Supervised Learning (contd) Linear Separation

Mausam
(based on slides by UW-AI faculty)

Images as Vectors

Binary handwritten characters

00000000010000000000	0000000011110000000
00000000110000000000	00000001100001100000
0000000101000000000	00000011000000110000
0000001000010000000	00001100000000011000
00000010000010000000	00001000000000001000
00000100000001000000	00001100000000010000
00001000000000100000	00000111000000100000
00001100111111110000	00000011100111100000
00001111110000010000	00000000111100000000
00011000000000011000	00000011000111000000
00010000000000001100	00001100000000110000
00110000000000000100	00011000000000011000
00110000000000000110	001100000000000001000
00100000000000000010	00100000000000001100
001000000000000000010	00010000000000011000
011000000000000000010	00011000000000010000
010000000000000000000	00001000000000110000
00000000000000000000	00000011111110000000

Greyscale images

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

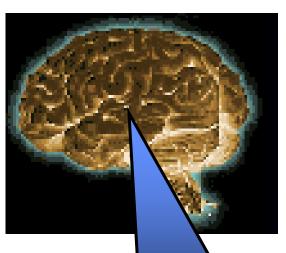
Treat an image as a highdimensional vector (e.g., by reading pixel values left to right, top to bottom row)

Pixel value p_i can be 0 or 1 (binary image) or 0 to 255 (greyscale)

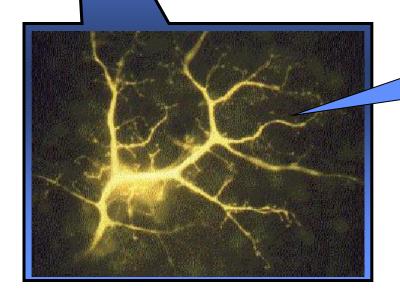
The human brain is extremely good at classifying images

Can we develop classification methods by emulating the brain?

Brain Computer: What is it?



Human brain contains a massively interconnected net of 10¹⁰-10¹¹ (10 billion) neurons (cortical cells)

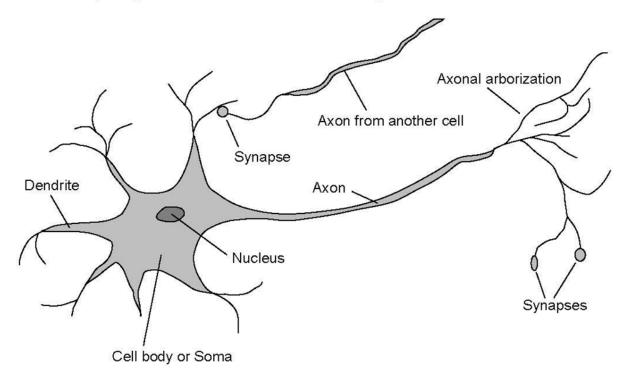


Biological Neuron

- The simple "arithmetic computing" element

Brains

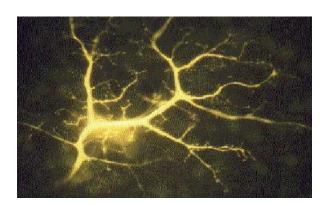
 10^{11} neurons of >20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

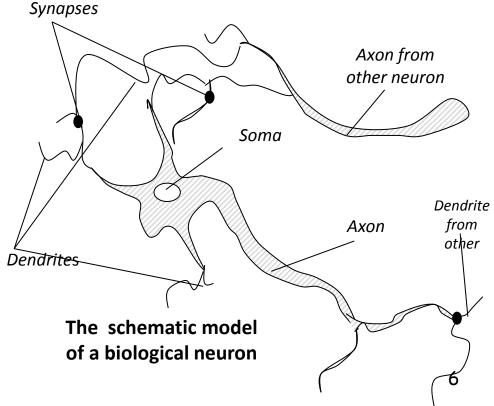


Chapter 19, Sections 1-5 3

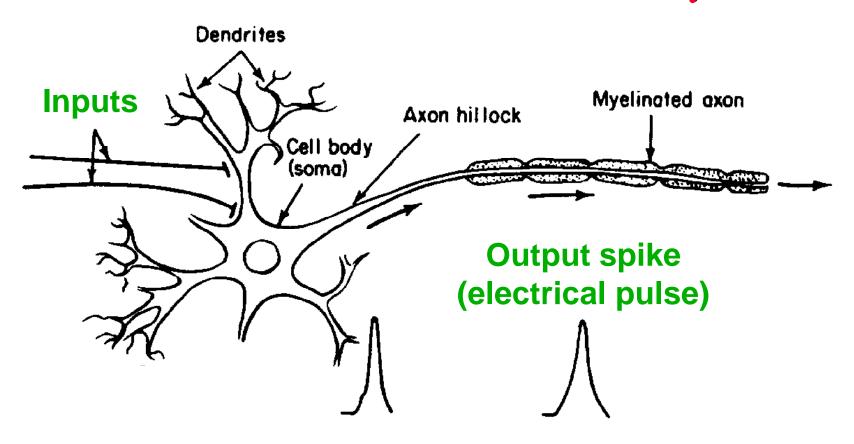
Biological Neurons

- Soma or body cell is a large, round central body in which almost all the logical functions of the neuron are realized.
- **2.** The axon (output), is a nerve fibre attached to the soma which can serve as a final output channel of the neuron. An axon is usually highly branched.
- 3. The dendrites (inputs)- represent a highly branching tree of fibres. These long irregularly shaped nerve fibres (processes) are attached to the soma.
- **4. Synapses** are specialized contacts on a neuron which are the termination points for the axons from other neurons.





Neurons communicate via spikes

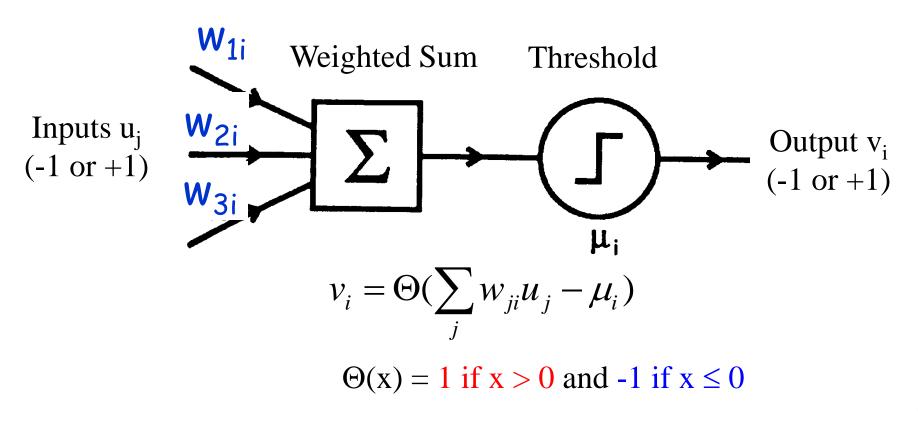


Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

Artificial neuron:

- · m binary inputs (-1 or 1), 1 output (-1 or 1)
- Synaptic weights w_{ji}
- · Threshold µi

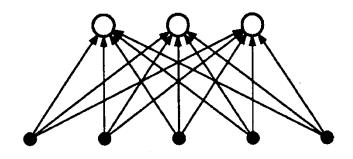


"Perceptrons" for Classification

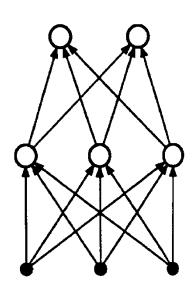
Fancy name for a type of layered "feed-forward" networks (no loops)

Uses artificial neurons ("units") with binary inputs and outputs

Single-layer



Multilayer



Perceptrons and Classification

Consider a single-layer perceptron

· Weighted sum forms a linear hyperplane

$$\sum_{j} w_{ji} u_{j} - \mu_{i} = 0$$

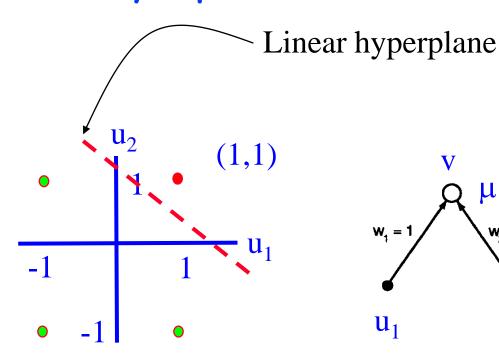
Everything on one side of this hyperplane is in class 1 (output = +1) and everything on other side is class 2 (output = -1)

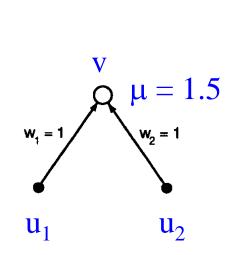
Any function that is <u>linearly separable</u> can be computed by a perceptron

Linear Separability

Example: AND is linearly separable

u_1	u ₂	AND
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	1





$$v = 1 \text{ iff } u_1 + u_2 - 1.5 > 0$$

How do we *learn* the appropriate weights given only examples of (input, output)?

Idea: Change the weights to decrease the error in output

Perceptron Training Rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

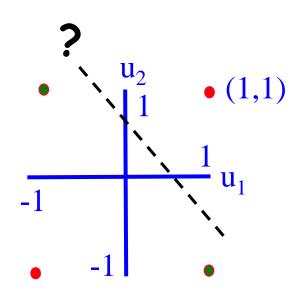
$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- *o* is perceptron output
- η is small constant (e.g., 0.1) called *learning rate*

What about the XOR function?

u_1	u ₂	XOR
-1	-1	1
1	-1	-1
-1	1	-1
1	1	1



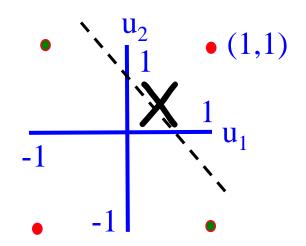
Can a perceptron separate the +1 outputs from the -1 outputs?

Linear Inseparability

Perceptron with threshold units fails if classification task is not linearly separable

- · Example: XOR
- No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!

Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!



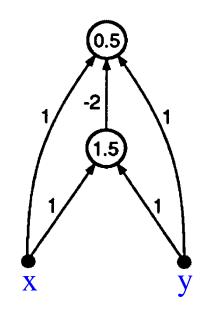
How do we deal with linear inseparability?

Idea 1: Multilayer Perceptrons

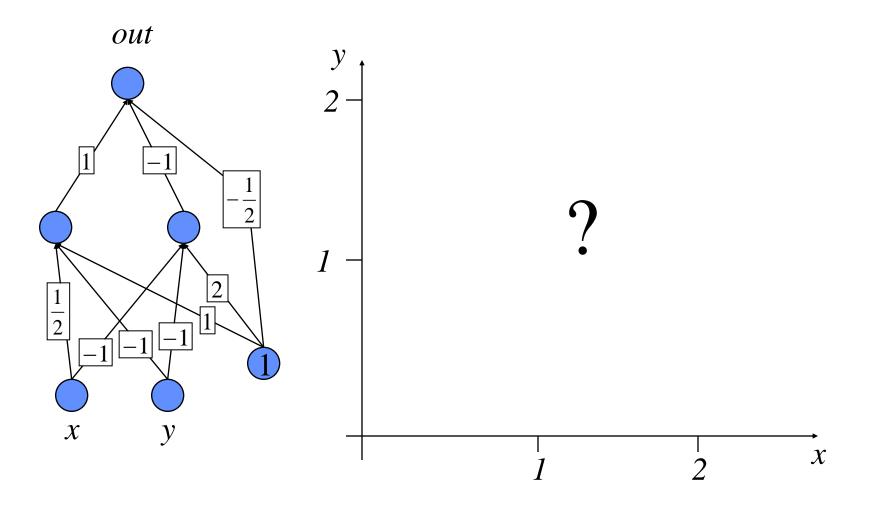
Removes limitations of single-layer networks

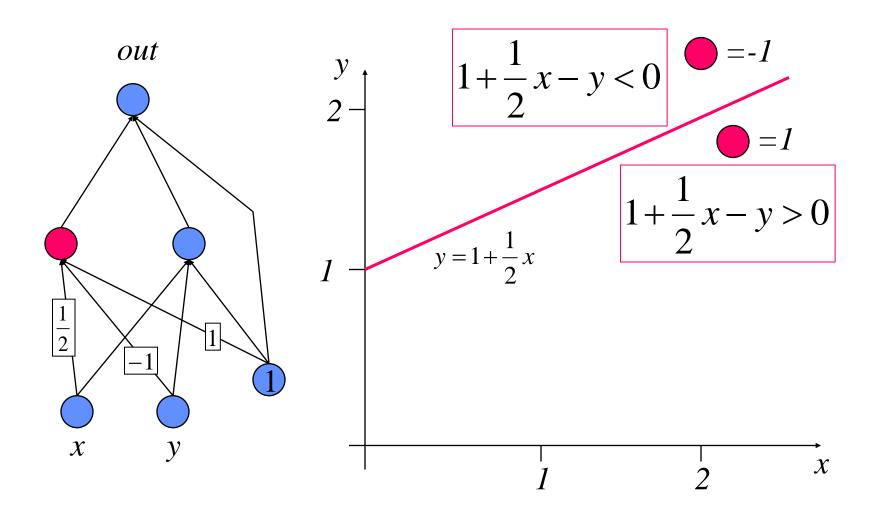
· Can solve XOR

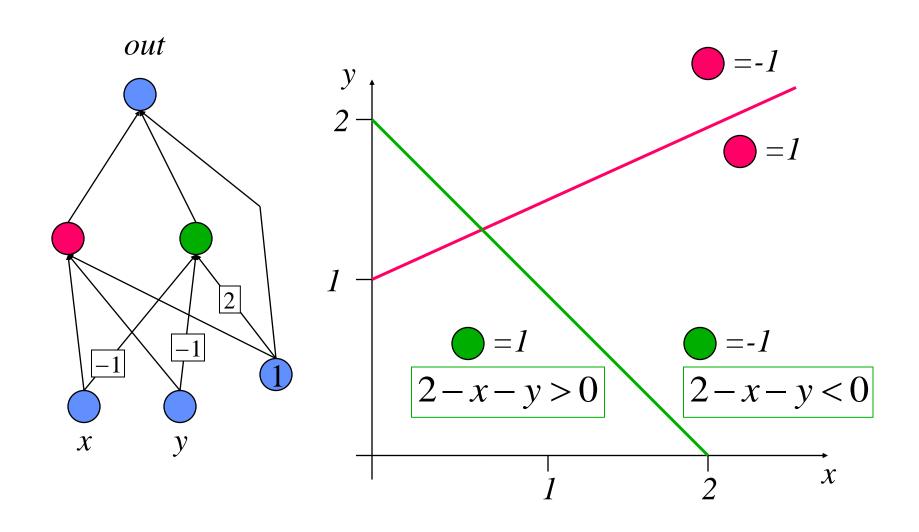
Example: Two-layer perceptron that computes XOR

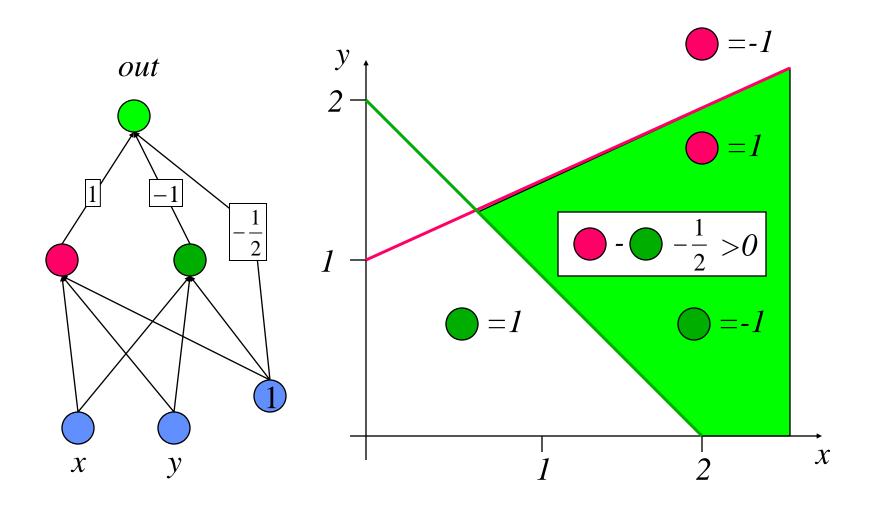


Output is +1 if and only if $x + y - 2\Theta(x + y - 1.5) - 0.5 > 0$

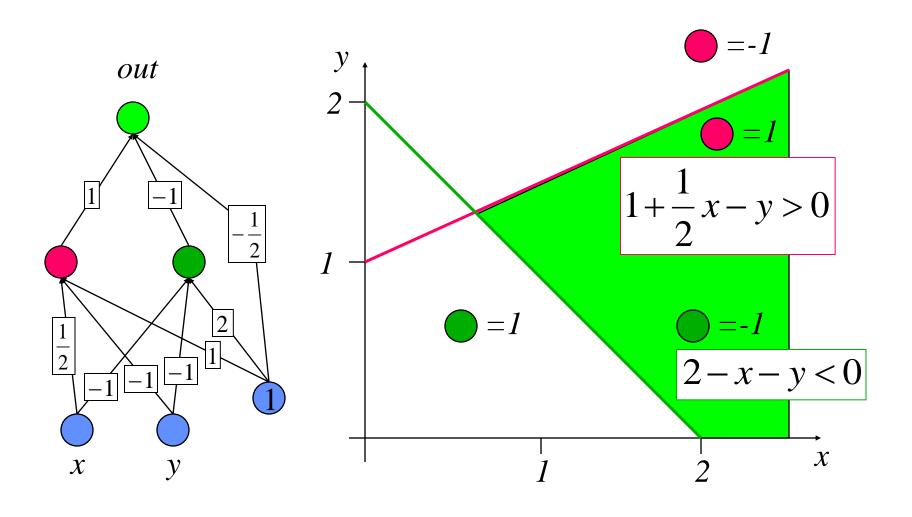




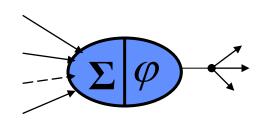


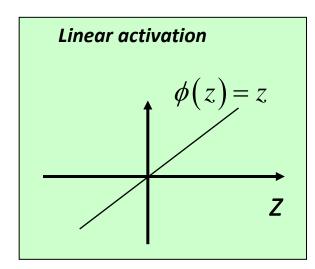


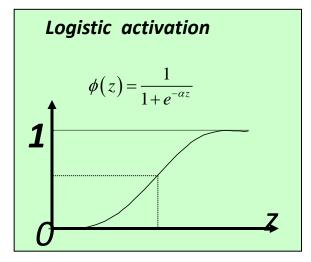
Perceptrons as Constraint Satisfaction Networks

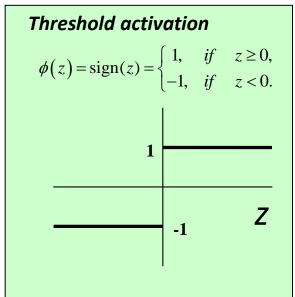


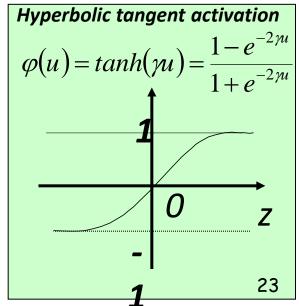
Artificial Neuron: Most Popular Activation Functions











Neural Network Issues

- Multi-layer perceptrons can represent any function
- Training multi-layer perceptrons hard
 - Backpropagation
- Early successes
 - Keeping the car on the road
- Difficult to debug
 - Opaque

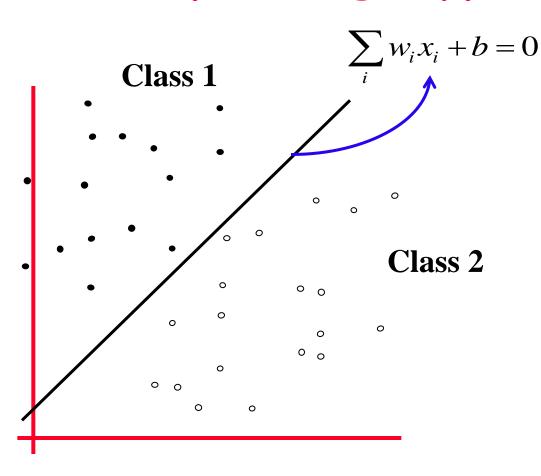
Back to Linear Separability

· Recall: Weighted sum in perceptron forms a *linear hyperplane*

$$\sum_{i} w_i x_i + b = 0$$

 Due to threshold function, everything on one side of this hyperplane is labeled as class 1 (output = +1) and everything on other side is labeled as class 2 (output = -1)

Separating Hyperplane

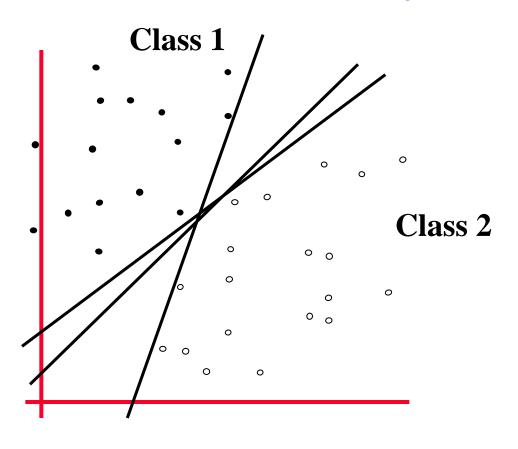


- denotes +1 output
- odenotes -1 output

Need to choose w and b based on training data

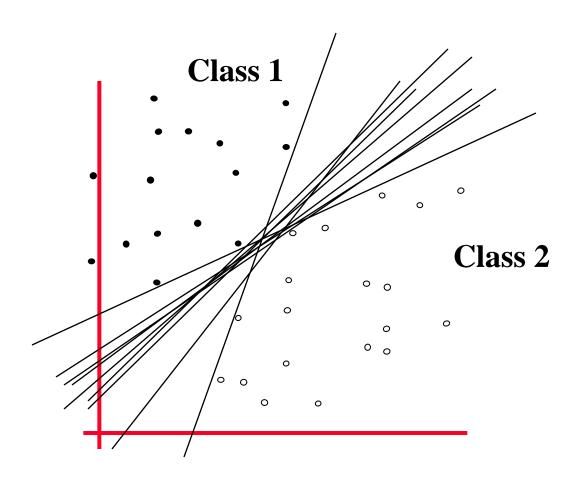
Separating Hyperplanes

Different choices of w and b give different hyperplanes



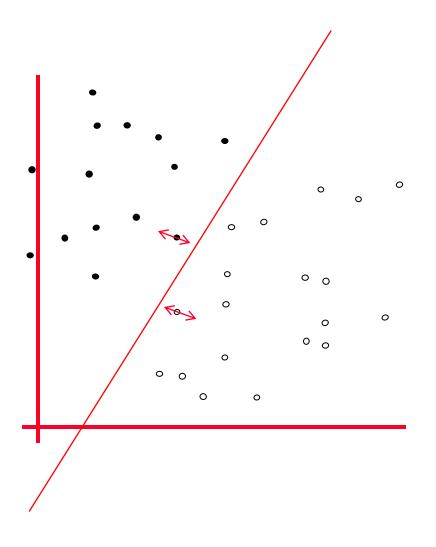
- denotes +1 output
- denotes -1 output

Which hyperplane is best?



- denotes +1 output
- odenotes -1 output

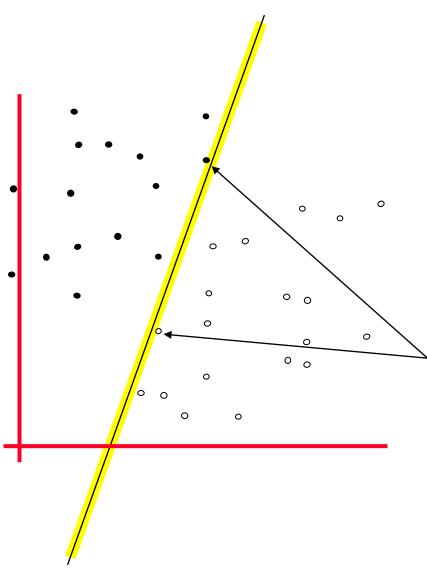
How about the one right in the middle?



Intuitively, this boundary seems good

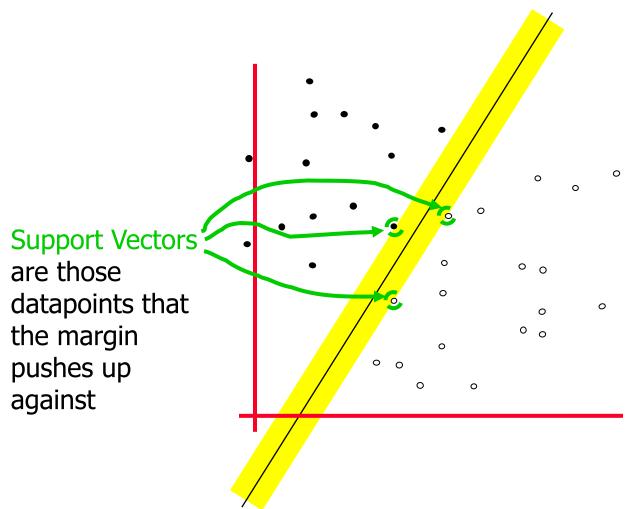
Avoids misclassification of new test points if they are generated from the same distribution as training points

Margin



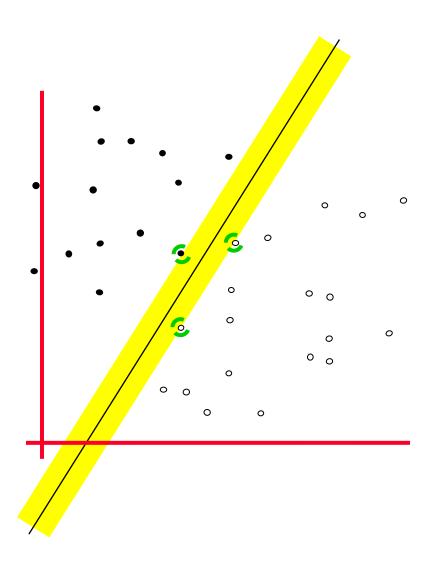
Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin and Support Vector Machine



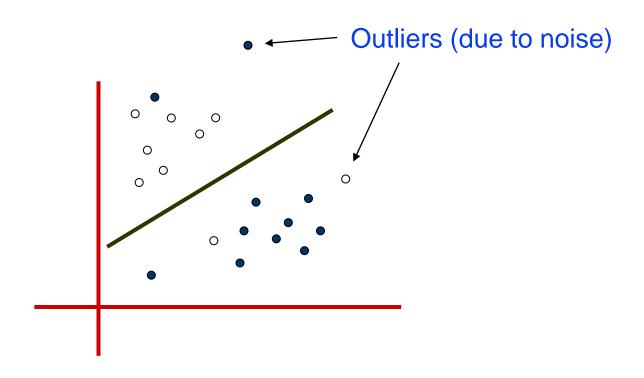
The maximum margin classifier is called a Support Vector Machine (in this case, a Linear SVM or LSVM)

Why Maximum Margin?

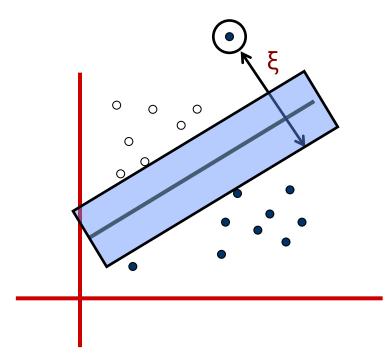


- Robust to small perturbations of data points near boundary
- There exists theory showing this is best for generalization to new points
- Empirically works great

What if data is not linearly separable?



Approach 1: Soft Margin SVMs

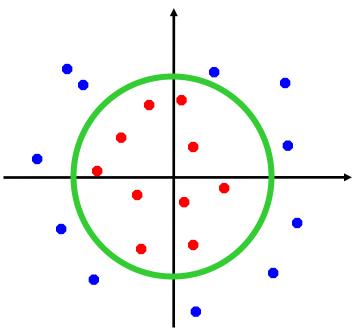


Allow *errors* ξ_i (deviations from margin)

Trade off margin with errors.

Minimize: margin + error-penalty

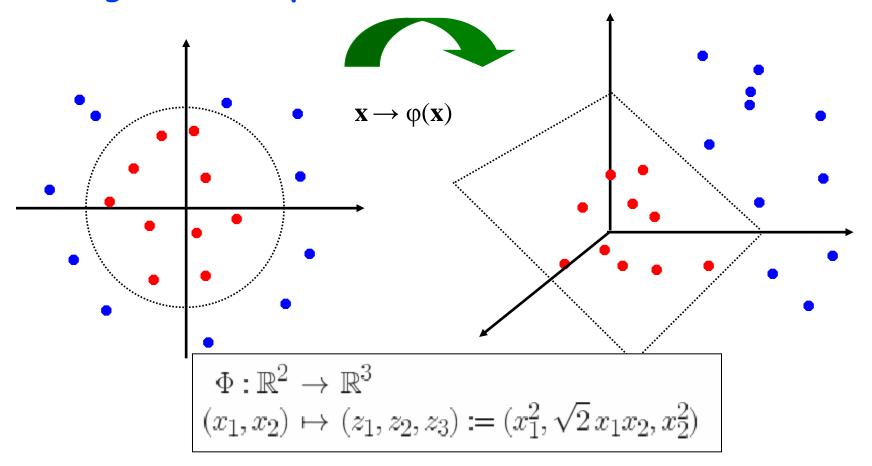
What if data is not linearly separable: Other ideas?



Not linearly separable

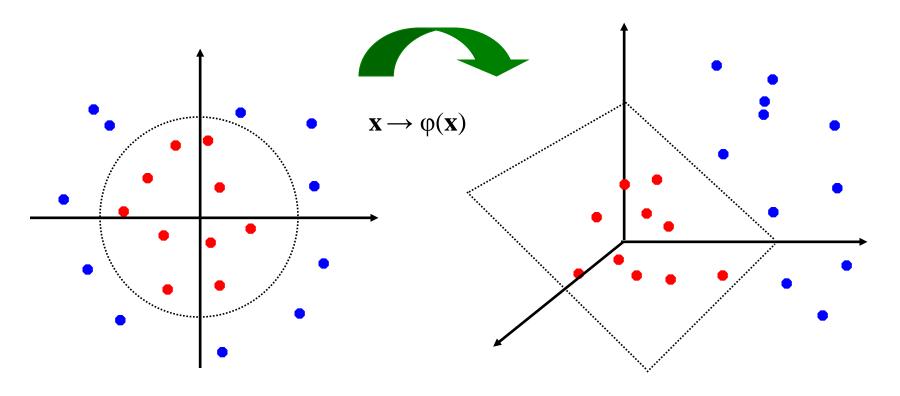
What if data is not linearly separable?

Approach 2: Map original input space to higherdimensional feature space; use linear classifier in higher-dim. space



Kernel: additional bias to convert into high d space

Problem with high dimensional spaces



Computation in high-dimensional feature space can be costly

The high dimensional projection function $\varphi(x)$ may be too complicated to compute

Kernel trick to the rescue!

The Kernel Trick

Dual Formulation: SVM maximizes the quadratic

function:

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$
subject to $\alpha_{i} \ge 0$ and $\sum_{i} \alpha_{i} y_{i} = 0$

Insight:

The data points only appear as inner product

- No need to compute high-dimensional $\varphi(x)$ explicitly! Just replace inner product $x_i \cdot x_j$ with a kernel function $K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$
- · E.g., Gaussian kernel

$$K(x_i,x_j) = \exp(-||x_i-x_j||^2/2\sigma^2)$$

· E.g., Polynomial kernel

$$\mathcal{K}(x_i,x_j) = (x_i \cdot x_j + 1)^d$$

K-Nearest Neighbors

A simple non-parametric classification algorithm Idea:

- Look around you to see how your neighbors classify data
- Classify a new data-point according to a majority vote of your k nearest neighbors

Distance Metric

How do we measure what it means to be a neighbor (what is "close")?

Appropriate distance metric depends on the problem Examples:

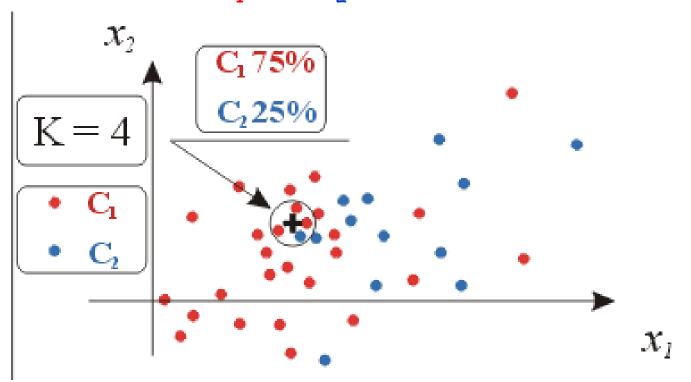
- x discrete (e.g., strings): Hamming distance $d(x_1,x_2) = \#$ features on which x_1 and x_2 differ
- x continuous (e.g., vectors over reals): Euclidean distance

 $d(x_1,x_2) = ||x_1-x_2|| = square root of sum of squared$ differences between corresponding elements of data vectors

Example

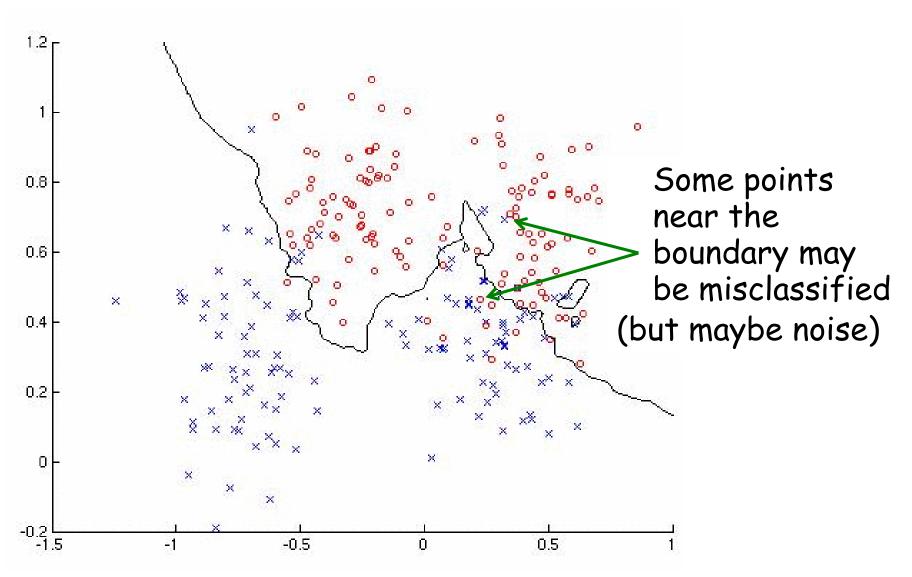
Input Data: 2-D points (x_1,x_2)

Two classes: C_1 and C_2 . New Data Point +

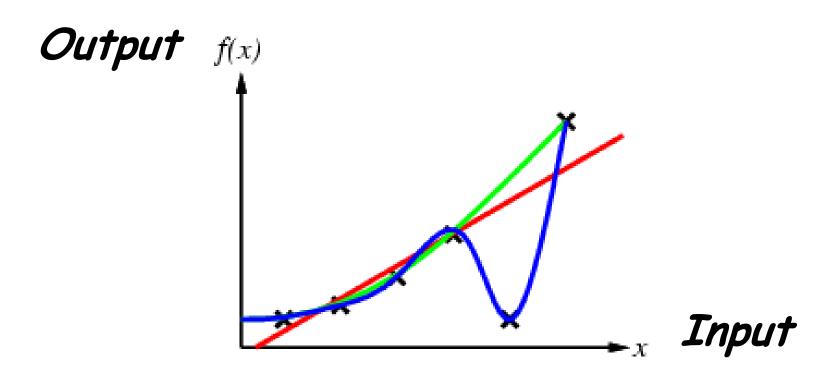


K = 4: Look at 4 nearest neighbors of + 3 are in C_1 , so classify + as C_1

Decision Boundary using K-NN



What if we want to learn continuous-valued functions?



Regression

K-Nearest neighbor take the average of k-close by points

Linear/Non-linear Regression
fit parameters (gradient descent)
minimizing the regression error/loss

Neural Networks remove the threshold function

Large Feature Spaces

Easy to overfit

```
Regularization
add penalty for large weights
prefer weights that are zero or close to zero
```

minimize

regression error + C.regularization penalty

Regularizations

L1: diamond

L2: circle

Derivatives

L1: constant

L2: high for large weights

- L1 harder to optimize, but not too hard.
 - discontinuous but convex

L1 vs. L2

