliary objectives

Example: Sidewinding

[Andrew Ng] [Video: SNAKE — climbStep+sidewinding]

