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Linear Regression 

 y is continuous 
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Logistic Regression Model 

 The log-ratio of positive class to negative class 

 

 

 

 Results 
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Logistic Regression Model 

 The log-ratio of positive class to negative class 
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Logistic Regression Model 

 Assume the inputs and outputs are related in the log 

linear function 

 

 

 

 Estimate weights: MLE approach  
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Example 1: Heart Disease 

•  Input feature x: age group id 

• output y: having heart disease or not 

• +1: having heart disease 

• -1: no heart disease 

1: 25-29 

2: 30-34 

3: 35-39 

4: 40-44 

5: 45-49 

6: 50-54 

7: 55-59 

8: 60-64 
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Example 1: Heart Disease 
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• Learning w and c: MLE approach 

 

 

 

 

• Numerical optimization: w = 0.58, c = -3.34 
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Example 1: Heart Disease 

 W = 0.58 

 An old person is more likely to 

have heart disease 

 C = -3.34 

 xw+c < 0  p(+|x) < p(-|x) 

 xw+c > 0  p(+|x) > p(-|x) 

 xw+c = 0  decision boundary 

 x* = 5.78  53 year old 
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Example: Text Classification 

 Learn to classify text into predefined categories 

 Input x: a document 

 Represented by a vector of words 

 Example: {(president, 10), (bush, 2), (election, 5), …} 

 Output y: if the document is politics or not 

 +1 for political document, -1 for not political document 

 Training data: 
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Example 2: Text Classification 
 Logistic regression model 

 Every term ti is assigned with a weight wi 

 

 

 

 

 

 

 Learning parameters: MLE approach 

 

 

 

 

 

 Need numerical solutions 
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Example 2: Text Classification 
 Logistic regression model 

 Every term ti is assigned with a weight wi 
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 Need numerical solutions 
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Example 2: Text Classification 

 Weight wi 

 wi > 0: term ti is a positive evidence 

 wi < 0: term ti is a negative evidence 

 wi = 0: term ti is irrelevant to the category of documents 

 The larger the | wi |, the more important ti term is determining whether 

the document is interesting. 

 Threshold c 

 

 

 

0 :  more likely to be a political document

0 :  more likely to be a non-political document

0 :  decision boundary
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Example 2: Text Classification 

• Dataset: Reuter-21578 

• Classification accuracy 

• Naïve Bayes: 77% 

• Logistic regression: 88% 



Discriminative Model 

 Logistic regression model is a discriminative model 

 Models the conditional probability p(y|x), i.e., the decision boundary 

 

 Generative model 

 Models p(x|y), i.e., input patterns of different classes 



Generative vs. Discriminative 

Classifiers 

 Discriminative classifiers  

 Assume some functional form for P(Y|X) 

 Estimate parameters of P(Y|X) directly from training data 

 

 Generative classifiers 

 Assume some functional form for P(X|Y), P(X) 

 Estimate parameters of P(X|Y), P(X) directly from training data 

 Use Bayes rule to calculate P(Y|X= xi) 

 



Asymptotic Difference 
 Notation: let                denote error of hypothesis learned via algorithm A, 

from m examples 

• If assumed model correct (e.g., naïve Bayes model), and finite number of 

parameters, then 

  

 

• If assumed model incorrect 

 

 

 Note assumed discriminative model can be correct even when generative 

model incorrect, but not vice versa 

 



Some 

experiments 

from UCI 

data sets 



Comparison 

Generative Model 

 

• Model P(x|y) 

• Model the input patterns 

• Usually fast converge 

• Cheap computation 

• Robust to noise data 

But 

• Usually performs worse 

Discriminative Model 

  

• Model P(y|x) directly 

• Model the decision 
boundary 

• Usually good performance  

But 

• Slow convergence 

• Expensive computation 

• Sensitive to noise data 



Comparison 

Generative Model 

 

• Model P(x|y) 

• Model the input patterns 

• Usually fast converge 

• Cheap computation 

• Robust to noise data 

But 

• Usually performs worse 

Discriminative Model 

  

• Model P(y|x) directly 

• Model the decision 
boundary 

• Usually good performance  

But 

• Slow convergence 

• Expensive computation 

• Sensitive to noise in data 



The Bias-Variance Decomposition 
(Regression) 

 Assume that                     where                and                   

,                           then at an input point,  
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Bias, Variance and Model Complexity 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The figure is taken from Pg 194 of the book The Elements of 
Statistical Learning by Hastie, Tibshirani and Friedman. 

 



Bias-Variance Tradeoff 

 Minimize both bias and variance ? No free lunch 

 Simple models: low variance but high bias 

 

 

 
 
 

 ◦ Results from 3 random training sets D 

 ◦ Estimation is very stable over 3 runs (low variance) 

 ◦ But estimated models are too simple (high bias) 



Bias-Variance Tradeoff 

 Minimize both bias and variance ? No free lunch 

 Complex models: low bias but high variance 

 

 
 
 

 
 

 ◦ Results from 3 random training sets D 

 ◦ Estimated models complex enough (low bias) 

 ◦ But estimation is unstable over 3 runs (high variance) 



 We need a good tradeoff between bias and variance 

 

 Class of models are not too simple (so that we can 

approximate the true function well) 

 But not too complex to overfit the training samples 

(so that the estimation is stable) 

Bias-Variance Tradeoff 



Problems with Logistic Regression? 
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Overfitting Problem with  

Logistic Regression 

 Consider word t that only appears in one document d, and d is 

a positive document. Let w be its associated weight 

 

 

 

 

 Consider the derivative of l(Dtrain) with respect to w 

 

 

 w will be infinite ! 
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Overfitting Problem with  

Logistic Regression 

 Consider word t that only appears in one document d, and d is 

a positive document. Let w be its associated weight 
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Example of Overfitting for LogRes 

Iteration 

Decrease in the 

classification 

accuracy of test data 



Solution: Regularization 

 Regularized log-likelihood 

 

 

 

 s||w||2 is called the regularizer 

 Favors small weights 

 Prevents weights from becoming too large 
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The Rare Word Problem 

 Consider word t that only appears in one document d, and d is 

a positive document. Let w be its associated weight 
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The Rare Word Problem 
 Consider the derivative of l(Dtrain) with respect to w 

 

 

 

 

 

 

 

 

 When s is small, the derivative is still positive 

 But, it becomes negative when w is large 
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The Rare Word Problem 
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 When w is small, the derivative is still positive 
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Regularized Logistic Regression 

Using regularization 

Without regularization 

Iteration 



Sparse Solution 

 What does the solution of regularized logistic 

regression look like ? 

 A sparse solution 

 Most weights are small and close to zero 



Sparse Solution 

 What does the solution of regularized logistic 

regression look like ? 

 A sparse solution 

 Most weights are small and close to zero 



Why do We Need Sparse Solution? 

 Two types of solutions 

1. Many non-zero weights but many of them are small 

2. Only a small number of non-zero weights, and many of them are 

large 

 Occam’s Razor: the simpler the better 

 A simpler model that fits data unlikely to be coincidence 

 A complicated model that fit data might be coincidence 

 Smaller number of non-zero weights  

  less amount of evidence to consider  

  simpler model 

  case 2 is preferred 



L1 vs. L2 Regularization 

 L2 Regularizer 

 many weights are closer to zero 

 Easy to optimize 

 L1 Regularizer 

 

 

 Many weights are zero 

 More difficult to optimize 

2

2
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Feature Selection (discrete) 

 Score each feature and select a subset 

 Iterative method: 

 Select a highest score feature from the pool 

 Re-score the rest, e.g., cross-validation accuracy on 

already-selected features (plus this one) 

 Iterate 

 

 Can also do in reverse direction  

 (remove one at a time) 



Gradient Ascent 

 Maximize the log-likelihood by iteratively adjusting the 

parameters in small increments 

 In each iteration, we adjust w in the direction that increases the 

log-likelihood (toward the gradient) 
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Prediction Errors 
Preventing weights 

from being too large 



Gradient Ascent 

 Maximize the log-likelihood by iteratively adjusting the 

parameters in small increments 

 In each iteration, we adjust w in the direction that increases the 

log-likelihood (toward the gradient) 
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Using regularization 

Without regularization 

Iteration 



When should Stop? 

 The gradient ascent learning method 

converges when there is no incentive to move 

the parameters in any particular direction: 
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Multi-class Logistic Regression 

• How to extend logistic regression model to 

multi-class classification ? 



Conditional Exponential Model 

• Let classes be 

 

 

 

 

 
 

• Need to learn  

 

Normalization factor 

(partition function) 



Conditional Exponential Model 

• Learn weights ws by maximum conditional 

likelihood estimation 

 

 

 

 


