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Text Categorization  

using Naïve Bayes 

Mausam 

(based on slides of Dan Weld,   

Prabhakar Raghavan, Hinrich Schutze, 

Guillaume Obozinski, David D. Lewis) 
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Categorization 

• Given: 

– A description of an instance, xX, where X is 

the instance language or instance space. 

– A fixed set of categories:                           

C={c1, c2,…cn} 

• Determine: 

– The category of x: c(x)C, where c(x) is a 

categorization function whose domain is X and 

whose range is C. 



Sample Category Learning Problem 

County vs. Country? 
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Example: County vs. Country? 
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• Given: 

– A description of an instance, xX, 

where X is the instance language or 

instance space. 

– A fixed set of categories:                           

C={c1, c2,…cn} 

• Determine: 

– The category of x: c(x)C, where c(x) 

is a categorization function whose 

domain is X and whose range is C. 
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Text Categorization 

• Assigning documents to a fixed set of categories, e.g. 

• Web pages  

– Yahoo-like classification 

• What else? 

• Email messages 

– Spam filtering  

– Prioritizing  

– Folderizing 

• News articles  

– Personalized newspaper 

• Web Ranking 

– Is page related to selling something? 

 

 

 



Procedural Classification  

• Approach:  

– Write a procedure to determine a document’s class 

– E.g., Spam? 
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Learning for Text Categorization 

• Hard to construct text categorization functions. 

• Learning Algorithms: 
– Bayesian (naïve) 

– Neural network 

– Relevance Feedback (Rocchio) 

– Rule based (C4.5, Ripper, Slipper) 

– Nearest Neighbor (case based) 

– Support Vector Machines (SVM) 
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Learning for Categorization 

• A training example is an instance xX, paired 

with its correct category c(x):         <x, c(x)> for 

an unknown categorization function, c.  

• Given a set of training examples, D. 

 

 

 

• Find a hypothesized categorization function, 

h(x), such that: )()(: )(, xcxhDxcx 

Consistency 

{<          , county>, <       , country>,…  



Function Approximation 
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c(x) 

x 

May not be any perfect fit 

Classification ~ discrete functions 

h(x) 

h(x) = nigeria(x)  wire-transfer(x) 
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General Learning Issues 

• Many hypotheses consistent with the training data. 

• Bias 

– Any criteria other than consistency with the training data 
that is used to select a hypothesis. 

• Classification accuracy  

– % of instances classified correctly 

– (Measured on independent test data.) 

• Training time  

– Efficiency of training algorithm 

• Testing time  

– Efficiency of subsequent classification 
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Why is Learning Possible? 

Experience alone never justifies any 

conclusion about any unseen instance. 

 

 

 

Learning occurs when  

PREJUDICE meets DATA! 
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Bias 

• The nice word for prejudice is “bias”. 

 

• What kind of hypotheses will you consider? 

– What is allowable range of functions you use when 

approximating? 

• What kind of hypotheses do you prefer? 
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Generalization 

• Hypotheses must generalize to correctly classify 

instances not in the training data. 

 

• Simply memorizing training examples is a 

consistent hypothesis that does not generalize. 
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Bayesian Methods 

• Learning and classification methods based 
on probability theory. 

– Bayes theorem plays a critical role in 
probabilistic learning and classification. 

– Uses prior probability of each category given 
no information about an item. 

• Categorization produces a posterior 
probability distribution over the possible 
categories given a description of an item. 
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Bayesian Categorization 

• Let set of categories be {c1, c2,…cn} 

• Let E be description of an instance. 

• Determine category of E by determining for each ci 

 

 

• P(E) can be ignored since is factor  categories  
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Bayesian Categorization  

• Need to know: 

– Priors: P(ci)  

– Conditionals: P(E | ci) 

• P(ci) are easily estimated from data.  

– If ni of the examples in D are in ci,then  P(ci) =  ni / |D| 

• Assume instance is a conjunction of binary features: 

 

• Too many possible instances (exponential in m) to 

estimate all P(E | ci) 
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Naïve Bayesian Motivation 

• Problem: Too many possible instances      
  (exponential in m)     
 to estimate all P(E | ci) 

 

• If we assume features of an instance are independent 
given the category (ci) (conditionally independent). 

 

 

• Therefore, we then only need to know  P(ej | ci) for 
each feature and category. 
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Naïve Bayes Example 

• C = {allergy, cold, well} 

• e1 = sneeze; e2 = cough; e3 = fever 

• E = {sneeze, cough, fever} 

Prob Well Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze|ci)      0.1       0.9       0.9 

P(cough|ci)      0.1       0.8       0.7 

P(fever|ci)      0.01       0.7       0.4 

C 

C 
C C 
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Naïve Bayes Example (cont.) 

 

 

 

 

 

 

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E) 

P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E) 

P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E) 

 

Most probable category: allergy 

P(E) = 0.089 + 0.01 + 0.019 = 0.0379 

P(well | E) = 0.23 

P(cold | E) = 0.26 

P(allergy | E) = 0.50 

Probability Well Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze | ci)      0.1       0.9       0.9 

P(cough | ci)      0.1       0.8       0.7 

P(fever | ci)      0.01       0.7       0.4 

E={sneeze, cough, fever} 
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Learning Probabilities 

• Normally, probabilities are estimated based on 
observed frequencies in the training data. 

• If D contains ni examples in category ci, and nij of 
these ni examples contains feature ej, then: 

 

 

• However, estimating such probabilities from small 
training sets is error-prone. 

• If due only to chance, a rare feature, ek, is always 
false in the training data, ci :P(ek | ci) = 0. 

• If ek then occurs in a test example, E, the result is 
that ci: P(E | ci) = 0 and ci: P(ci | E) = 0 
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Smoothing 

• To account for estimation from small samples, 

probability estimates are adjusted or smoothed. 

• Laplace smoothing using an m-estimate assumes that 

each feature is given a prior probability, p, that is 

assumed to have been previously observed in a 

“virtual” sample of size m. 

 

 

• For binary features, p is simply assumed to be 0.5. 
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Naïve Bayes for Text 

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci). 

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V| 
– Equivalent to a virtual sample of seeing each word in 

each category exactly once. 
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Text Naïve Bayes Algorithm 
(Train) 

Let V be the vocabulary of all words in the documents in D 

For each category ci   C 

        Let Di be the subset of documents in D in category ci 

        P(ci) = |Di| / |D| 

      Let Ti be the concatenation of all the documents in Di 

         Let ni be the total number of word occurrences in Ti 

         For each word wj  V 

             Let nij be the number of occurrences of wj in Ti 

                   Let P(wi | ci) = (nij + 1) / (ni + |V|)   
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Text Naïve Bayes Algorithm 
(Test) 

Given a test document X 

Let n be the number of word occurrences in X 

Return the category: 

 

 

     where ai is the word occurring the ith position in X 
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Naïve Bayes Time Complexity 

• Training Time:  O(|D|Ld + |C||V|))           
where Ld is the average length of a document in D. 

– Assumes V and all Di , ni, and nij pre-computed in 
O(|D|Ld) time during one pass through all of the data. 

– Generally just O(|D|Ld) since usually |C||V| < |D|Ld  

• Test Time: O(|C| Lt)                                
where Lt  is the average length of a test document. 

 

• Very efficient overall, linearly proportional to the 
time needed to just read in all the data. 
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Easy to Implement 

• But… 

 

• If you do… it probably won’t work… 



Probabilities: Important Detail! 

 We are multiplying lots of small numbers  

 Danger of underflow! 

 0.557 = 7 E -18        
 

 Solution? Use logs and add! 

 p1 * p2 = e log(p1)+log(p2) 

 Always keep in log form 
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Multi-Class Categorization 

• Pick the category with max probability 

• One-vs-all (OVA) Create many 1 vs other classifiers 

– Classes = City, County, Country 

– Classifier 1 = {City} {County, Country} 

– Classifier 2 = {County} {City, Country} 

– Classifier 3 = {Country} {City, County} 

•  All-vs-all (AVA)  For each pair of classes build a 

classifier 
– {City vs. County}, {City vs Country}, {County vs. Country}  
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Multi-Class Categorization 

• Pick the category with max probability 

• Create many OVA/AVA classifiers 

• Use a hierarchical approach (wherever 

hierarchy available) 

        Entity 

 

         Person                    Location 

 

 Scientist   Artist    City    County    Country 
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Advantages 

• Simple to implement 

– No numerical optimization, matrix algebra, etc 

• Efficient to train and use 

– Easy to update with new data 

– Fast to apply 

• Binary/multi-class 

• Independence allows parameters to be estimated 

on different datasets 

• Comparitively good effectiveness with small 

training sets 
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Disadvantages 

• Independence assumption wrong 

– Absurd estimates of class probabilities 

• Output probabilities close to 0 or 1 

– Thresholds must be tuned; not set analytically 

 

• Generative model 

– Generally lower effectiveness than 

discriminative techniques 

– Improving parameter estimates can hurt 

classification effectiveness 
32 



Experimental Evaluation 

Question: How do we estimate the 

performance of classifier on unseen data? 

• Can’t just at accuracy on training data – this 

will yield an over optimistic estimate of 

performance 

• Solution: Cross-validation 

• Note: this is sometimes called estimating 

how well the classifier will generalize 
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Evaluation: Cross Validation 

• Partition examples into k disjoint sets 

• Now create k training sets 

– Each set is union of all equiv classes except one 

– So each set has (k-1)/k of the original training data 

 
           Train             

Te
st

 

Te
st

 

Te
st

 

…
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Cross-Validation (2) 

• Leave-one-out 

– Use if < 100 examples (rough estimate) 

– Hold out one example, train on remaining examples 

 

• 10-fold  

– If have 100-1000’s of examples 

 

• M of N fold 

– Repeat M times 

– Divide data into N folds, do N fold cross-validation 
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Evaluation Metrics 

• Accuracy: no. of questions correctly answered 

 

• Precision (for one label): accuracy when classification = label 

 

• Recall (for one label): measures how many instances of a label were 

missed. 

 

• F-measure (for one label): harmonic mean of precision & recall. 

 

• Area under Precision-recall curve (for one label): vary parameter to 

show different points on p-r curve; take the area 
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Precision & Recall 

P 

N  

“P” “N” 

TP FN 

FP TN 

Predicted 

A
ct

u
al

 

Two class situation 

FP 

FP 
TP 

Multi-class situation: 

Precision  =  TP/(TP+FP) 

Recall      = TP/(TP+FN) 

F-measure = 2pr/(p+r)        

  

 

 

 

 

 

 

 

 

 

 

 

 

37 



A typical precision-recall curve 
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