Logistic Regression

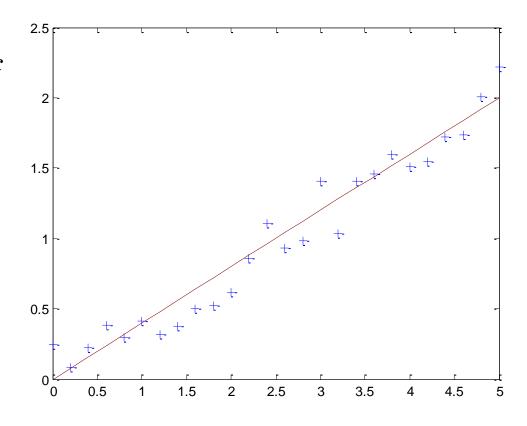
Mausam

Based on slides of Rong Jin, Tom Mitchell, Yi Zhang

Linear Regression

□ y is continuous

$$y = \vec{x} \cdot \vec{w} + c$$



Logistic Regression Model

□ The log-ratio of positive class to negative class

$$\log \frac{p(y=1|\vec{x})}{p(y=-1|\vec{x})} = \vec{x} \cdot \vec{w} + c \qquad \qquad \frac{p(y=1|\vec{x})}{p(y=-1|\vec{x})} = \exp(\vec{x} \cdot \vec{w} + c)$$

$$p(y=1|\vec{x}) + p(y=-1|\vec{x}) = 1$$

Logistic Regression Model

□ The log-ratio of positive class to negative class

$$\log \frac{p(y=1|\vec{x})}{p(y=-1|\vec{x})} = \vec{x} \cdot \vec{w} + c \qquad \qquad \frac{p(y=1|\vec{x})}{p(y=-1|\vec{x})} = \exp(\vec{x} \cdot \vec{w} + c)$$

$$p(y=1|\vec{x}) + p(y=-1|\vec{x}) = 1$$

□ Results

$$p(y = -1 \mid \vec{x}) = \frac{1}{1 + \exp(\vec{x} \cdot \vec{w} + c)}$$

$$p(y = 1 \mid \vec{x}) = \frac{1}{1 + \exp(-\vec{x} \cdot \vec{w} - c)}$$

$$\Rightarrow p(y \mid \vec{x}) = \frac{1}{1 + \exp[-y(\vec{x} \cdot \vec{w} + c)]}$$

Logistic Regression Model

Assume the inputs and outputs are related in the log linear function

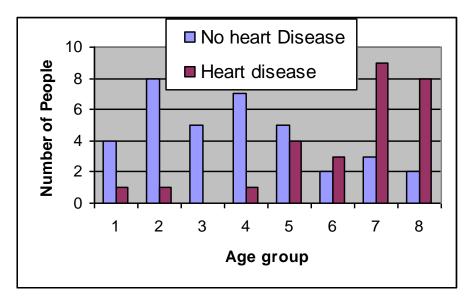
$$p(y | \vec{x}; \theta) = \frac{1}{1 + \exp[-y(\vec{x} \cdot \vec{w} + c)]}$$
$$\theta = \{w_1, w_2, ..., w_d, c\}$$

□ Estimate weights: MLE approach $\{w_1, w_2, ..., w_d, c\}$

$${\vec{w}, c}^* = \max_{\vec{w}, c} l(D_{train}) = \max_{\vec{w}, c} \sum_{i=1}^n \log p(y_i \mid \vec{x}_i; \theta)$$

$$= \max_{\vec{w}, c} \sum_{i=1}^n \log \frac{1}{1 + \exp(-y |\vec{x} \cdot \vec{w} + c|)}$$

Example 1: Heart Disease



- Input feature *x*: age group id
- output y: having heart disease or not
 - +1: having heart disease
 - -1: no heart disease

1: 25-29

2: 30-34

3: 35-39

4: 40-44

5: 45-49

6: 50-54

7: 55-59

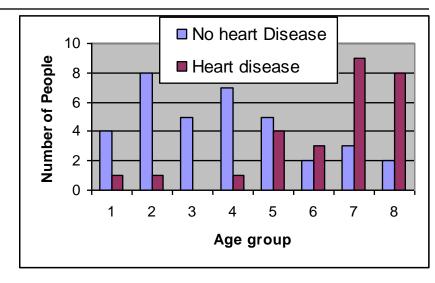
8: 60-64

Example 1: Heart Disease

• Logistic regression model

$$p(y \mid x) = \frac{1}{1 + \exp[-y(xw + c)]}$$
$$\theta = \{w, c\}$$

• Learning w and c: MLE approach



$$l(D_{train}) = \sum_{i=1}^{8} \left\{ n_i(+) \log p(+|i) + n_i(-) \log p(-|i) \right\}$$

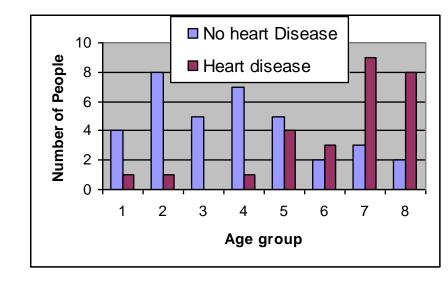
$$= \sum_{i=1}^{8} \left\{ n_i(+) \log \frac{1}{1 + \exp[-iw - c]} + n_i(-) \log \frac{1}{1 + \exp[iw + c]} \right\}$$

• Numerical optimization: w = 0.58, c = -3.34

Example 1: Heart Disease

$$p(+ | x; \theta) = \frac{1}{1 + \exp[-xw - c]}; p(- | x; \theta) = \frac{1}{1 + \exp[xw + c]}$$

- \Box W = 0.58
 - An old person is more likely to have heart disease
- \Box C = -3.34
 - $xw+c < 0 \Rightarrow p(+|x) < p(-|x)$
 - $xw+c > 0 \rightarrow p(+|x) > p(-|x)$
 - $\mathbf{x}\mathbf{w}+\mathbf{c}=0 \Rightarrow$ decision boundary
 - $x^* = 5.78 \rightarrow 53$ year old



- □ Learn to classify text into predefined categories
- \square Input \overrightarrow{x} : a document
 - Represented by a vector of words
 - Example: {(president, 10), (bush, 2), (election, 5), ...}
- \square Output y: if the document is politics or not
 - +1 for political document, -1 for not political document
- □ Training data:

$$\underbrace{\left\{\vec{d}_{1}^{+}, \vec{d}_{2}^{+}, ..., \vec{d}_{n_{+}}^{+}\right\}; \left\{\vec{d}_{1}^{-}, \vec{d}_{2}^{-}, ..., \vec{d}_{n_{-}}^{-}\right\}}_{N=n_{+}+n_{-}}$$

$$\vec{d}_{i}^{\left(\pm\right)} = \left\{ \left(word_{1}, t_{i,1}^{\pm}\right), \left(word_{2}, t_{i,2}^{\pm}\right), ..., \left(word_{n}, t_{i,n}^{\pm}\right) \right\}$$

- □ Logistic regression model
 - Every term t_i is assigned with a weight w_i $d = \{(word_1, t_1), (word_2, t_2), ..., (word_n, t_n)\}$

$$p(y | d; \theta) = \frac{1}{1 + \exp\left[-y(\sum_{i} w_{i} \cdot t_{i} + c)\right]}$$
$$\theta = \{w_{1}, w_{2}, ..., w_{n}, c\}$$

- □ Logistic regression model
 - Every term t_i is assigned with a weight w_i $d = \{(word_1, t_1), (word_2, t_2), ..., (word_n, t_n)\}$

$$p(y \mid d; \theta) = \frac{1}{1 + \exp\left[-y(\sum_{i} w_i \cdot t_i + c)\right]}$$
$$\theta = \{w_1, w_2, ..., w_n, c\}$$

□ Learning parameters: MLE approach

$$l(D_{train}) = \sum_{i=1}^{n_{+}} \log p(+|d_{i}^{+}) + \sum_{i=1}^{n_{-}} \log p(-|d_{i}^{-})$$

$$= \sum_{i=1}^{n_{+}} \log \frac{1}{1 + \exp\left[-\sum_{j} w_{j} \cdot t_{i,j} - c\right]} + \sum_{i=1}^{n_{-}} \log \frac{1}{1 + \exp\left[\sum_{j} w_{j} \cdot t_{i,j} + c\right]}$$

□ Need numerical solutions

- □ Weight w_i
 - $w_i > 0$: term t_i is a positive evidence
 - $w_i < 0$: term t_i is a negative evidence
 - $w_i = 0$: term t_i is irrelevant to the category of documents
 - The larger the $| w_i |$, the more important t_i term is determining whether the document is interesting.

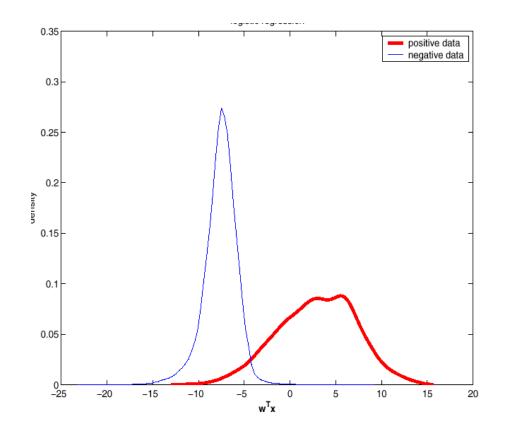
- □ Weight w_i
 - $w_i > 0$: term t_i is a positive evidence
 - $w_i < 0$: term t_i is a negative evidence
 - $w_i = 0$: term t_i is irrelevant to the category of documents
 - The larger the $|w_i|$, the more important t_i term is determining whether the document is interesting.
- □ Threshold c

 $\sum_{i} w_i \cdot t_i + c > 0$: more likely to be a political document

 $\sum_{i} w_i \cdot t_i + c < 0$: more likely to be a non-political document

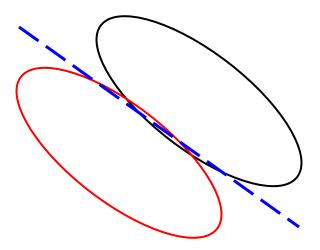
 $\sum_{i} w_{i} \cdot t_{i} + c = 0$: decision boundary

- Dataset: Reuter-21578
- Classification accuracy
 - Naïve Bayes: 77%
 - Logistic regression: 88%



Discriminative Model

- Logistic regression model is a discriminative model
 - \blacksquare Models the conditional probability p(y|x), i.e., the decision boundary
- □ Generative model
 - Models p(x|y), i.e., input patterns of different classes



Generative vs. Discriminative Classifiers

- □ Discriminative classifiers
 - \blacksquare Assume some functional form for P(Y|X)
 - \blacksquare Estimate parameters of P(Y|X) directly from training data

- □ Generative classifiers
 - \blacksquare Assume some functional form for P(X|Y), P(X)
 - \blacksquare Estimate parameters of P(X|Y), P(X) directly from training data
 - Use Bayes rule to calculate $P(Y|X=x_i)$

Asymptotic Difference

- Notation: let $\epsilon(h_{A,m})$ denote error of hypothesis learned via algorithm A, from m examples
- If assumed model correct (e.g., naïve Bayes model), and finite number of parameters, then

$$\epsilon(h_{Dis,\infty}) = \epsilon(h_{Gen,\infty})$$

If assumed model incorrect

$$\epsilon(h_{Dis,\infty}) \le \epsilon(h_{Gen,\infty})$$

Note assumed discriminative model can be correct even when generative model incorrect, but not vice versa

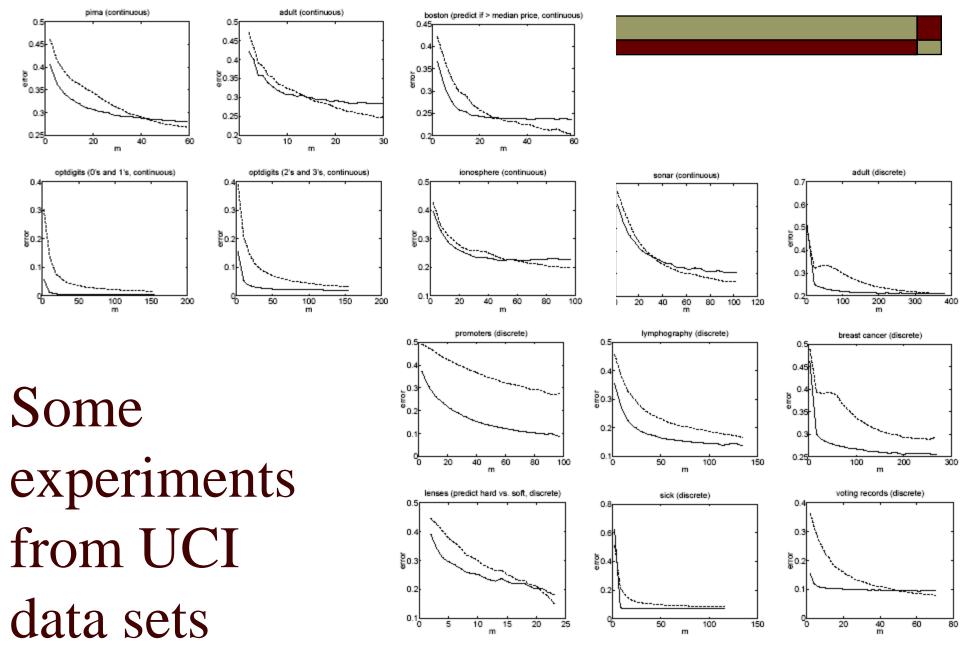
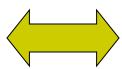


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

Comparison

Generative Model

- Model P(x|y)
 - Model the input patterns



Discriminative Model

- Model P(y|x) directly
 - Model the decision boundary

Comparison

Generative Model

- Model P(x|y)
 - Model the input patterns
- Usually fast converge
- Cheap computation
- Robust to noise data

But

• Usually performs worse

Discriminative Model

- Model P(y|x) directly
 - Model the decision boundary
- Usually good performance

But

- Slow convergence
- Expensive computation
- Sensitive to noise in data

The Bias-Variance Decomposition

(Regression)

Assume that $Y = f(X) + \varepsilon$ where $E(\varepsilon) = 0$ and , $Var(\varepsilon) = \sigma_{\varepsilon}^{2}$ then at an input point, $X = x_{0}$ $Err(x_{0}) = E[(Y - \hat{f}(x_{0}))^{2} | X = x_{0}]$ $= \sigma_{\varepsilon}^{2} + [E\hat{f}(x_{0}) - f(x_{0})]^{2} + E[\hat{f}(x_{0}) - E\hat{f}(x_{0})]^{2}$ $= \sigma_{\varepsilon}^{2} + Bias^{2}(\hat{f}(x_{0})) + Var(\hat{f}(x_{0}))$

= Irreducible Error + Bias² + Variance

Bias, Variance and Model Complexity

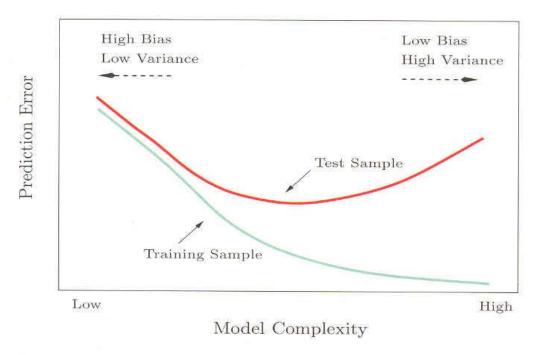
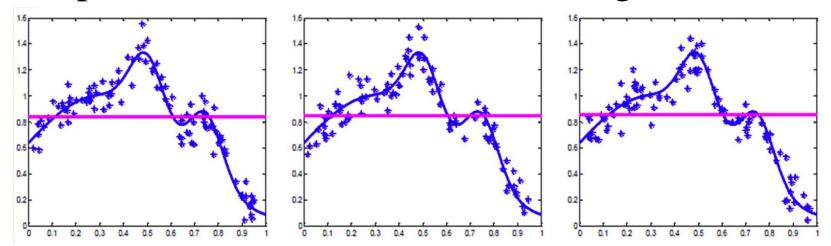


FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied.

□ The figure is taken from Pg 194 of the book *The Elements of Statistical Learning* by Hastie, Tibshirani and Friedman.

Bias-Variance Tradeoff

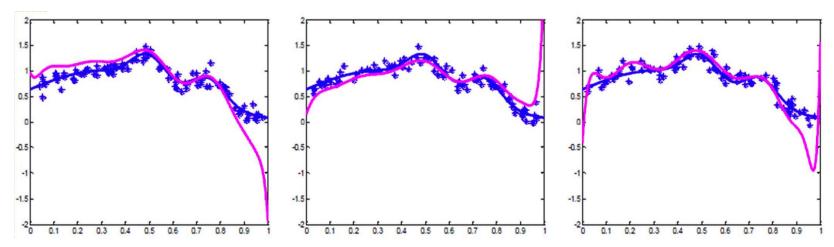
- □ Minimize both bias and variance? No free lunch
- □ Simple models: low variance but high bias



- Results from 3 random training sets **D**
- Estimation is very stable over 3 runs (low variance)
- But estimated models are *too simple* (high bias)

Bias-Variance Tradeoff

- □ Minimize both bias and variance? No free lunch
- Complex models: low bias but high variance



- Results from 3 random training sets **D**
- Estimated models complex enough (low bias)
- But estimation is unstable over 3 runs (high variance)

Bias-Variance Tradeoff

□ We need a good tradeoff between bias and variance

- □ Class of models are not too simple (so that we can *approximate* the true function well)
- □ But not too complex to overfit the training samples (so that the *estimation* is *stable*)

Problems with Logistic Regression?

$$p(\pm | \vec{x}; \theta) = \frac{1}{1 + \exp[\mp(c + x_1 w_1 + x_2 w_2 + \dots + x_m w_m)]}$$

$$\theta = \{w_1, w_2, \dots, w_m, c\}$$

How about words that only appears in one class?

Overfitting Problem with Logistic Regression

Consider word t that only appears in one document d, and d is a positive document. Let w be its associated weight

$$\begin{split} l(D_{train}) &= \sum_{i=1}^{N(+)} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) \\ &= \log p(+ \mid d) + \sum_{d_i^+ \neq d} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) \\ &= \log p(+ \mid d) + l_+ + l_- \end{split}$$

Overfitting Problem with Logistic Regression

Consider word t that only appears in one document d, and d is a positive document. Let w be its associated weight

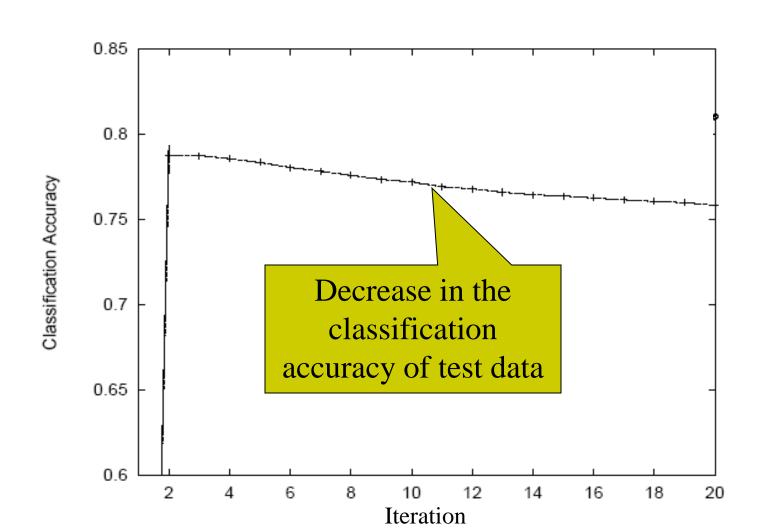
$$\begin{split} l(D_{train}) &= \sum_{i=1}^{N(+)} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) \\ &= \log p(+ \mid d) + \sum_{d_i^+ \neq d} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) \\ &= \log p(+ \mid d) + l_+ + l_- \end{split}$$

 \square Consider the derivative of $l(D_{train})$ with respect to w

$$\frac{\partial l(D_{train})}{\partial w} = \frac{\partial \log p(+ \mid d)}{\partial w} + \frac{\partial l_{+}}{\partial w} + \frac{\partial l_{-}}{\partial w} = \frac{1}{1 + \exp[c + \vec{x} \cdot \vec{w}]} + 0 + 0 > 0$$

 \square w will be infinite!

Example of Overfitting for LogRes



Solution: Regularization

□ Regularized log-likelihood

$$\begin{aligned} l_{reg}(D_{train}) &= l(D_{train}) - s \|\vec{w}\|_{2}^{2} \\ &= \sum_{i=1}^{N(+)} \log p(+|d_{i}^{+}) + \sum_{i=1}^{N(-)} \log p(-|d_{i}^{-}) - s \sum_{i=1}^{m} w_{i}^{2} \end{aligned}$$

- \square s||w||₂ is called the regularizer
 - Favors small weights
 - Prevents weights from becoming too large

The Rare Word Problem

Consider word t that only appears in one document d, and d is a positive document. Let w be its associated weight

$$\begin{split} l(D_{train}) &= \sum_{i=1}^{N(+)} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) \\ &= \log p(+ \mid d) + \sum_{d_i^+ \neq d} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) \\ &= \log p(+ \mid d) + l_+ + l_- \end{split}$$

$$\begin{split} l_{reg}(D_{train}) &= \sum_{i=1}^{N(+)} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) - s \sum_{i=1}^m w_i^2 \\ &= \log p(+ \mid d) + \sum_{d_i^+ \neq d} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(- \mid d_i^-) - s \sum_{i=1}^m w_i^2 \\ &= \log p(+ \mid d) + l_+ + l_- - s \sum_{i=1}^m w_i^2 \end{split}$$

The Rare Word Problem

 \square Consider the derivative of $l(D_{train})$ with respect to w

$$\frac{\partial l(D_{train})}{\partial w} = \frac{\partial \log p(+|d)}{\partial w} + \frac{\partial l_{+}}{\partial w} + \frac{\partial l_{-}}{\partial w} = \frac{1}{1 + \exp[c + \vec{x} \cdot \vec{w}]} + 0 + 0 > 0$$

$$\frac{\partial l_{reg}(D_{train})}{\partial w} = \frac{\partial \log p(+|d)}{\partial w} + \frac{\partial l_{+}}{\partial w} + \frac{\partial l_{-}}{\partial w} - 2sw$$

$$= \frac{1}{1 + \exp[c + \vec{x} \cdot \vec{w}]} + 0 + 0 - 2sw$$

The Rare Word Problem

 \square Consider the derivative of $l(D_{train})$ with respect to w

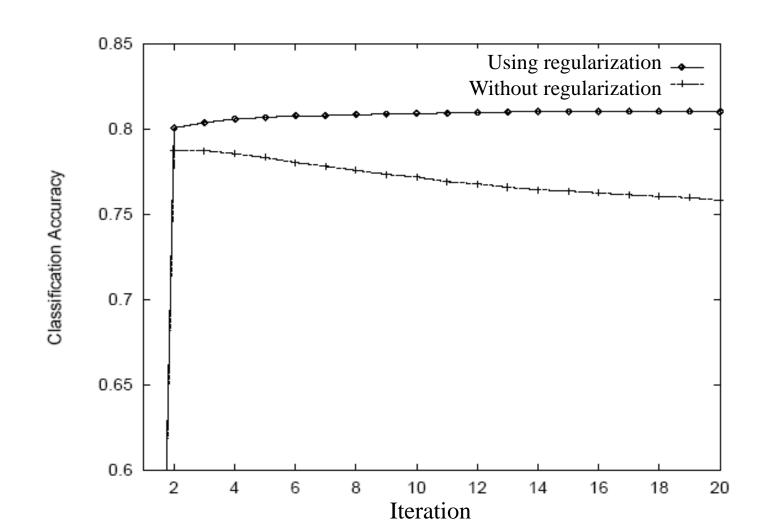
$$\frac{\partial l(D_{train})}{\partial w} = \frac{\partial \log p(+|d)}{\partial w} + \frac{\partial l_{+}}{\partial w} + \frac{\partial l_{-}}{\partial w} = \frac{1}{1 + \exp[c + \vec{x} \cdot \vec{w}]} + 0 + 0 > 0$$

$$\frac{\partial l_{reg}(D_{train})}{\partial w} = \frac{\partial \log p(+|d)}{\partial w} + \frac{\partial l_{+}}{\partial w} + \frac{\partial l_{-}}{\partial w} - 2sw$$

$$= \frac{1}{1 + \exp[c + \vec{x} \cdot \vec{w}]} + 0 + 0 - 2sw$$

- □ When w is small, the derivative is still positive
- □ But, it becomes negative when w is large

Regularized Logistic Regression



Sparse Solution

□ What does the solution of regularized logistic regression look like?

Sparse Solution

- □ What does the solution of regularized logistic regression look like?
- □ A sparse solution
 - Most weights are small and close to zero

Why do We Need Sparse Solution?

- □ Two types of solutions
 - 1. Many non-zero weights but many of them are small
 - 2. Only a small number of non-zero weights, and many of them are large
- □ Occam's Razor: the simpler the better
 - A simpler model that fits data unlikely to be coincidence
 - A complicated model that fit data might be coincidence
 - Smaller number of non-zero weights
 - → less amount of evidence to consider
 - → simpler model
 - \rightarrow case 2 is preferred

L1 vs. L2 Regularization

- □ L2 Regularizer
 - many weights are closer to zero
 - Easy to optimize
- □ L1 Regularizer

$$l_{reg}(D_{train}) = l(D_{train}) - s \|\vec{w}\|_{1}$$

- Many weights are zero
- More difficult to optimize

Feature Selection (discrete)

- □ Score each feature and *select a subset*
 - Iterative method:
 - Select a highest score feature from the pool
 - □ *Re-score* the rest, e.g., cross-validation accuracy on already-selected features (plus this one)
 - □ Iterate

- Can also do in reverse direction
 - (remove one at a time)

Gradient Ascent

- ☐ Maximize the log-likelihood by iteratively adjusting the parameters in small increments
- □ In each iteration, we adjust w in the direction that increases the

Preventing weights from being too large
$$p(y_i | \vec{x}_i) - s\sum_{i=1}^{m} w_i^2$$

$$= \vec{w} + \varepsilon \left\{ -s\vec{w} + \sum_{i=1}^{N} \vec{x}_i \left[y_i (1 - p(y_i \mid \vec{x}_i)) \right] \right\}$$

Gradient Ascent

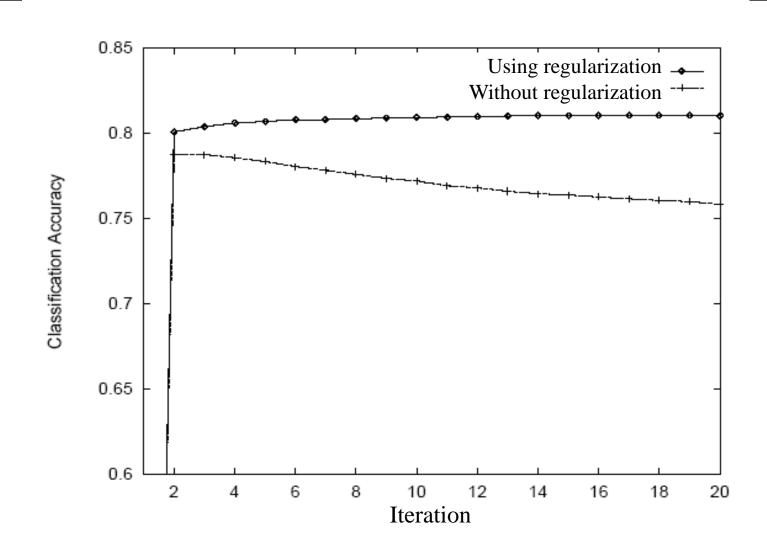
- Maximize the log-likelihood by iteratively adjusting the parameters in small increments
- ☐ In each iteration, we adjust w in the direction that increases the log-likelihood (toward the gradient)

$$\vec{w} \leftarrow \vec{w} + \varepsilon \frac{\partial}{\partial \vec{w}} \left\{ \sum_{i=1}^{N} \log p(|y_i| |\vec{x}_i) - s \sum_{i=1}^{m} w_i^2 \right\}$$

$$= \vec{w} + \varepsilon \left\{ -s\vec{w} + \sum_{i=1}^{N} \vec{x}_i \left[y_i (1 - p(y_i| |\vec{x}_i)) \right] \right\}$$

$$c \leftarrow c + \varepsilon \frac{\partial}{\partial c} \left\{ \sum_{i=1}^{N} \log p(y_i| |\vec{x}_i) - s \sum_{i=1}^{m} w_i^2 \right\}$$

$$= c + \varepsilon \left\{ \sum_{i=1}^{N} y_i (1 - p(y_i| |\vec{x}_i)) \right\}$$
where ε is learning rate.



When should Stop?

☐ The gradient ascent learning method converges when there is no incentive to move the parameters in any particular direction:

$$\frac{\partial}{\partial \vec{w}} \left\{ \sum_{i=1}^{N} \log p(y_i \mid \vec{x}_i) - \sum_{i=1}^{m} w_i^2 \right\} = \left\{ -s\vec{w} + \sum_{i=1}^{N} \vec{x}_i \left[y_i (1 - p(y_i \mid \vec{x}_i)) \right] \right\} = 0$$

$$\frac{\partial}{\partial c} \left\{ \sum_{i=1}^{N} \log p(y_i \mid \vec{x}_i) - \sum_{i=1}^{m} w_i^2 \right\} = \left\{ \sum_{i=1}^{N} y_i (1 - p(y_i \mid \vec{x}_i)) \right\} = 0$$

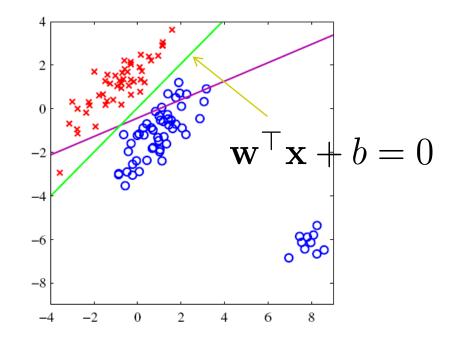
Multi-class Logistic Regression

 How to extend logistic regression model to multi-class classification?

$$\ln \frac{p(y = 1|\mathbf{x})}{p(y = -1|\mathbf{x})} = \mathbf{w}^{\top} \mathbf{x}$$

$$p(y|\mathbf{x}) = \frac{1}{\exp(-y\mathbf{w}^{\top}\mathbf{x}) + 1}$$

$$= \sigma(y\mathbf{w}^{\top}\mathbf{x})$$



Conditional Exponential Model

• Let classes be C_1, C_2, \ldots, C_K

$$p(C_k|\mathbf{x}) \propto \exp(\mathbf{w}_k^{\top}\mathbf{x})$$

$$p(C_k|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(\mathbf{w}_k^{\top} \mathbf{x})$$

Normalization factor (partition function)
$$Z(\mathbf{x}) = \sum_{k=1}^{K} \exp(\mathbf{w}_k^{\top} \mathbf{x})$$

• Need to learn $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_K$

Conditional Exponential Model

 Learn weights ws by maximum conditional likelihood estimation

$$\mathcal{L}(W) = \sum_{i=1}^{N} \ln p(y_i | \mathbf{x}_i) = \sum_{i=1}^{N} \ln \frac{\exp(\mathbf{x}_i^{\top} \mathbf{w}_{y_i})}{\sum_{k=1}^{K} \exp(\mathbf{x}_i^{\top} \mathbf{w}_k)}$$

$$W^* = \arg\max_{W} \mathcal{L}(W)$$