CSE 573 Knowledge Representation:
Propositional, FO & Markov Logic

Dan Weld

(With some slides from Mausam, Stuart Russell, Dieter
Fox, Henry Kautz, Pedro Domingos, Min-Yen Kan...)

Irrationally held truths may be more
harmful than reasoned errors.

- Thomas Huxley (1825-1895)

Project Presentations

Friday 12/7
Length = 4, 6, 7 or 8 min (includes questions) — practice!
Default = your laptop; else mail me slides (.ppt or .pdf) by 9am Fri
— Bring slides on a backup USB memory.
Every team member should talk for some part of the presentation
Subtopics to cover:
— Aspirations & reality of what you built
— Demo?
— Suprises (What was harder or easier than expected?)
— What did you learn?
— Experiments & validation
— Plans for remaining week
— Who did what

Final Reports (see web page)

Goals for the project

System design and algorithmic choices

Sample screens of typical usage scenarios (if applicable)
Experiments and results

Anything you considered surprising or that you learned.
— What would you do differently if you could?

Conclusions and ideas for future work

Appendices

No limit on length, but we appreciate good organization and
tight, precise writing. Points off for rambling and repetition.

Experiments

* Clearly state question being asked
* Kinds of experiments

— Informal user study

— Formal user study

— System (or module) performance comparison
* Baselines
* Ablation experiments

Presenting Results

_ Graphs vs tables

Chartjunk
Data / ink ratio /
Visualization integrity m E ‘ﬁ&’

Previously

CSPs are a special (factored) kind of search problem:
— States defined by values (domains) of a fixed set of variables
— Goal test defined by constraints on variable values

Backtracking = DFS - one legal variable assigned per node
Heuristics

— Variable ordering: min remaining values
SEE S So S
— Value ordering: least contraining value
<‘| ! J “J
YOO x

Previously

CSPs are a special (factored) kind of search problem:

— States defined by values (domains) of a fixed set of variables

— Goal test defined by constraints on variable values
Backtracking = DFS - one legal variable assigned per node
Variable ordering and value selection heuristics help
Forward checking prevents assignments that fail later

Qs O R Qs
Row 1 [Q—t—t—
Row 2 | 1
Row 3
Row 4

B
T
wra

posslble YOS

Previously

CSPs are a special (factored) kind of search problem:

— States defined by values (domains) of a fixed set of variables

— Goal test defined by constraints on variable values
Backtracking = DFS - one legal variable assigned per node
Variable ordering and value selection heuristics help
Forward checking prevents assignments that fail later
Constraint propagation (e.g., arc consistency)

— does additional work to constrain values and detect inconsistencies
Constraint graph representation

— Allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

Local (stochastic) search often effective in practice

— Iterative min-conflicts

Static vs. Dynamic

Algorithms

Blind search

Heuristic search
Mini-max & Expectimd
MDPs (& POMDPS)
Reinforcement learning

UUEVERICII State estimation
next?

Fully
VS.
Partially e
Observable Deter\n;r;mnstlc
What action Stochastic
next?
Perfect Instantaneous
VSs. VSs.
Noisy Durative
Percepts Actions
| - r-, [Adahadid
Knowledge Representation
e Separate knowledge from algorithms
=TS HMMs
-’5' Bayesian networks

Propositional logic

o o
fi

First-order logic
Description logic
Constraint networks
Markov logic networks

Overview

* Knowledge Representation & Reasoning
* Propositional Logic
— Foundations: Syntax, semantics & inference
— Algorithms: DPLL, Resolution, WalkSAT
— Tractable subsets
* First-Order Logic
* Markov Logic

Semantics

e Syntax: which arrangements of symbols are legal
— (Def “sentences”)

* Semantics: what the symbols mean in the world
— (Mapping between symbols and worlds)

Inference
Sentences Sentences

R i & &
epresentation | S S
i} QD

“““““ =" =S
World a 2

Models Models
© Daniel S. Weld 14

Models

* Logicians often think in terms of models, which are formally structured
worlds with respect to which truth can be evaluated
— Inpropositional case, each model = truth assignment
— Set of models can be enumerated in a truth table

* Wesay mis a model of a sentence a if ais true inm
* M(a)is the set of all models of a
Then KBk a iff M(KB) M(a)

— E.g kB=(PvQ) A(=P VR)
a=(PVvR)

¢ How to check?

— One way is to enumerate all elements
in the truth table — slow

Satisfiability, Validity, & Entailment
* Sis satisfiable if it is true in some model (aka world, interpretation)
* S is unsatisfiable if it is false all models
* Sisvalid if it is true in all models

* S1 entails S2 if wherever S1 is true S2 is also true

Daniel S. Weld 16

Propositional Logic

¢ Syntax
— Atomic sentences: P, Q, ...
— Connectives: A, V, —, =
¢ Semantics

— Model = an assignment of T/F values to every atomic sentence
— Truth Tables

| P Q | “P|PAQ|PVQ|P = Q|P & Q]
false| false | true | false | false | true true
false| true | true | false | true true false
true | false| false| false | true | false false
true | true | false| true | true true true
Daniel S. Weld 17

Satisfiability, Validity, & Entailment
« S is satisfiable if it is true in some model (aka world, interpretation)
* S is unsatisfiable if it is false all models
* Sisvalid if it is true in all models

* S1 entails S2 if wherever S1 is true S2 is also true
Pv(QA—=SA—=P) |=

© Daniel 5. Weld 18

Types of Reasoning (Inference)
* Deduction (showing entailment, |=)
S = question
Prove that KB | =S
Two approaches:
e Rules to derive new formulas from old (inference)

e Show (KB A — S) is unsatisfiable

* Model Finding (showing satisfiability)
S = description of problem
Show S is satisfiable
A kind of constraint satisfaction

Propositional Logic:
Inference Algorithms

Backward & Forward Chaining } Deduction
Resolution (Proof by Contradiction)

Exhaustive Enumeration
. Model
DPLL (Davis, Putnam Loveland & Logemann) .
Finding
GSAT

© Daniel S. Weld 20

Exploring a wumpus world

VEE

(1,21 1 2 3 4

22

Exploring a wumpus world

B oK v

2 Ly
/ ai
[1,2] 1 2 3 4

24

Wumpus World

Performance measure
— Gold: +1000, death: -1000
— -1 per step, -10 for using the arrow FRESE

Environment
— Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy

Glitter iff gold is in the same square

— Shooting kills wumpus if you are facing it '
— Shooting uses up the only arrow

— Grabbing picks up gold if in same square
— Releasing drops the gold in same square

« Sensors: Stench, Breeze, Glitter, Bump, Scream
* Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

21

Exploring a wumpus world

2 o
1[E
[1,2] 1 2 3 4

23

Exploring a wumpus world

25

Exploring a wumpus world

P
= ol
gy d
/ ;i:~—=-:-: w
[1.2] 1 2 3 4

26

Wumpus world sentences:

Let P;; be true if there is a pit in [i, j].
Let B;; be true if there is a breeze in [i, j].

KB:

=Py

=By,

"Pits cause breezes in adjacent squares"
B < (P, v Py4)
B, < (P11 vV PyyVvP3y)

KB

27

Propositional Logic:
Inference Algorithms

Backward & Forward Chaining
Resolution (Proof by Contradiction)

Exhaustive Enumeration

DPLL (Davis, Putnam Loveland & Logemann)} M.°d'.3|
Finding
GSAT

Daniel S. Weld 32

} Deduction

Representing Formulae

* CNF = Conjunctive Normal Form

— Conjunction (A) of Disjunctions (v)
* Represent as set of sets

—((A,B), (=A, C), (=0))

—((=A), (A)

=

= ((A)

=)

Inference 4: DPLL

(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll_1(pa){
if (pa makes F false) return false;
ifT (pa makes F true) return true;
choose P in F;
it (dpll_1(pa u {P=0})) return true;
return dpll_1(pa u {P=1});

}

Returns true if F is satisfiable, false otherwise

© Daniel 5. Weld 36

DPLL Version 1

avbvc)
av 7b)

avc)

—~ o~ o~ o~

Ta v c)

© Daniel S. Weld

37

DPLL Version 1

@

(avbvec)
(avb)
(av—c)

(mravc)

Daniel S. Weld 38

DPLL Version 1

2

la)
Fuvbve) y

DPLL Version 1

N
(FVFve) y
(FvT) y@

(F v c)

(
(F v 7b)
(F v =c)
(Tve)
DPLL Version 1
(FVFVF) @ ‘
(FvT) ® b
(FvT)
(

e

TVF) 79

Daniel S. Weld

41

(Tve)
DPLL Version 1
y@

F
T b

)
T
T yc

[|

© Daniel 5. Weld 42

DPLL Version 1

© Daniel S. Weld

43

Improving DPLL

If literal L, is true, then clause (L, v L, v...) is true

If clause C, is true, then C, AC, AC; A... has the same
valueas C, AC, A....

Therefore: Okay to delete clauses containing true literals!

Daniel S. Weld 45

Improving DPLL

If literal L, is true, then clause (L, v L, v...) is true
If clause C, is true, then C, AC, AC; A... has the same
valueas C, AC, A...
Therefore: Okay to delete clauses containing true literals!
If literal L, is false, then clause (L, v L, v L,v...) has
the same value as (L, v L, v...)
Therefore: Okay to shorten clauses containing false literals

© Daniel S. Weld 46

Improving DPLL

If literal L, is true, then clause (L, v L, v...) is true
If clause C, is true, then C, AC, AC; A... has the same
valueas C, AC; A...
Therefore: Okay to delete clauses containing true literals!
If literal L, is false, then clause (L, v L, v L,v..) has
the same value as (L, v L, v...)
Therefore: Okay to delete shorten containing false literals!
If literal L, is false, then clause (L) is false
Therefore: the empty clause means false!

Daniel S. Weld a7

DPLL version 2

dpll_2(F, literal){
remove clauses containing literal
if (F contains no clauses)return true;
shorten clauses containing —literal

if (F contains empty clause)
return false;

choose V in F;
if (dpll_2(F, =V))return true;
return dpll_2(F, V);

3

Partial assignment corresponding to a node is the set of chosen
literals on the path from the root to the node

Daniel S. Weld 48

Benefit

* Like forward checking
* Can backtrack before getting to leaf

© Daniel 5. Weld 59

Structure in Clauses

Unit Literals
A literal that appears in a singleton clause

{{—|b C}{—|C}{a —-b e}{d b}{e a —|C}}
Might as well set it true! And simplify

{{-:b} {a—b e}{d b}}
{d}}

Pure Literals
— A symbol that always appears with same sign
—{{fa—=bc}{—cd—e} {—a—-beHdb} {ea-c}}

Might as well set it true! And simplify
{{a—=b ¢} {-a-be} {ea-c}}

© Daniel S. Weld 60

DPLL (for real!)

Davis — Putnam — Loveland — Logemann

dplI(F, literal){
remove clauses containing literal
if (F contains no clauses) return true;

shorten clauses containing —literal
if (F contains empty clause)
return false;

if (F contains a unit or pure L)
return dpll(F, L);

choose V in F;

it (dpllI(F, —=V))return true;

return dpll(F, V);

Daniel S. Weld 64

DPLL (for real)

@vbvc) \

(av b) b €
(avc) \
(mrawvc) /” u

Daniel S. Weld 65

Compare with DPLL Version 1

(avbvc) /\

(av b) /@\ 2

(av-c) /
. ©

(ravc) ¢

Daniel S. Weld 66

Heuristic Search in DPLL

* Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

* |dea: identify a most constrained variable
— Likely to create many unit clauses
* MOM'’s heuristic:

— Most occurrences in clauses of minimum length

Daniel S. Weld 68

Success of DPLL

* 1962 — DPLL invented
* 1992 - 300 propositions
* 1997 - 600 propositions (satz)
* Additional techniques:
— Learning conflict clauses at backtrack points

— Randomized restarts

— 2002 (zChaff) 1,000,000 propositions — encodings
of hardware verification problems

© Daniel 5. Weld 69

Other Ideas?

* How else could we solve SAT problems?

WalkSat (Take 1)

space of complete truth assignments

* best = one which minimizes #unsatisfied clauses

Daniel S. Weld

* Local search (Hill Climbing + Random Walk) over

71

—With prob p: flip any variable in any unsatisfied clause
—With prob (1-p): flip best variable in any unsat clause

Refining Greedy Random Walk

Each flip
— makes some false clauses become true
— breaks some true clauses, that become false
Suppose s1—s2 by flipping x. Then:
#unsat(s2) = #unsat(s1) — make(s1,x) + break(s1,x)
Idea 1: if a choice breaks nothing, it’s likely good!
Idea 2: near the solution, only the break count matters
—the make count is usually 1

Walksat (Take 2)

state = random truth assignment;
while ! GoalTest(state) do
clause := random member { C | Cis false in state };
for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else
with probability p do
var := random member { x | xis in clause };
else
var := arg x min { break[x] | x is in clause };
endif
state[var] := 1 — state[var];
end

returnstate; | Put everything inside of a restart loop
Parameters: p, max_flips, max_runs

J

Random 3-SAT

¢ Random 3-SAT

— sample uniformly from
space of all possible 3-
clauses

— nvariables, / clauses

¢ Which are the hard
instances?
— around l/n=4.3

o
MR EEE

Special Syntactic Forms
* General Form:

((gr—=r) 2 s)) A= (sAt)
* Conjunction Normal Form (CNF)
(~gvrvs)a(=sv—t)
Set notation: {(—q,r,s), (=5, —t)}
empty clause () = false
* Binary clauses: 1 or 2 literals per clause
(=avr)
* Horn clauses: 0 or 1 positive literal per clause

(—|SV—|t)

(—\ SV t)
(sat) = false

© Daniel S. Weld

(mgv=rvs)

(gar) 2> 's

77

Prop. Logic Themes

* Expressiveness

Expressive but awkward

No notion of objects, properties, or relations
Number of propositions is fixed

Brittle

¢ Tractability

NP in general
Completeness / speed tradeoff
Horn clauses, binary clauses

© Daniel 5. Weld 78

Overview

* Knowledge Representation & Reasoning
* Propositional Logic
* First-Order Logic

— Foundations: Syntax, semantics & inference

— Algorithms: Chaining, Resolution, Compilation to SAT
— Tractable subsets

* Markov Logic

Propositional. Logic vs. First Order

Objects,

Ontology Propositional Properties,
Symbols Relations
A f \Variables & quantification
Syntax tomic sentences|

Sentences have structure: terms

Connectives father-of(mother-of(X)))

Semantics Interpretations
Truth Tables (Much more complicated)
Inference DPLL, WalkSAT | Unification
Algorithm | Fastin practice | Forward, Backward chaining

Prolog, theorem proving

Complexity | NP-Complete | Semi-decidable

© Daniel s. Weld &0

FOL Definitions
e Constants: a,b, dog33.
— Name a specific object.
e Variables: X, Y.
— Refer to an object without naming it.
* Functions: dad-of
— Mapping from objects to objects.
* Terms: dad-of(dog33)
— Refer to objects
* Atomic Sentences: in(dad-of(dog33), food6)
— Can be true or false
— Correspond to propositional symbols P, Q

© Daniel S. Weld 81

More Definitions
* Quantifiers:
—V Forall
—3 There exists
* Examples
— Dumbo is grey
grey(dumbo)

— Elephants are grey
V x elephant(x) = grey(x)

— There is a grey elephant
3 x elephant(x) A grey(x)

Daniel S. Weld 83

Quantifier / Connective
Interaction

E(x) == “x is an elephant”

G(x) == “x has the color grey”
1. Vx E(X) A G(x)) ey

2. Vx E(x) =G(x)
3. 3x E(x) A G(x)

4. 3Ix E(x) =G(x)

© Daniel 5. Weld 84

Nested Quantifiers:
Order matters!

Vx3y P(xy) = Iy VxP(xy)

* Examples

— Every dog has a tail Every dog shares a taill

Vd3t has(dd) 2| 3tvd has(d.P

Someone is loved by everyone
IxVy loves(y, x)

© Daniel 5. Weld 85

10

Wumpus world in prop logic
Let P;; be true if there is a pit in i, j].

Let B;; be true if there is a breeze in [i, j].

=Py

=By,

"Pits cause breezes in adjacent squares"

By, <=

B. =

a1 =

87

Wumpus world in prop logic

Let pit(i,j) be true if there is a pitin [i, j].
Let breeze(i,j) be true if breezy in [i, j].

— pit(1,1)
— breeze(1,1)

"Pits cause breezes in adjacent squares"
Vi,j breeze(i,j) <> pit(i, add(j,1)) v pit(i, add(j, -1)) v ...

88

Semantics
* Syntax: a description of the /legal arrangements of
symbols
— (Def “sentences”)
* Semantics: what the arrangement of symbols
means in the world

Inference

Sentences Sentences
R i & &
epresentation < <
Q Q

_________ B B
World & 2

Models Models
© Daniel 5. Weld 90

Models

* Logicians often think in terms of models, which are formally structured
worlds with respect to which truth can be evaluated
— In propositional case, each model = truth assignment
— Set of models can be enumerated in a truth table

* Wesay mis amodel of a sentence a if a is triie in m
— (Equivalently “m satisfies o)

* M(a) is the set of all models of a ' [{@4]
+ ThenkB Faiff M(KB) = M(a)

— E.g.KB=(PvQ) A(=P VR)
a=(PVvR)

91

Satisfiability, Validity, & Entailment

e Sisvalid if it is true in all models
* S is satisfiable if it is true in some model

* S is unsatisfiable if it is false all model
|=
* S1 entails S2 if
—For all models where S1 is true,
—S2 is also true

© Daniel 5. Weld 92

Propositional Logic: SEMANTICS

* Possible modela are TRUTH ASSIGNMENTS
— Assignment to each variable either T or F
— Assignment of T or F to each connective

Symbols: P

Q Q
j T|F
p T
Models: T T F

FT.

© Daniel S. Weld

First Order Logic: Worlds

* Depiction of one possible world

© Daniel S. Weld 94

Models = Mappings

syntactic tokens = world elements
Depiction of one possible interpretation, assuming
— Constants: Functions: Relations:

Richard John Leg(p.1) On(x,y) King(p)

© Daniel S. Weld

Models=Mappings

syntactic tokens = world elements
Another interpretation, same assumptions
— Constants: Functions: Relations:

Richard John Leg(p.!) On(x,y) King(p)

© Daniel S. Weld

FOL Reasoning

* FO Forward & Backward Chaining
* FO Resolution
* Many other types of theorem proving

» Specialized provers for restricted representations
— Description logics
— Horn Clauses

e Compilation to SAT

© Daniel S. Weld 97

Compilation to Prop. Logic |

* Typed Logic
-V
* Finite Universe

—Cities: seattle, tacoma, enumclaw

qiy &b connected(a,b)

* Equivalent propositional formula:

© Daniel 5. Weld 106

Compilation to Prop. Logic Il

* Universe
« Cities: Seattle, Chicago
* Firms: Microsoft, Boeing

* First-Order formula
—V.iy € Jsem S hasHQ(c, f)
* Equivalent propositional formula?

© Daniel 5. Weld 107

12

Hey!

* You said FO Inference is semi-decidable

* But you compiled it to SAT
— Which is NP Complete

* So now we can always do the inference?!?
— Tho it might take exponential time...

* Something seems wrong here....????

© Daniel S. Weld 108

Restricted Forms of FO Logic

* Known, Finite Universes
— Compile to SAT

* Description Logics (Frame Systems)
— Ban certain types of expressions

* Horn Clauses

— Aka Prolog

* Function-Free Horn Clauses
— Aka Datalog

© Daniel S. Weld 109

KR with Description Logics

Logical and Statistical Al

Field Logical Statistical
approach approach

Knowledge First-order logic | Graphical models

representation

Automated Satisfiability Markov chain

reasoning testing Monte Carlo

Machine learning [Inductive logic | Neural networks
programming

Planning Classical Markov decision
planning processes

Natural language |Definite clause |Prob. context-

processing grammars free grammars

A . mother(jane)
ssertions child-of(jane, bob)
Term Defs
grandmother
© Daniel S. Weld
Relationship
P AQ
&
+ | + 1.0
+ | - 0
PvQ o " 0
- - 0
Propositional Probabilistic Graphical
Logic Models (Bayes Nets)

Knowledge Representation

Complexity
Entities & Relations
First-Order 2
Logic :
Propositional Probabilistic Graphical
Logic Models (Bayes Nets)

Uncertainty

We Need to Unify the Two

* The real world is complex and uncertain
* Logic handles complexity
* Probability handles uncertainty

Progress to Date

Probabilistic logic [Nilsson, 1986]
Statistics and beliefs [Halpern, 1990]

Knowledge-based model construction
[Wellman et al., 1992]

Stochastic logic programs [Muggleton, 1996]
Probabilistic relational models [Friedman et al., 1999]
Relational Markov networks [Taskar et al., 2002]

Etc.

Here at UW: MLNs [Richardson & Domingos, 2004]

Markov Logic

* Syntax: Weighted first-order formulas
* Semantics: Templates for Markov nets
¢ Inference: WalkSAT, MCMC, KBMC

* Learning: Voted perceptron, pseudo-
likelihood, inductive logic programming
* Software: Alchemy

* Applications: Information extraction, link

prediction, etc.

Overview

* Motivation
* Background
* Markov logic
* Inference

* Learning

* Software

* Applications
* Discussion

Markov Networks

¢ Undirected graphical models

Smoking Cancer
BN

Asthma Cough

o Potential functions defined over cliques

1 Smoking | Cancer ®(S,C)
P(x) :ZU(DC (XC) False False 45
False True 4.5
7= ZHCDc(Xc) True False 2.7
o True True 45

Markov Networks

¢ Undirected graphical models

Smoking Cancer
) \

/
/

Asthma Cough

e Log-linear model:
P - 3oup| S 1)

|Weigh? of Feature / || Feature / |

1 if — Smoking v Cancer

f,(Smoking,Cancer) =
i g) {0 otherwise

w, = 1.5

14

First-Order Logic

* Constants, variables, functions, predicates
* Grounding: Replace all variables by constants

* World (model, interpretation):
Assignment of truth values to all ground
predicates

Overview

Motivation
Background
Markov logic
Inference
Learning
Software
Applications
Discussion

Markov Logic

* Alogical KB is a set of hard constraints
on the set of possible worlds
* Let’s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible
* Give each formula a weight
(Higher weight = Stronger constraint)

P(world) oc exp(z weights of formulasit satisfies)

Definition

A Markov Logic Network (MLN) is a set of pairs

(F, w) where

— Fis a formula in first-order logic

— w is a real number

Together with a set of constants,

it defines a Markov network with

— One node for each grounding of each predicate in
the MLN

— One feature for each grounding of each formula F
in the MLN, with the corresponding weight w

Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.

Example: Friends & Smokers

Vx Smokes(x) = Cancer(x)
VX, y Friends(x, y) = (Smokes(x) <> Smokes(y))

15

Example: Friends & Smokers

15
11

Vx Smokes(x) = Cancer(x)
Vx, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Example: Friends & Smokers

1.5 | Vx Smokes(x) = Cancer(x)
1.1 |x, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

15
11

Vx Smokes(x) = Cancer(x)
Vx, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

o
o

Example: Friends & Smokers

1.5 | Vx Smokes(x) = Cancer(X)
1.1 |Vx, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

> D> D S
E=D

Example: Friends & Smokers

15
11

Vx Smokes(x) = Cancer(x)
vx, y Friends(x, y) = (Smokes(x) <> Smokes(y))

Two constants: Anna (A) and Bob (B)

Friends(A,A)

Friends(A,B)

Friends(B,B)

Friends(B,A)

Example: Friends & Smokers

1.5 | Vx Smokes(x) = Cancer(x)
1.1 |Wx, y Friends(x, y) = (Smokes(x) < Smokes(y))

Two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(B,A)

16

Markov Logic Networks

* MLN is template for ground Markov nets
* Probability of a world X:

P(x) = %exp [;j

|Weigh1' of formula /7 | |No. of true groundings of formula 7in x

* Typed variables and constants greatly reduce
size of ground Markov net

* Functions, existential quantifiers, etc.
¢ Infinite and continuous domains

Relation to Statistical Models

* Obtained by making all

* Special cases: A A
predicates zero-arity

— Markov networks
— Markov random fields

— Bayesian networks * Markov logic allows

— Log-linear models objects to be
— Exponential models interdependent
— Max. entropy models (non-i.i.d.)

— Gibbs distributions

— Boltzmann machines

— Logistic regression

— Hidden Markov models

— Conditional random fields

Relation to First-Order Logic

* Infinite weights = First-order logic
* Satisfiable KB, positive weights =
Satisfying assignments = Modes of distribution
* Markov logic allows contradictions between
formulas

Overview

* Motivation
* Background
* Markov logic
* Inference

* Learning

* Software

* Applications
* Discussion

MAP/MPE Inference

* Problem: Find most likely state of world given
evidence

argmax P(y]|x)
y

‘ Query ‘ ’ Evidence ‘

MAP/MPE Inference

* Problem: Find most likely state of world given
evidence

arg max Ziexp [Z w.n, (X, y)j
y i

X

17

MAP/MPE Inference

* Problem: Find most likely state of world given
evidence

argmax Y wn;(X,y)
y i

MAP/MPE Inference

Problem: Find most likely state of world given
evidence

arg max Z w.n. (X, y)

This is just the weighted MaxSAT problem

Use weighted SAT solver
(e.g., MaxWalkSAT [Kautz et al., 1997])

Potentially faster than logical inference (!)

The WalkSAT Algorithm

for /< 1 to max-tries do
solution = random truth assignment
for j — 1 to max-flijps do
if all clauses satisfied then
return solution
¢ < random unsatisfied clause
with probability p
flip a random variable in ¢
else
flip variable in ¢ that maximizes
number of satisfied clauses
return failure

The MaxWalkSAT Algorithm

for / — 1 to max-tries do
solution = random truth assignment
for j — 1 to max-flips do
if T weights(sat. clauses) > threshold then
return solution
¢ — random unsatisfied clause
with probability p
flip a random variable in ¢
else
flip variable in ¢ that maximizes
X weights(sat. clauses)
return failure, best solution found

But ... Memory Explosion

* Problem:
If there are n constants
and the highest clause arity is c,
the ground network requires O(n) memory

* Solution:
Exploit sparseness; ground clauses lazily
—> LazySAT algorithm [singla & Domingos, 2006]

Computing Probabilities

P(Formula|MLN,C) = ?

MCMC: Sample worlds, check formula holds
P(Formulal|Formula2,MLN,C) =?

If Formula2 = Conjunction of ground atoms

— First construct min subset of network necessary to
answer query (generalization of KBMC)

— Then apply MCMC (or other)
Can also do lifted inference [Braz et al, 2005]

18

Ground Network Construction

network — @
gueue — query nodes
repeat

node — front(queue)

remove node from gueue

add node to network

if node not in evidence then

add neighbors(node) to queue

until queue = @

MCMC: Gibbs Sampling

state ¢ random truth assignment
for i ¢ 1 to num-samples do
for each variable x
sample x according to P(x| neighbors(x))
state ¢ state with new value of x
P(F) ¢ fraction of states in which Fis true

But ... Insufficient for Logic

* Problem:
Deterministic dependencies break MCMC
Near-deterministic ones make it very slow

* Solution:
Combine MCMC and WalkSAT

=> MC-SAT algorithm [Poon & Domingos, 2006]

Overview

Motivation
Background
Markov logic
Inference
Learning
Software
Applications
Discussion

Learning

e Data is a relational database

Closed world assumption (if not: EM)

* Learning parameters (weights)
— Generatively
— Discriminatively

e Learning structure (formulas)

Generative Weight Learning

¢ Maximize likelihood
* Use gradient ascent or L-BFGS
* No local maxima

“_log P, () =—

ow;

lNo. of true groundings of clause /in bafu

|Expec1’ed no. true groundings according to m4d

* Requires inference at each step (slow!)

19

Pseudo-Likelihood

PL(X) = H P(x; | neighbors (x;))

* Likelihood of each variable given its neighbors
in the data [Besag, 1975]

* Does not require inference at each step
* Consistent estimator
* Widely used in vision, spatial statistics, etc.

* But PL parameters may not work well for
long inference chains

Discriminative Weight Learning

* Maximize conditional likelihood of query (y)
given evidence (X)

aiwi"’g P, (v 1) =, (x,)| [Ewln (6,)]

‘ No. of true groundings of clause /in +:|n'ra

|Expecfed no. true groundings according to m4del

* Approximate expected counts by counts in
MAP state of y given X

Voted Perceptron

* Originally proposed for training HMMs
discriminatively [Collins, 2002]

* Assumes network is linear chain

w,—0
for +<— 1 to T do
yMAP <« Vi'l‘er‘bi(X)

w;— w; + n [count(yp,,) - count(yy,p)]
return X, w;/ T

Voted Perceptron for MLNs

* HMMs are special case of MLNs
* Replace Viterbi by MaxWalkSAT
* Network can now be arbitrary graph

w,— 0
for +— 1 to T do
Yuar — MaxWalkSAT(x)

w;— w; + n [count(yp,.,) - count(yy,n)]
return 3, w;/ T

Structure Learning

Generalizes feature induction in Markov nets

Any inductive logic programming approach can be used,
but...

Goal is to induce any clauses, not just Horn
Evaluation function should be likelihood
Requires learning weights for each candidate
Turns out not to be bottleneck

Bottleneck is counting clause groundings
Solution: Subsampling

Structure Learning

* Initial state: Unit clauses or hand-coded KB
* Operators: Add/remove literal, flip sign
* Evaluation function:
Pseudo-likelihood + Structure prior
* Search:
— Beam [Kok & Domingos, 2005]
— Shortest-first [kok & Domingos, 2005]
— Bottom-up [mihalkova & Mooney, 2007]

20

Overview

Alchemy

Open-source software including:

Full first-order logic syntax

Generative & discriminative weight learning
Structure learning

Weighted satisfiability and MCMC
Programming language features

alchemy.cs.washington.edu

Overview

Motivation
Background
Markov logic
Inference
Learning
Software
Applications
Discussion

Motivation
Background
Markov logic
Inference
Learning
Software
Applications
Discussion
Alchemy Prolog |BUGS
Represent- |F.O. Logic + |Horn Bayes
ation Markov nets |clauses |nets
Inference |Model check- | Theorem | Gibbs
ing, MC-SAT |proving |sampling
Learning Parameters |No Params.
& structure
Uncertainty | Yes No Yes
Relational |Yes Yes No
Applications
Information extraction* * Computational biology
Entity resolution * Social network analysis
Link prediction * Robot mapping
Collective classification * Activity recognition
Web mining * Probabilistic Cyc
Natural language * CALO
processing « Etc.

* Markov logic approach won LLL-2005 information
extraction competition [Riedel & Klein, 2005]

Information Extraction

Parag Singla and Pedro Domingos, “Memory-
Efficient
Inference in Relational Domains” (AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-
efficent

inference in relatonal domains. In Proceedings of
the

Twenty-First National Conference on Artificial
Intelligence

(pp. 500-505). Boston, MA: AAAT Press.

H. Poon & P. Domingos, Sound and Efficient
Inference

21

[] Author

Segmental.Dritle
[venue
Parag Singla land Pedro Doininqos “Memory-
Efficient
Iﬂ#ereﬂﬁ—m—keleﬂeﬂal quems—(AAA—]E-%).
ingla, P, omingos, P. . Memory
efficent
;ﬂfﬂﬂ&ﬁl f_m_nzlatﬂ?nl_dammns_ln_&acszmgs of
Artificial
ntelligence

[(pp. 500-505). Boston, MA! AAAT Press.
\

H. Poon & P. Domingos, Sound and Efficient
Infzngfl{’?

Entity Resolution

Pargg Singla and Pgdro Doimingos, “Memory-

al ifs” -06).
ingla, P, . Memory
efflcent
ings of
e on Artificial

AAT Press.

H. Poon & P. Domingos, Sound and Efficient
Inference

Entity Resolution

Parag Sindla and Pggro Domingos, “Memor

al is” -06).
ingla, P_, fomipdos, . Memory
efficent
i c i ingsgf

= i Artificial
ntglligence

(pp. -505). i AAAI Press.
\ S

H. Poon & P. Domingos, Sound and Efficient
|____Tnference

State of the Art

* Segmentation
— HMM (or CRF) to assign each token to a field

* Entity resolution
— Logistic regression to predict same field/citation
— Transitive closure

e Alchemy implementation: Seven formulas

Types and Predicates

token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Types and Predicates

token = {Parag, Singla, and, Pedro|, ...}
field = {Author, Title, Venue, ---}Op'l'ional
citation = {C1, C2, ...}

pn:ifinn = {n, 1, 7, }

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

22

Types and Predicates

token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

— Evidence
i ion)

InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Types and Predicates

token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}

citation = {C1, C2, ...}

position = {0, 1, 2, ...}

Token(token, position, citatiorn)
InField(position, field, citatiom)y Query
i i i i itation)

SameCit(citation, citation)

Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+l,+f,c)
f 1= 7 => (MInField(i,+f,c) v !InField(i,+f~,

Token(+t,i,c) ™ InField(i,+f,c) ™ Token(+t,i’,
A InField(i”,+f,c”) => SameField(+f,c,c”)
SameField(+f,c,c”) <=> SameCit(c,c?)
SameField(f,c,c”) » SameField(f,c”,c”)
=> SameField(f,c,c”)
SameCit(c,c”) » SameCit(c’,c”) => SameCit(c,c”

Formulas

[Token(+t,i,c) => InField(i,}f,c)

InField(i,+f,c) <= TInField(i+1,+f,c)
f 1= 7 => (MInField(i,+f,c) v !InField(i,+f~,

Token(+t,i,c) ™ InField(i,+f,c) ™ Token(+t,i’,
~ InField(i’,+f,c”’) => SameField(+f,c,c”)
SameField(+f,c,c”) <=> SameCit(c,c”)
SameField(f,c,c”) © SameField(f,c”,c”)
=> SameField(f,c,c”)
SameCit(c,c’) ”~ SameCit(c’,c”) => SameCit(c,c”

Formulas

Token(+t,i,c) => InField(i +f c)

InField(i,+f,c) <=> InFieId(i+1]+f,c)

f 1= ©° => (1InField(i,+f,c) v !InField(i,+f”,

Token(+t,i,c) ™ InField(i,+f,c) ™ Token(+t,i’,
A InField(i’,+Ff,c”) => SameField(+f,c,c”)
SameField(+f,c,c”) <=> SameCit(c,c’)
SameField(f,c,c’) ~ SameField(f,c”,c”)
=> SameField(f,c,c”)
SameCit(c,c”’) ™ SameCit(c’,c”) => SameCit(c,c”

Formulas

Token(+t,i,c) => InField(i,+f,c)

T 1= => (MInField(.+f.c) v 'InField(ij+f’,

Token(+t,i,c) » InField(i,+f,c) ™ Token(+t,i’”,
A InField(i’,+f,c”) => SameField(+f,c,c?)
SameField(+f,c,c”) <=> SameCit(c,c’)
SameField(f,c,c”) ™ SameField(f,c’,c”)
=> SameField(f,c,c”)
SameCit(c,c’) ™ SameCit(c’,c”) => SameCit(c,c”

23

Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+1,+f,c)
f 1= 7 => (MInField(i,+f,c) v 'InField(i,+f,

Token(+t,i,c) ™ InField(i,+f,c) ~ Token(+t,i’,
A InEsnldes? L F N — CamnCsn~nlAl L F ')
et —+Fe>) Samerrete+Fe€

SameField(+f,c,c”) <=> SameCit(c,c”)
SameField(f,c,c”) » SameField(f,c”,c”)

=> SameField(f,c,c”)
SameCit(c,c”) » SameCit(c’,c”) => SameCit(c,c”

Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+1,+f,c)
f 1= 7 => (MInField(i,+f,c) v 'InField(i,+f,

Token(+t,i,c) ™ InField(i,+f,c) N Token(+t,i’,

~ InField(i”,+f,c”) => SameRield(+f,c,c”)
T ST, = itcc,c”)
SameField(f,c,c”’) » SameField(f,c”,c”)
=> SameField(f,c,c”)
SameCit(c,c’) » SameCit(c’,c”) => SameCit(c,c”

Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+l,+f,c)
f 1= 7 => (MInField(i,+f,c) v !InField(i,+f~,

Token(+t,i,c) ™ InField(i,+f,c) ™ Token(+t,i’,
A InField(i”,+f,c’) => SameField(+f,c,c”)

SameField(+f,c,c”) <=> SameCit(c,c”)
SameField(f,c,c”) » SameField(f,c’,c”)
=> SameField(f.c,c”)

SameCit(c,c”) » SameCit(c’,c”) => SameCit(c,c”

Formulas

Token(+t, i, c) => InField(i, +f c)

InField(i,+f,c) ~ !Token(*.”,i,c) <=> InField(

f 1= * = (VInField(i,+F,c) v 'InField(i,+F’,

Token(+t,i,c) ™ InField(i,+f,c) ™ Token(+t,i’,
~ InField(i’,+f,c”’) => SameField(+f,c,c”)
SameField(+f,c,c”) <=> SameCit(c,c”)
SameField(f,c,c”) © SameField(f,c”,c”)
=> SameField(f,c,c”)
SameCit(c,c”’) ™ SameCit(c’,c”) => SameCit(c,c”

Results: Segmentation on Cora

0.8 A

0.6

04 —e—Tokens

Precision

—+— Tokens + Sequence
0.2 4 Tok. + Seq. + Period
—&—Tok. + Seq. + P. + Comma

O T T T T
0 0.2 0.4 0.6 0.8 1

Recall

Results:

Matching Venues on Cora
1

0.8 -

0.6

Precision

04 —e— Similarity

—+—Sim. + Relations
0.2 4 Sim. + Transitivity
- Sim. + Rel. + Trans.

0 ‘ ‘
0 02 04 06 08 1

Recall

24

