Text Features

Features

Key to machine learning is having good features

• In industrial data mining, large effort devoted to constructing appropriate features

Issues in document representation

Cooper's concordance of Wordsworth was published in 1911. The applications of full-text retrieval are legion: they include résumé scanning, litigation support and searching published journals on-line.

- Cooper's vs. Cooper vs. Coopers.
- Full-text vs. full text vs. {full, text} vs. fulltext.
- résumé vs. resume.

Punctuation

- *Ne'er*: use language-specific, handcrafted "locale" to normalize.
- *State-of-the-art*: break up hyphenated sequence.
- U.S.A. vs. USA use locale.
- a.out

Numbers

- 3/12/91
- Mar. 12, 1991
- 55 B.C.
- B-52
- 100.2.86.144
 - Generally, don't index as text
 - Creation dates for docs

Case folding

- Reduce all letters to lower case
- Exception: upper case in mid-sentence
 - -e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail

Thesauri and Soundex

- Handle synonyms and homonyms
 - Hand-constructed equivalence classes
 - e.g., *car* = *automobile*
 - your ≠ you're
- Index such equivalences?
- Or expand query?

Spell Correction

- Look for all words within (say) edit distance 3 (Insert/Delete/Replace) at query time
 – e.q., Alanis Morisette
- Spell correction is expensive and slows the query (up to a factor of 100)
 - Invoke only when index returns zero matches?
 - What if docs contain mis-spellings?

Lemmatization

- Reduce inflectional/variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' \rightarrow car

the boy's cars are different colors \rightarrow the boy car be different color

Stemming

- Reduce terms to their "roots" before indexing
 - language dependent
 - e.g., *automate(s), automatic, automation* all reduced to *automat*.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compres and compres are both accept as equival to compres.

Porter's algorithm

- Common algorithm for stemming English
- Conventions + 5 phases of reductions
 - phases applied sequentially
 - each phase consists of a set of commands
 - sample convention: Of the rules in a compound command, select the one that applies to the longest suffix.
- Porter's stemmer available: <u>http://www.sims.berkeley.edu/~hearst/irbook/porter.html</u>

Typical rules in Porter

- $sses \rightarrow ss$
- ational \rightarrow ate
- tional \rightarrow tion

Challenges

- Sandy
- Sanded
- Sander

Properties of Text

- Word frequencies skewed distribution
- `The' and `of' account for 10% of all words
- Six most common words account for 40%

From [Croft, Metzler & Strohman 2010]

Associate Press Corpus `AP89'

From [Croft, Metzler & Strohman 2010]

Middle Ground

- Very common words \rightarrow bad features
- Language-based stop list: words that bear little meaning
 20-500 words
 http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
- Subject-dependent stop lists
- Very rare words *also* bad features
 Drop words appearing less than k times / corpus

Beyond Words

 Look at capitalization (may indicated a proper noun)

- Look for commonly occurring sequences
 - E.g. New York, New York City
 - Limit to 2-3 consecutive words
 - Keep all that meet minimum threshold (e.g. occur at least 5 or 10 times in corpus)