CSE 573: Artificial Intelligence
Winter 2019

Hanna Hajishirzi
Reinforcement Learning

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Announcements

" Check the schedule.. We have made some adjustments
" Quiz2 will be take-home

Outline

= VIDP Review: Go Right Go Forward

= Value Iteration
= Policy Iteration

= Policy Evaluation

= Policy Improvement

" Today:

= Reinforcement learning

Reinforcement Learning

-

Offline Solution (MDPs) Online Learning (RL)

\

= Basic idea:
Agent
= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function
" Must (learn to) act so as to maximize expected rewards

/ . = All learning is based on observed samples of outcomes!
Environment

(&

State: s

Reward: r Actions: a

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess e S
= A set of actions (per state) A

= A model T(s,a,s’)

= A reward function R(s,a,s’)

Overheated

= Still looking for a policy m(s)

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try out actions and states to learn

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

Key Ideas for Learning

" Online vs. Batch
= Learn while exploring the world, or learn from fixed batch of data

Reinforcement Learning

= Model based
»= Do we estimate T(s,a,s’) and R(s,a,s’), or just learn values/policy directly

= Model Free

= Active vs. Passive

= Does the learner actively choose actions to gather experience? or, is a fixed
policy provided?

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of 7'(s, a, s')
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Example: Model-Based Learning

Input Policy ©

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 3

4)
E, north, C, -1

C,east, D, -1

[+
\D, exit, X, 1oj

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

% A, exit, X, —10j

Learned Model

T(s,a,s")

_

(

T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

\

J

R(s,a,s")

(

_

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10

\

J

Example: Expected Age

Goal: Compute expected age of cs573 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \

Why does this Pla) = num(a)
work? Because N
eventually you A

learn the right E[A] = Z P(a)-a

/ Unknown P(A): “Model Free”

\

model. e /

FElA] = %Zai

Why does this
work? Because
samples appear

with the right

frequencies.

—

Model-Free Reinforcement Learning

= Passive Reinforcement Learning vs. Active Reinforcement Learning

= Passive Reinforcement Learning:
Simplified task: policy evaluation
" |nput: a fixed policy n(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= Goal: learn the state values

" |n this case:
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

= Goal: Compute values for each state under &t

" |dea: Average together observed sample values

= Act accordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Example: Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2

4 N
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
% D, exit, X, +10) % D, exit, X, +10)

Episode 3 Episode 4

4 N\)
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y=1 i i -
% D, exit, X, +10) % A, exit, X, 10/

Problems with Direct Evaluation

= What’s good about direct evaluation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

= What bad about it?

= |t wastes information about state connections

If Band E both go to C

under this policy, how can
= So, it takes a long time to learn their values be different?

= Each state must be learned separately

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

= Each round, replace V with a one-step-look-ahead layer over V (s)

Vo(s) =0 L 7(s)

ka—l—l(s) — ZT(S, 7(s),s)[R(s,7(s),s) + q/VkW(S’)] ‘,S;ﬁ{(s),s’
S, A SI

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
*" |n other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:

Vitg1(8) <= > T(s,m(s),s)[R(s,7(s),5") + V7 (s")]
* |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s, m(s), 8’1) + ’YV]{W(Sll)
samples = R(s,m(s),s5) + YV (s5)

sample, = R(s, m(s), S;@) + "YV/?(S;J

rewind time to get sample
after sample from state s.

1
Vl-cw—l—l (3) Amm E Z sample; Almost! But we can’t
1

Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

» Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V"(s) 4+ (a)sample

Same update: V7T (s) < V™(s) + a(sample — V" (s))

Exponential Moving Average

= Exponential moving average
* The running interpolation update: *, = (1 — CI{) +Tp—1 + Q- Tn

= Makes recent samples more important:

Tp+(1—a) Tp 1 +(1—a)? zpo+...
I1+(1—-a)+(1—-a)2+...

Ly =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oloef alo]e] (23]

V7(s) = (1 = a)V7(s) +a |R(s,m(s),s) +4V7(s")

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s') [R(S, a,s') + ny(s’)}

|dea: learn Q-values, not values

Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" You choose the actions now
= Goal: learn the optimal policy / values

" |n this case:
= Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

Q-Learning

= Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + max Q(s',a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-Learning Demo

P
s

CURRENT QO-VALUES

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

= E
= (Caveats: d

= You have to explore enough

" You have to eventually make the learning rate
small enough
= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower ¢ over time
= Another solution: exploration functions

Q-Learn Epsilon Greedy

5700 v
PN IIIIIII
0.00 A

s

e

URRE

