
CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi

Reinforcement Learning

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Announcements

▪ Check the schedule.. We have made some adjustments

▪ Quiz2 will be take-home

Outline

▪ MDP Review:

▪ Value Iteration

▪ Policy Iteration

▪ Policy Evaluation

▪ Policy Improvement

▪ Today:

▪ Reinforcement learning

Go Right Go Forward

Reinforcement Learning

Offline Solution (MDPs) Online Learning (RL)

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!
Environment

Agent

Actions: a
State: s

Reward: r

Reinforcement Learning

▪ Still assume a Markov decision process (MDP):

▪ A set of states s S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R

▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try out actions and states to learn

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

Key Ideas for Learning

▪ Online vs. Batch

▪ Learn while exploring the world, or learn from fixed batch of data

Reinforcement Learning

▪ Model based

▪ Do we estimate T(s,a,s’) and R(s,a,s’), or just learn values/policy directly

▪ Model Free

▪ Active vs. Passive

▪ Does the learner actively choose actions to gather experience? or, is a fixed
policy provided?

Model-Based Learning

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Example: Model-Based Learning

Input Policy

Assume: = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Expected Age

Goal: Compute expected age of cs573 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Free Reinforcement Learning

▪ Passive Reinforcement Learning vs. Active Reinforcement Learning

▪ Passive Reinforcement Learning:
Simplified task: policy evaluation
▪ Input: a fixed policy (s)

▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ Goal: learn the state values

▪ In this case:
▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

▪ Goal: Compute values for each state under

▪ Idea: Average together observed sample values

▪ Act according to

▪ Every time you visit a state, write down what the
sum of discounted rewards turned out to be

▪ Average those samples

▪ This is called direct evaluation

Example: Direct Evaluation

Input Policy

Assume: = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

▪ What’s good about direct evaluation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T, R

▪ It eventually computes the correct average values,
using just sample transitions

▪ What bad about it?

▪ It wastes information about state connections

▪ Each state must be learned separately

▪ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

▪ Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

▪ Key question: how can we do this update to V without knowing T and R?
▪ In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’

Sample-Based Policy Evaluation?

▪ We want to improve our estimate of V by computing these averages:

▪ Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

▪ Exponential moving average

▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪ Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Active Reinforcement Learning

Active Reinforcement Learning

▪ Full reinforcement learning: optimal policies (like value iteration)
▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ You choose the actions now

▪ Goal: learn the optimal policy / values

▪ In this case:
▪ Learner makes choices!

▪ Fundamental tradeoff: exploration vs. exploitation

▪ This is NOT offline planning! You actually take actions in the world and
find out what happens…

Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate:

▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

Q-Learning Demo

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep

thrashing around once learning is done

▪ One solution: lower over time

▪ Another solution: exploration functions

Q-Learn Epsilon Greedy

