Uninformed Search
Chapter 3

(Based on slides by Stuart Russell, Dan Weld, Oren Etzioni,
Henry Kautz, and other UW-AI faculty)

What is Search?

* Search is a class of techniques for systematically
finding or constructing solutions to problems.

 Example technique: generate-and-test.
* Example problem: Combination lock.

1. Generate a possible solution.
2. Test the solution.

3. If solution found THEN done ELSE return to step
1.

Search thru a Problem
Space/State Space

Input:
— Set of states
— Operators [and costs]
— Start state
— Goal state [test]

Output:
* Path: start = a state satisfying goal test
* [May require shortest path]

Why is search interesting?

 Many (all?) Al problems can be formulated as
search problems!

 Examples:
e Path planning
e Games
e Natural Language Processing
e Machine learning

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

e states?

e actions?

e goal test?

e path cost?

Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Search Tree Example:
Fragment of 8-Puzzle Problem Space

—_
Mo
a2

™
M~

1 3 1123 1123 1123
8|24 8|4 864 8|4
7/6|5 7|65 7 5 7165
113 113 1|2 112(3 1123 1123 2|3 1123
8|24 8|24 843 415 864 8|64 1184 7184
7|65 7|65 7165 7|6 715 715 7|65 6|5
813 1134 1 2 1123 1123 1123 2 3 1123
24 8|2 8143 8|45 6|4 8|6 1184 7184
7|65 7|65 7165 7 6 8|75 7154 7|65 b 5

Example: robotic assembly

P

- - R R
- {/1 /\ﬂ
\u
R

states?: real-valued coordinates of robot joint angles parts of the object to be
assembled

actions?: continuous motions of robot joints

goal test?: complete assembly

path cost?: time to execute

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
— be in Bucharest
Formulate problem:
— states: various cities
— actions: drive between cities
Find solution:
— sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Example: N Queens

* |nput:
— Set of states

— Operators [and costs]
— Start state

— Goal state (test)

* Qutput

10

Implementation: states vs. nodes

 Astateis a (representation of) a physical configuration

 Anode is a data structure constituting part of a search tree includes state, parent
node, action, path cost g(x), depth

parent, action

State || 5 ||| 4 Node depth = 6
g=6
6 1 8
ale
7 1l 3 ||| 2 st

« The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn of the problem to create the corresponding states.

11

Search strategies

* Asearch strategy is defined by picking the order of node expansion

e Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated

space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?
systematicity: does it visit each state at most once?

 Time and space complexity are measured in terms of

b: maximum branching factor of the search tree

— d: depth of the least-cost solution

— m: maximum depth of the state space (may be o)

12

Uninformed search strategies

Uninformed search strategies use only the information
available in the problem definition

Breadth-first search
Depth-first search
Depth-limited search

Iterative deepening search

13

Repeated states

* Failure to detect repeated states can turn a
linear problem into an exponential one!

14

Depth First Search

Maintain stack of nodes to visit
Evaluation

) , P
Complete? yes except for infinite spaces

— Time Complexity?

O(b"m)
— Space Complexity? O(bm) ;\

AR
© @ ® © O

http://www.youtube.com/watch?v=dtoFAvtVE4U

15

http://www.youtube.com/watch?v=dtoFAvtVE4U

Breadth First Search: shortest first

* Maintain queue of nodes to visit

* Evaluation

— Complete? Yes (b is flnl'l'e)
— Time Complexity? O(b~d)
~ Space Complexity? g(p~d) ;\

1o @
" P es, if s'repw-‘ﬂ“ﬂ/@i / -
®

@ @ @ @O

16

Uniform Cost Search: cheapest first

* Maintain queue of nodes to visit

* Evaluation

— Complete? yegs (b is finite)
— Time Complexity? O(bl\(c*/e))
— Space Complexity? O(bA(C*/e) 1)
©
%%6 1 / M
@ ©® ©® © O

http://www.youtube.com/watch?v=z6lUnb9ktkE

— Optimal?
P Yes

17

http://www.youtube.com/watch?v=z6lUnb9ktkE

Memory Limitation

* Suppose:
2 6Hz CPU

1 6B main memory
100 instructions / expansion
5 bytes / node

200,000 expansions / sec
Memory filled in 100 sec

< 2 minutes

18

ldea 1: Beam Search

* Maintain a constant sized frontier
* Whenever the frontier becomes large

— Prune the worst nodes

Optimal: no
Complete: no

ldea 2: Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

20

Limit=0

Iterative deepening search [=0

20 e

21

Iterative deepening search [=1

22

Iterative deepening search [=2

Limit = p(3)

o

™
o

/@K

P

23

Iterative deepening search [=3

Limit =3 0 o @
@ © (B) G
@ ©
0 0
o G (5) G 3)
@ O ©)
0 @ ©®

24

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d with branching
factor b:

. Nps=bO+ bl + b2 +... +bd2+ pdl 4+ pd

Number of nodes generated in an iterative deepening search to depth d with
branching factor b:

Nips = (d+1)b° + d b AL + (d-1)bA2 + ... + 3b%2 +2b91 + 1
Forb=10,d =5,
— Np.=1+10+ 100 + 1,000 + 10,000 + 100,000 = 111,111

— N,gs = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead =(123,456-111,111)/111,111 =11%

iterative deepening search

Complete? Yes

Time?
— (d+1)b°+d b + (d-1)b? + ... + b = O(b%*!)

Space?
— O(bd)

Optimal?
— Yes, if step cost=1
— Can be modified to explore uniform cost tree (iterative lengthening)

Systematic?

26

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Forwards vs.

™] Oradea
71
N
£ u
*0\?5 151
(q
Arad
Sibiu Fagaras
118
20
Timisoara Rimnicu Vilcea
[
111 9 Lugoj Pitesti
]
70
] Mehadia
75 138
Dobreta [120

d craiova

Backwards

211

101

Neamt
= 87
] lasi
e
N oy
Vaslui
142
35 78 Hirsova
Urziceni
u 86
Bucharest
90
o Eforie
Giurgiu

29

vs. Bidirectional

QW SN

eI

When is bidirectional search applicable?
« (Generating predecessors Is easy

 Only 1 (of few) goal states

30

Bidirectional search

Complete? Yes

Time?
— O(b2)

Space?
— O(b%?)

Optimal?
— Yes if uniform cost search used in both directions

Systematic?
— Yes

31

Problem

* All these methods are slow (blind)

e Solution -2 add guidance (“heuristic estimate”)
- “informed search”

32

