
Advanced Satisfiability 

Mausam 
(Based on slides of Carla Gomes, Henry Kautz, 

Cristopher Moore,  Ashish Sabharwal,                
Bart Selman, Toby Walsh) 



Why study Satisfiability? 

• Canonical NP complete problem. 

– several hard problems modeled as SAT 

 

• Tonne of applications 

 

• State-of-the-art solvers superfast 
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Real-World Reasoning 
Tackling inherent computational complexity 
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Rules (Constraints) Example domains cast in propositional reasoning system (variables, rules). 

• High-Performance Reasoning 

• Temporal/ uncertainty reasoning 

• Strategic reasoning/Multi-player 

Technology  Targets 

DARPA Research 

Program 



Application: Diagnosis 

• Problem: diagnosis a malfunctioning device 

– Car 

– Computer system 

– Spacecraft 

• where 

– Design of the device is known 

– We can observe the state of only certain parts of 
the device – much is hidden 



Model-Based, Consistency-Based Diagnosis 

• Idea: create a logical formula that describes how 
the device should work 

– Associated with each “breakable” component C is a 
proposition that states “C is okay” 

– Sub-formulas about component C are all conditioned on 
C being okay 

• A diagnosis is a smallest of “not okay” assumptions 
that are consistent with what is actually observed 



Consistency-Based Diagnosis 

1. Make some Observations O. 

2. Initialize the Assumption Set A to assert that 
all components are working properly. 

3. Check if the KB, A, O together are inconsistent 
(can deduce false). 

4. If so, delete propositions from A until 
consistency is restored (cannot deduce false).  
The deleted propositions are a diagnosis. 

There may be many possible diagnoses 

 

 



Example: Automobile Diagnosis 
• Observable Propositions: 

EngineRuns,    GasInTank,     ClockRuns 

• Assumable Propositions: 

FuelLineOK,     BatteryOK,      CablesOK,     ClockOK 

• Hidden (non-Assumable) Propositions: 

GasInEngine,   PowerToPlugs 

• Device Description F: 

(GasInTank  FuelLineOK)  GasInEngine 

(GasInEngine  PowerToPlugs)    EngineRuns 

(BatteryOK  CablesOK)  PowerToPlugs 

(BatteryOK  ClockOK)  ClockRuns 

• Observations: 

 EngineRuns,     GasInTank,     ClockRuns 

 



Example 
• Is F  Observations  Assumptions consistent? 

 

• F   {EngineRuns, GasInTank, ClockRuns}  

  { FuelLineOK, BatteryOK, CablesOK, ClockOK }  false 

– Must restore consistency! 

• F   {EngineRuns, GasInTank, ClockRuns}  

  { BatteryOK, CablesOK, ClockOK }  false 

–  FuelLineOK is a diagnosis 

• F   {EngineRuns, GasInTank, ClockRuns}  

  {FuelLineOK, CablesOK, ClockOK }  false 

–  BatteryOK is not a diagnosis 

 



Complexity of Diagnosis 

• If F is Horn, then each consistency test takes 
linear time – unit propagation is complete for 
Horn clauses. 

• Complexity = ways to delete propositions from 
Assumption Set that are considered. 

– Single fault diagnosis – O(n2) 

– Double fault diagnosis – O(n3) 

– Triple fault diagnosis – O(n4) 

   … 



Deep Space One 

• Autonomous diagnosis & repair “Remote 
Agent” 

• Compiled systems schematic to 7,000 var 
SAT problem 

Started:  January 1996 

Launch: October 15th, 1998 

Experiment: May 17-21 



Deep Space One 

• a failed electronics unit 
– Remote Agent fixed by reactivating the unit. 

 

• a failed sensor providing false information 
– Remote Agent recognized as unreliable and therefore correctly ignored. 

 

• an altitude control thruster (a small engine for controlling the 
spacecraft's orientation) stuck in the "off" position  
– Remote Agent detected and compensated for by switching to a mode that 

did not rely on that thruster. 

 



Testing Circuit Equivalence 

• Do two circuits compute 
the same function? 

• Circuit optimization 

• Is there input for which the 
two circuits compute 
different values? 

A B 

nand 

A B 

C C’ 



Testing Circuit Equivalence 
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SAT Translation of N-Queens 

• At least one queen each row: 
(Q11 v Q12 v Q13 v ... v Q18) 

(Q21 v Q22 v Q23 v ... v Q28) 

... 

• No attacks: 
(~Q11 v ~Q12) 

(~Q11 v ~Q22) 

(~Q11 v ~Q21) 

... 



Symbolic Model Checking 

• Any finite state machine is characterized by a transition function   
– CPU 
– Networking protocol 

• Wish to prove some invariant holds for any possible inputs 
• Bounded model checking: formula is sat iff invariant fails k steps in the future 
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A “real world” example 



i.e.  ((not x1) or x7) 

        and ((not x1) or x6) 

and … etc. 

Bounded Model Checking instance 

                     



(x177 or x169 or x161 or x153 … 

                   or x17 or x9 or x1 or (not x185))  

 

clauses / constraints are getting more interesting… 

10 pages later: 

                

… 



4000 pages later: 

                              

… 

!!! 
a 59-cnf 

clause… 



Finally, 15,000 pages later: 

The Chaff SAT solver (Princeton) solves  

this instance in less than one minute. 

Note that: … !!! 

 
What makes this possible? 



Progress in Last 20 years 

• Significant progress since the 1990’s. How much? 

• Problem size: We went from 100 variables, 200 constraints (early 90’s) 

 to 1,000,000+ variables and 5,000,000+ constraints in 20 years 

 

• Search space: from 10^30 to 10^300,000. 

 [Aside: “one can encode quite a bit in 1M variables.”] 

 

•  Is this just Moore’s Law? It helped, but not much… 

• – 2x faster computers does not mean can solve 2x larger instances 

• – search difficulty does not scale linearly with problem size! 

•  Tools: 50+ competitive SAT solvers available 



Forces Driving Faster, Better SAT Solvers 

• From academically interesting to practically relevant “Real” 
benchmarks, with real interest in solving them 
 

• Regular SAT Solver Competitions (Germany-89, Dimacs-93, China-
96, SAT-02, SAT-03, …, SAT-07, SAT-09, SAT-2011) 

– “Industrial-instances-only” SAT Races (2008, 2010) 

– A tremendous resource! E.g., SAT Competition 2006 (Seattle): 

• 35+ solvers submitted, downloadable, mostly open source 

• 500+ industrial benchmarks, 1000+ other benchmarks 

• 50,000+ benchmark instances available on the Internet 
 

• This constant improvement in SAT solvers is the key to the success 
of, e.g., SAT-based planning and verification 



A Journey from Random to Structured 

•  Random Instances 

 Phase transitions and algorithms 

 from physics to computer science 

 

•  Capturing Problem Structure 

 problem mixtures (tractable / intractable) 

 backdoor variables, restarts, and heavy tails 

 



Random Instances 

• Easy-Hard-Easy patterns (computational) and 
SAT/UNSAT phase transitions (“structural”). 
 

• Their study provides an interplay of work from 
statistical physics, computer science, and 
combinatorics. 
 

• We first study “The State of Random 3-SAT”.      



Random 3-SAT 

• Random 3-SAT 

– sample uniformly from 
space of all possible 3-
clauses 

– n variables, l clauses 

 

• Which are the hard 
instances? 

– around l/n = 4.3 

 

© Daniel S. Weld 
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Random 3-SAT 

• Varying problem size, n 

 

• Complexity peak appears 
to be largely invariant of 
algorithm 

– backtracking algorithms like 
Davis-Putnam 

– local search procedures like 
GSAT 
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Random 3-SAT 

• Complexity peak coincides 
with solubility transition 

 

– l/n < 4.3 problems under-
constrained and SAT 

 

– l/n > 4.3 problems over-
constrained and UNSAT 

 

– l/n=4.3, problems on “knife-
edge” between SAT and 
UNSAT 

27 



3SAT phase transition 

• Lower bounds (hard) 

– Analyse algorithm that almost always solves problem 

– Backtracking hard to reason about so typically without 
backtracking 

• Complex branching heuristics needed to ensure success 

• But these are complex to reason about 
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Random 3-SAT as of 2005 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Phase 

transition 

Mitchell, Selman, and  Levesque ’92 



30 

Results: Random 3-SAT 
 

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). 
              empirically up to 2.5 

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘ 
 empirically up to 3.6 
 approx. 400 vars at phase transition 

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02) 
              approx. 1,000 vars at phase transition 

• Walksat up till ratio 4.1 (empirical, Selman et al. ’93) 
              approx. 100,000 vars at phase transition 

• Survey propagation (SP) up till 4.2  
              (empirical, Mezard, Parisi, Zecchina ’02) 
                 approx. 1,000,000 vars near phase transition 

 
• Unsat phase: little algorithmic progress.  
            Exponential resolution lower-bound (Chvatal and Szemeredi 1988) 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

 No assumptions about the distribution of  X except non-
negative! 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 The expected value of X can be easily calculated 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then prob(X>=1) = prob(SAT) < 1 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then  2^n * (7/8)^l < 1 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then  2^n * (7/8)^l < 1 

                                n + l log2(7/8) < 0 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then  2^n * (7/8)^l < 1 

                                n + l log2(7/8) < 0 

                                l/n > 1/log2(8/7) = 5.19… 



A Heavy Tail 

• But the transition is much lower at l/n ~ 4.27. 
What going on? 

 

• In the range 4.27 < l/n < 5.19,  

– the average no. of solutions is exponentially large. 

• Occasionally, there are exponentially many... 

– ...but most of the time there are none! 

• Large average doesn’t prove satisfiability! 
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Random 3-SAT as of 2004 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  

4.762 

4.596 

4.506 

4.601 

4.643 



From Physics to Computer Science 
Exploits correspondence between SAT and physical systems with 
many interacting particles. 
 

 

Basic model for magnetism: The Ising model (Ising ’24).  Spins are 

“trying to align themselves”. But system can be “frustrated” some pairs 

want to align; some want to point in the opposite direction of each other. 

)( () jiji xxxx 

:align  want to and spin  e.g. ji xx



Combinatorial Problem vs. 
Thermodynamic System 

Combinatorial Problem  Thermodynamic System 

Variable Particle 

Value assignment Status of particle 

Constraint Interaction 

Combinatorial space All microscopic states 

Evaluation function,   
object function 

Energy (Hamiltonian) 

solution Ground state 

Local search Evolution  



We can now assign a probability distribution over the assignments/ 
states --- the Boltzmann distribution: 
 

                          Prob(S) = 1/Z  * exp(- E(S) / kT)           (*) 
 
where, 
  
             E is the “energy”  =  # unsatisfied clauses, 
             T is the “temperature” a control parameter, 
             k is the Boltzmann constant, and 
             Z is the “partition function” (normalizes). 
 
Distribution has a physical interpretation (captures thermodynamic 
equilibrium) but, for us, key property: 

 
With T  0, only minimum energy states have non-zero 
probability. So, by taking T  0, we can find properties of the 
satisfying assignments of the SAT problem. 



Physics contributing to Computation 

80’s --- Simulated annealing 
       General combinatorial search technique, inspired by physics.  
 

90’s  --- Phase transitions in computational systems 
        Discovery of physical laws and phenomena (e.g. 1st and 2nd 
order transitions) in computational systems. 
 

’02 --- Survey Propagation 
       Analytical tool from statistical physics leads to powerful 
algorithmic method.   
 

 More expected!  

 



A Journey from Random to 
Structured 

•  Random Instances 

 Phase transitions and algorithms 

 from physics to computer science 

 

•  Capturing Problem Structure 

 problem mixtures (tractable / intractable) 

 backdoor variables, restarts, and heavy tails 

 



2+p-SAT 

 

 Morph between 2-SAT and 
3-SAT 

– fraction p     of  3-clauses 

– fraction (1-p)  of 2-clauses 

[Monasson et al 1999] 

 



2+p-SAT 

 

• Maps from P to NP 

– NP-complete for any p>0 

– Insight into change from P to 
NP [Monasson et al 1999] 

 



2+p-SAT 



Computational Cost: 2+p-SAT 
Tractable substructure can dominate! 

 

 

 

 

 

> 40% 3-SAT --- exponential scaling 

<= 40% 3-SAT --- linear scaling 

Mixing 2-SAT (tractable) 

& 3-SAT (intractable) clauses. 

(Monasson et al. 99; Achlioptas ‘00) 
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Results for 2+p-SAT 

 
         p < = 0.4 --- model behaves as 2-SAT 
                               search proc. “sees” only binary constraints 
                               smooth, continuous phase transition (2nd order) 
          
         p >  0.4   --- behaves as 3-SAT (exponential scaling) 
                               abrupt, discontinuous scaling (1st order) 
 
           
         Note: problem is NP-complete for any p > 0. 
             



Lesson learned 

In a worst-case intractable problem --- such as 2+p-
SAT --- having a sufficient amount of tractable 
problem substructure (possibly hidden) can lead to 
provably poly-time average case behavior. 

 

Next:  

Capturing hidden problem structure.  

(Gomes et al. 03, 04) 



Real versus Random 

• Real graphs tend to be sparse 

– dense random graphs contains lots of (rare?) structure 

 

• Real graphs tend to have short path lengths 

– as do random graphs 

 

• Real graphs tend to be clustered 

– unlike sparse random graphs 



Small world graphs 

• Sparse, clustered, short path lengths 

 

• Six degrees of separation 
– Stanley Milgram’s famous 1967 

postal experiment 

– recently revived by Watts & Strogatz 

– shown applies to: 
• actors database 

• US electricity grid 

• neural net of a worm 

• ... 

 



An example 

• 1994 exam timetable at 
Edinburgh University 
– 59 nodes, 594 edges so 

relatively sparse 

– but contains 10-clique 

• less than 10^-10 chance in a 
random graph 
– assuming same size and 

density 

• clique totally dominated 
cost to solve problem 
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(Gomes et al. 1998; 2000) 

Observation:  Complete backtrack style search SAT solvers 

(e.g. DPLL) display a remarkably wide range of run times. 

 
Even when repeatedly solving the same problem instance; variable 

branching is choice randomized. 

 

Run time distributions are often “heavy-tailed”. 

 

Orders of magnitude difference in run time on different runs. 

Real World DPLL 



Number backtracks (log) 
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50% runs:  

1 backtrack 

10% runs: 

> 100,000  

backtracks 

100,000 1 

Heavy Tails on Structured Problems 



The Pervasiveness of Heavy-Tailed Phenomena in Economics. 
Science, Engineering, and Computation 

Tsunami 2004 

Blackout of  
August 15th 2003 

> 50 Million People Affected 
 

Financial Markets 
 with huge crashes 

… there are  
a few billionaires 

Backtrack 
search 

Annual meeting (2005).b 
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Randomized Restarts 
Solution:  randomize the backtrack strategy 

Add noise to the heuristic branching (variable choice) function 
Cutoff and restart search after a fixed number of backtracks 
 

Provably Eliminates heavy tails 
 
In practice: rapid restarts with low cutoff can dramatically improve 
performance (Gomes et al. 1998, 1999) 
 

Exploited in many current SAT solvers combined with clause learning 
and non-chronological backtracking. (e.g., Chaff etc.) 
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Deterministic 

Logistics Planning 108 mins. 95 sec. 

Scheduling 14 411 sec 250 sec 

(*) not found after 2 days 

Scheduling 16 ---(*) 1.4 hours 

Scheduling 18 ---(*) ~18 hrs 

Circuit Synthesis 1 ---(*) 165sec. 

Circuit Synthesis 2 ---(*) 17min. 

R 
3 

Results with Random Restarts 



Restarts 

 

 

 

 

70% 

unsolved 
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Number backtracks (log) 

no restarts 

restart every 4 backtracks 

250 (62 restarts) 

0.001% 

unsolved 



Example of Rapid Restart Speedup 

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log( cutoff )

lo
g

 (
 b

a
ck

tr
a
c
ks

 )

20 

2000 

 

~100 

restarts 

Cutoff (log) 

N
um

b
e
r 

b
a
ck

tr
a
ck

s 
(l
og

) 

~10 restarts 

100000 



Several ways to use restarts 

• Restart with increasing cutoff - cutoff increases linearly 
– Geometric restarts – (Walsh 99) cutoff  increased geometrically; 

 
• Randomized backtracking – (Lynce et al 2001) 

– randomizes the target decision points when backtracking 
(several variants) 

 
• Random jumping (Zhang 2002)  

– solver randomly jumps to unexplored portions of search space;  
– jumping decisions are based on analyzing the ratio between the  

space searched vs. the remaining search space;  
– solved several open problems in combinatorics; 

 
• Learning restart strategies – (Kautz et al 2001 and Ruan et. al 2002) –  

– results on optimal policies for restarts under particular 
scenarios. Huge area for further  research. 

 
 



Intuitively: Exponential penalties hidden in backtrack 

search, consisting of large inconsistent subtrees in 

the search space. 

 

But, for restarts to be effective, you also need 

short runs. 

Where do short runs come from? 



 
BACKDOORS 

Subset of “critical” variables such  

    that once assigned a value the instance simplifies to a 

    tractable class. 

 

Real World Problems are characterized 

 by  Hidden Tractable Substructure  

Backdoors: intuitions 

Explain how a solver can get “lucky” and solve 
very large instances 

 



Backdoors 

    Informally:  
 
    A backdoor to a given  problem is a subset of the variables such  
    that once they are assigned values, the polynomial propagation 
    mechanism of the SAT solver solves the remaining formula. 
 
    Formal definition includes the notion of a “subsolver”: 
         a polynomial simplification procedure with certain general  
         characteristics found in current DPLL SAT solvers. 
 
      
          
Backdoors correspond to “clever reasoning shortcuts” in the 

search space. 



Backdoors (for satisfiable instances)  (wrt subsolver A): 

Strong backdoors (apply to satisfiable or inconsistent instances): 

Given a combinatorial problem C  



Reminder: Cycle-cutset 

• Given an undirected graph, a cycle cutset is a subset of nodes in 
the graph whose removal results in a graph without cycles 

 

• Once the cycle-cutset variables are instantiated, the remaining 
problem is a tree  solvable in polynomial time using  arc 
consistency;  

 

• A constraint graph whose graph has a cycle-cutset of size c can 
be solved in time of O((n-c) k (c+2) ) 

 

• Important: verifying that a set of nodes is a cutset  can be done 
in polynomial time (in number of nodes). 

(Dechter 93) 



Backdoors vs. Cutsets 

•Can be viewed as a generalization of cutsets;  

 

•Backdoors use a general  notion of  tractability based on a polytime  

    sub-solver --- backdoors do not require a syntactic characterization 

    of tractability. 

 

•Backdoors factor in the semantics of the constraints wrt sub-solver and 

    values of the variables;   

 

•Backdoors apply to different representations, including different  

semantics for graphs, e.g., network flows --- CSP, SAT, MIP, etc;  

Note: Cutsets and W-cutsets – tractability  based solely on the structure of  
the constraint graph, independently of the semantics of the constraints; 



Backdoors can be surprisingly small 

 

 

Most recent: Other combinatorial domains. E.g. graphplan planning,  

near constant size backdoors (2 or 3 variables) and log(n) size 

in certain domains.  (Hoffmann, Gomes, Selman ’04)  

 

 Backdoors capture critical problem resources (bottlenecks). 



Backdoors --- “seeing is believing” 

Logistics_b.cnf planning formula.  

843 vars, 7,301 clauses, approx min backdoor 16 

(backdoor set = reasoning shortcut) 
 

Constraint graph of 

reasoning problem. 

One node per variable: 

edge between two variables 

if they share a constraint. 



Logistics.b.cnf after setting 5 backdoor vars. 



After setting just 12 (out of 800+) backdoor vars – problem almost solved. 



MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3. 

392 vars, 2,578 clauses. 

Another example 



After setting 2 (out of 392) backdoor vars. ---  

reducing problem complexity in just a few steps!  



Inductive inference problem --- ii16a1.cnf.  1650 vars, 19,368 clauses. 

Backdoor size 40. 

Last example. 



After setting 6 backdoor vars. 



After setting 38 (out of 1600+) 

backdoor vars: 

Some other intermediate stages: 

So: Real-world structure 

hidden in the network. 

Can be exploited by 

automated reasoning 

engines. 



(Williams, Gomes, and Selman ’03) 

Current 

solvers 

Size 

backdoor 

n = num. vars. 

k is a constant 



Other Techniques: Nogood Learning 

• Learn from mistakes during search 

– Nogood Learning: when DPLL backtracks, 

• Learn a concise reason: what went wrong 

– avoid similar ‘mistakes’ in the future! 

– Extremely powerful in practice 



Other Techniques: Machine Learning 

•  Machine learning to build algorithm portfolios 
– Observation: no single SAT solver is good on every family of instances 

– Features of a given instance can be used to predict, with reasonable 
accuracy, which solver will work well on it! 

– Solution: design a portfolio solver using ML techniques 

• Based on runtime prediction models 

• Recent work – avoid complex models, use k-NN or clustering 

  

• Automatic parameter tuning (generic and instance-specific) 
– SAT solvers are designed with many ‘hardwired’ parameters 

– Millions of parameter combinations – impossible to explore all by hand! 

– Solution: use automatic parameter tuning tools based on local search, 
genetic algorithms, etc. 



Where is SAT Research headed? 
Direction A: getting more out of SAT solvers 

– Minimal/minimum unsatisfiable cores: very useful in practice! 

– MAXSAT, weighted MAXSAT 

– Circuit representations (rather than CNF) 

  

Direction B: tacking problems harder than SAT 

– Near-uniform sampling from the solution space 

– Solution counting (with relations to probabilistic inference) 

-- #P-hard : challenging even to approximate with good confidence bounds 

 

Direction C: expanding the applicability of SAT technology 

– Pseudo-Boolean SAT (i.e., linear inequalities over Boolean vars) 

– SMT: Satifisiability Modulo Theories (e.g., linear arithmetic, bit-vector 

operations, uninterpreted functions) 



MAXSAT (SAT optimization) 

• MAXSAT 

– minimize #unsatisfied clauses 

 

• Weighted MAXSAT 

– minimize sum of weights of unsatisfied clauses 

 

• Weighted Partial MAXSAT 

– some clauses have infinite weight: satisfy them 

– others: min sum of weights of unsatisfied clauses  



Project 1 

• can be converted to Weighted Partial MAXSAT 

 

• Use  
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/kuegel/akmaxsat_1.1.tgz 

 

 

http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/kuegel/akmaxsat_1.1.tgz
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/kuegel/akmaxsat_1.1.tgz
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