CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Reinforcement Learning

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer
Announcements

- Check the schedule. We have made some adjustments
- Quiz2 will be take-home
Outline

- **MDP Review:**
 - Value Iteration
 - Policy Iteration
 - Policy Evaluation
 - Policy Improvement

- **Today:**
 - Reinforcement learning
Reinforcement Learning

Offline Solution (MDPs)

Online Learning (RL)

Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Agent

Environment

State: s
Reward: r
Actions: a
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try out actions and states to learn
Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]
Key Ideas for Learning

- **Online vs. Batch**
 - Learn while exploring the world, or learn from fixed batch of data

Reinforcement Learning

- **Model based**
 - Do we estimate $T(s,a,s')$ and $R(s,a,s')$, or just learn values/policy directly

- **Model Free**
 - **Active vs. Passive**
 - Does the learner actively choose actions to gather experience? or, is a fixed policy provided?
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Learned Model

$\hat{T}(s, a, s')$
- $T(B, east, C) = 1.00$
- $T(C, east, D) = 0.75$
- $T(C, east, A) = 0.25$
- ...

$\hat{R}(s, a, s')$
- $R(B, east, C) = -1$
- $R(C, east, D) = -1$
- $R(D, exit, x) = +10$
- ...

Example: Expected Age

Goal: Compute expected age of cs573 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots$</td>
</tr>
</tbody>
</table>

Without P(A), instead collect samples $[a_1, a_2, \ldots a_N]$

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Why does this work? Because eventually you learn the right model.

Unknown P(A): “Model Free”

\[
E[A] \approx \frac{1}{N} \sum_i a_i
\]

Why does this work? Because samples appear with the right frequencies.
Model-Free Reinforcement Learning

- Passive Reinforcement Learning vs. Active Reinforcement Learning

- Passive Reinforcement Learning:
 Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- In this case:
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- Goal: Compute values for each state under π

- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Assume: $\gamma = 1$

Input Policy π

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

| E | B | C | D |

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>+8</td>
<td>+4</td>
<td>+10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>+10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problems with Direct Evaluation

- **What’s good about direct evaluation?**
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- **What bad about it?**
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

 $$V_0^\pi(s) = 0$$

 $$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

 - This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

\[
\begin{align*}
\text{sample}_1 &= R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1) \\
\text{sample}_2 &= R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2) \\
\vdots \\
\text{sample}_n &= R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)
\end{align*}
\]

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$

Almost! But we can’t rewind time to get sample after sample from state s.
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update \(V(s) \) each time we experience a transition \((s, a, s', r)\)
 - Likely outcomes \(s'\) will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of \(V(s) \):

\[
sample = R(s, \pi(s), s') + \gamma V^\pi(s')
\]

Update to \(V(s) \):

\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample
\]

Same update:

\[
V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))
\]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important:
 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]
\]
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:
 \[
 \pi(s) = \arg \max_a Q(s, a)
 \]
 \[
 Q(s, a) = \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V(s') \right)
 \]
- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- **Full reinforcement learning: optimal policies (like value iteration)**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal: learn the optimal policy / values**

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- **But Q-values are more useful, so compute them instead**
 - Start with $Q_0(s, a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning

- **Q-Learning: sample-based Q-value iteration**

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:
 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
 - Incorporate the new estimate into a running average:
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \text{[sample]} \]
Q-Learning Demo
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions
Q-Learn Epsilon Greedy

CURRENT Q-VALUES