Logistic Regression
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Based on slides of Rong Jin, Tom Mitchell, Yi
Zhang




Linear Regression
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Logistic Regression Model

0 The log-ratio of positive class to negative class
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Logistic Regression Model

0 The log-ratio of positive class to negative class

11w =1|X) -
p(y=11%) _ = P(y — exp(X - W+ )
log — =X-W+C > — 1%
p(y = -1/ %) ply=—11%) ]
p(y =1|X) + p(y =-1[X) =1
O Results
. 1
p(y =-1|X) = —
1+exp(X-w+c) q 1
. = p(Y|X) = —
_ 1+exp| —y(X-W+c) |
p(y =1]|X) = —
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Logistic Regression Model

0 Assume the inputs and outputs are related in the log
linear function

Py |X;0) =

1
1+exp[—y(X-W+c)]

0 ={w,W,,...,Wy,C}
O Estimate weights: MLE approach {w,w,,...,wy,C}

{V_\?; C} = nVIViXI(Dtrain) — rUT/,aCX Zinzllog p(yl | )_{I’e)

1
1+exp(-y[X-W+c))

n
=—max > . lo



Example 1: Heart Disease

10 @ No heart Disease 1: 25-29
% 8 B Heart disease 2:30-34

£ 6 N
5 4 — 3: 35-39
g > L —' 4: 40-44

zZ
p UL LD 5: 45-49
1 2 3 4 5 6 7 8

Age group 6: 50-54
7: 55-59
- Input feature x: age group id 8: 60-64

e output y: having heart disease or not
e +1: having heart disease

 -1: no heart disease



Example 1: Heart Disease

* Logistic regression model

10

O No heart Disease

B Heart disease

p(y %) = . : ]
1+exp[—y(xw+c) ] [ i ‘I
2
QZ{W,C} pd 0 .. .. . .. .
1 2 3 4 5 6 7 8
 Learning w and c¢: MLE approach Age group
|(Dyain) = ., {mi (+)log p(+ i) +m; () log p(-| i)}
8
=Y <n(+)lo +n(—)lo
Z'l{ () g1+exp[—iw—c] ) g1+exp[iw+c]}

* Numerical optimization: w = 0.58, ¢ =-3.34




Example 1: Heart Disease

P+ X:6) =

1
1+exp[-xw—c]’

o W=0.58

An old person is more likely to

have heart disease

o C=-3.34

XW+C <0 =2 p(+|x) < p(-|x)
XW+C > 0 =2 p(+|x) > p(-|x)

xw+c = 0 - decision boundary

O

x* =5.78 - 53 year old

 P(=]x;0) =

1

1+exp|[xw+c]

Number of People

10

O No heart Disease

B Heart disease
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Example: Text Classification

0 Learn to classify text into predefined categories

o Input x: a document
Represented by a vector of words
Example: {(president, 10), (bush, 2), (election, 5), ...}

o Output y: if the document is politics or not
+1 for political document, -1 for not political document

0 Training data: {af,ag,,_,,a,{};{J{,Jz‘,---ﬂﬁ_}

A

N=n, +n_

Ji(i) - {(Wordl,tfl),(wordz,tfz),...,(Wordn,tfn )}



Example 2: Text Classification

O Logistic regression model
= Everytermt; is assigned with a weight w; d = {(Wordl,tl),(WOFdz,tz) ,,,,, (Wordn,tn )}

1
1+exp[—y(zi W -t +c)}

p(y|d;6) =




Example 2: Text Classification

O

Logistic regression model
= Every term t; is assigned with a weight w; d = {(wordl,tl),(wordz,tz) ,,,,, (word,,t, )}

1
1+exp[—y(zi W -t +c)}

p(y|d;6) =

Learning parameters: MLE approach

|(Dyain) = 2 log p(+] di") + > log p(~| ;")

=X} log 1 “ 31 log
1+exp[—zjwj 4 i —c}

Need numerical solutions

1

1+exp[zjwj 4 i +c}




Example 2: Text Classification

o  Weight w;

w; > 0: term t; is a positive evidence

w; < 0: term t; is a negative evidence

w; = 0: term t; is irrelevant to the category of documents

The larger the | w; |, the more important t; term is determining whether
the document is interesting.
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Example 2: Text Classification

o  Weight w;
w; > 0: term t; is a positive evidence
w; < 0: term t; is a negative evidence
w; = 0: term t; is irrelevant to the category of documents

The larger the | w; |, the more important t; term is determining whether
the document is interesting.

O Threshold ¢

D W -t +c>0: more likely to be a political document
Zi W; -t +¢ < 0: more likely to be a non-political document

D W -t +c=0: decision boundary



Example 2: Text Classification

0.35

- Dataset: Reuter-21578

I
= positive data
— negative data

» Classification accuracy 025

0.2

 Naive Bayes: 77%

« Logistic regression: 88% |

01r

0.05F

20



Discriminative Model

O Logistic regression model is a discriminative model
= Models the conditional probability p(y|x), i.e., the decision boundary

0 Generative model
= Models p(x|y), i.e., input patterns of different classes




IVe VS. DIS
Classifiers

O Discriminative classifiers

Assume some functional form for P(Y|X)

Estimate parameters of P(Y|X) directly from training data

O Generative classifiers
Assume some functional form for P(X|Y), P(X)
Estimate parameters of P(X|Y), P(X) directly from training data
Use Bayes rule to calculate P(Y|X= x;)
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Asymptotic Difference

O Notation: let e(hA,m)denote error of hypothesis learned via algorithm A,
from m examples

If assumed model correct (e.g., naive Bayes model), and finite number of
parameters, then

6(th'S,oo) — E(hGen,oo)

If assumed model incorrect
6(th's,oo) < E(hGen,oo)

O Note assumed discriminative model can be correct even when generative
model incorrect, but not vice versa



pima (sontinuaus)

adult [corfinuous)
a

cpldigits (0'e and 1's, conlinuaus)
0.4 T T r
0.3
1
L
1
I|
ED.'E".
i
\
i
II\.
0.1 1
\
50 100 150 200
m

Some

Easton dpradict if = median price, conbinuous)
045

0.4

L
"
i

3

oaptdigits (2's and 3's, conlinuous)

sonar (sorfinwols)

adull {decrede)

experiments
from UCI

data sets

120

400

=0
lenises (predict hard va. sofl, distrele) sick [discrets)

0.5 T T T T 08 04 T T T

0.4 0E ] J
203 Boal 1 .

Ll
02 ot 1 —e— ]

01 . . . . a . . .

a = 10 15 20 25 % =0 00 =0 20 0

L4 m

o [=1) &0
Fipure 1: Results of 15 experiments on datasets from the UCT Machine Learning
repository. Plots are of generalization error vs

5. m (averaged over 1000 random
train/test splits). Dashed line is logistic regression; solid line is naive Bayes.,



Comparison

Generative Model Discriminative Model
- Model P(x|y) « Model P(y|x) directly
« Model the input patterns » Model the decision

<:'> boundary



Comparison

Generative Model Discriminative Model
- Model P(x|y) « Model P(y|x) directly
« Model the input patterns » Model the decision
boundary
 Usually fast converge
 Usually good performance

« Cheap computation
 Robust to noise data
But

 Usually performs worse

But

« Slow convergence
 Expensive computation

» Sensitive to noise in data
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The Bias-Variance Decomposition

(Regression)

O Assume that Y = f(X)+& where E(¢)=0and
Var(e)=c.? thenatan input point, X =X,

Err(x,)=E[(Y — f(X,))?| X =X,]
=,” +[Ef (%) = f (%)) + EL (%) — Ef (%,)I°
= o,” +Bias?(f (x,)) +Var(f(x,))

= Irreducible Error + Bias? + Variance



Bias, Variance and Model Complexity

High Bias Low Bias

Prediction Error

Low High

Model Complexity

FIGURE 7.1. Behavior of test sample and training sample error as the model

complexity 18 varied.

O The figure is taken from Pg 194 of the book The Elements of
Statistical Learning by Hastie, Tibshirani and Friedman.



Bias-Variance Tradeoff

o Minimize both bias and variance ? No free lunch
O Slmple models: Iow variance but hlgh bias

o Results from 3 random training sets D
o Estimation Is very stable over 3 runs (low variance)
o But estimated models are too simple (high bias)



e
Bias-Variance Tradeoff

O Minimize both bias and variance ? No free lunch
0 Complex models: low bias but 1|gh variance

nnnnnnnnn
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o Results from 3 random tralnlng sets D
o Estimated models complex enough (low bias)
o But estimation Is unstable over 3 runs (high variance)
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Bias-Variance Tradeoff

0 We need a good tradeoff between bias and variance

0 Class of models are not too simple (so that we can
approximate the true function well)

0 But not too complex to overfit the training samples
(so that the estimation Is stable)



Problems with Logistic Regression?

1
1+ exp[F(C + X W, + XoWy + ...+ X Wiy )|

p(x]X;0) =

0 ={wW,W,,...,w_,C}

How about words that only appears in one class?



N
Overfitting Problem with

Logistic Regression

0 Consider word t that only appears in one document d, and d is
a positive document. Let w be its associated weight

I(Dyain) = Y oy 1og p(+ | &)+ 3" log p(~| df")

=log p(+|d)+ Y., log p(+|d)+ Yo" log p(-| o)
=log p(+|d)+I, +1_
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Overfitting Problem with

Logistic Regression

0 Consider word t that only appears in one document d, and d is
a positive document. Let w be its associated weight

I(Dyain) = Y 1y 1og p(+ | di)+ > log p(~| d}")

=log p(+|d)+ Y., log p(+|d)+ Yo" log p(-| o)
=log p(+|d)+I, +1_

O Consider the derivative of I(D;,,;,) With respect to w

O (Dyrain) _ log p(+[d) oI,  dl _ 1
oW OW ow  ow l+exp[c+X-W|

o  wwill be infinite !

+0+0>0




el
Example of Overfitting for LogRes

0.85

08
g\ %%%%%%%%%%%%%%%% e
ol N 1
<L
2
s .l Decrease in the
& classification

- accuracy of test data

DE 1 ] 1 1 ] 1 1 1 ]

2 4 6 8 10 12 14 16 18 20

Iteration



—!

Solution: Regularization

0 Regularized log-likelihood

Ireg (Dtrain) — I(Dtrain) - S”W”§
=> " og p(+1d;)+ > og p(-d7) —s> " W
O s||w||, Is called the regularizer

Favors small weights
Prevents weights from becoming too large
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The Rare Word Problem

0 Consider word t that only appears in one document d, and d is
a positive document. Let w be its associated weight

I(Dyain) = X 1oy 10g p(+| &)+ log p(~| df")

=log p(+| )+, log p+ ")+ Y 1" log p(~| o)
=log p(+|d)+I, +1_

g

lreg (Drrain) = > Vlog p(+ [ d7) + > Vlog p(- [ d7) — 53" w?
=log p(+|d)+Y ., log p(+|d;")+ > " log p(-[d ) -5 ", wf

=log p(+|d)+1, +1_—s> " W’




e
The Rare Word Problem

O Consider the derivative of I(D;,,;,) With respect to w

O (Dyain) _ Olog p(+]d) dl. ol _ 1
oW oW ow  ow l+exp[c+X-W|

4

8|reg (Dtrain) _ 5|09 p(+ | d) i al+ + ol — 2SW
ow ow w - ow
1

:1+exp[c+5<’-vT/]

+0+0>0

+0+0—-2sw




e
The Rare Word Problem

O Consider the derivative of I(D;,,;,) With respect to w

Ol (Dyain) _ 0log p(+|d) N ol, N o_ _ 1
oW OW ow  ow l+exp[c+X-W|

4

6Ireg (Dtrain) _ 5|09 p(+ | d) i @|+ + ol — 2SW
ow ow w - ow
1

:1+exp[c+5<’-vT/]

+0+0>0

+0+0—-2sw

0o When w is small, the derivative is still positive
0 But, it becomes negative when w is large



Regularized Logistic Regression

0.85 : : : .
Using regularization _«—
Without regularization —+—
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Sparse Solution

0  What does the solution of regularized logistic
regression look like ?




Sparse Solution

0  What does the solution of regularized logistic
regression look like ?

O A sparse solution
= Most weights are small and close to zero
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Why do We Need Sparse Solution?

o  Two types of solutions

Many non-zero weights but many of them are small

Only a small number of non-zero weights, and many of them are
large

O Occam’s Razor: the simpler the better
A simpler model that fits data unlikely to be coincidence
A complicated model that fit data might be coincidence
Smaller number of non-zero weights
—> less amount of evidence to consider
—> simpler model
—> case 2 is preferred



L1 vs. L2 Reqgularization

0 L2 Regularizer
= many weights are closer to zero
= Easy to optimize

0 L1 Regularizer

Ireg (Dtrain) = I(Dtrain) =S HW” 1

= Many weights are zero
= More difficult to optimize
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Feature Selection (discrete)

O Score each feature and select a subset

Iterative method:
o Select a highest score feature from the pool

O Re-score the rest, e.g., cross-validation accuracy on
already-selected features (plus this one)

o lterate

0 Can also do in reverse direction
(remove one at a time)



Gradient Ascent

0 Maximize the log-likelihood by itrémfwatively adjusting the
parameters in small increments

O In each iteration, we adjust w in the direction that increases the

| e gradient icti
Preventing weights T2 ) Prediction Errors

from being too large " log p(y, lii)—sffilwf}

R S
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Gradient Ascent

0 Maximize the log-likelihood by itrémr'étively adjusting the
parameters in small increments

O Ineach iteration, we adjust w in the direction that increases the
log-likelihood (toward the gradient)

Y o 0 X
W<—W+g£{z:11|09 p(y; Ixi)_SZiriiwiz}
— W+g{—SW+ Zil\llii I:yi L-pCy; [ X ))]}

0 _
c<—c+5§{zi|11|09 p(Y; |Xi)—SZ:n:1W‘2}

= c+5{z:11 Yi 1= pCy; [ % ))}

where ¢ Is learning rate.



Classification Accuracy

0.85 ! . . . . — —
Using regularization _«—

Without regularization —+—
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When should Stop?

O The gradient ascent learning method
converges when there Is no incentive to move
the parameters in any particular direction:

%{Z:\;'Og pCY; | )_{i)_zirilwiz} = {_SW+Zililii [Yi L—pCy; | % ))]} =0

%{Z:\iﬂog pCY; | Xi)_zzilwiz} = {Z:il y; L= pCy; | X ))} =0




Multi-class Logistic Regression

How to extend logistic regression model to
multi-class classification ?

=1
In P(y |X) — wlx
p(y = —1[x)
(y]x) : | |
X — o
P exp(—yw'x)+1 = KA
_ T

o(yw  X)




Conditional Exponential Model

et classes be Ci1,Ca,...,Ck
p(Ck|x) o exp(w,, x)

1

7 exp(w,;rx)

p(Cr|x) =

Normalization factor ;4 Z exp(W
(partition function)

Need to learnwi,wa, ..., Wk



Conditional Exponential Model

earn weights ws by maximum conditional
likelihood estimation
P Wy

N
exp(x, w
= Inp(yilxi) Zln =
1=1

i=1 Zk 1eXP(X

Wk)

W* = argmaxy, L(W)



