CSE 573 Knowledge Representation: Propositional, FO & Markov Logic

Dan Weld

(With some slides from Mausam, Stuart Russell, Dieter Fox, Henry Kautz, Pedro Domingos, Min-Yen Kan...)

Irrationally held truths may be more harmful than reasoned errors.

- Thomas Huxley (1825-1895)

Project Presentations

- Friday 12/7
- Length = 4, 6, 7 or 8 min (includes questions) practice!
- Default = your laptop; else mail me slides (.ppt or .pdf) by 9am Fri
- Bring slides on a backup USB memory.
- Every team member should talk for some part of the presentation
- Subtopics to cover:
 - Aspirations & reality of what you built
 - Demo?
 - Suprises (What was harder or easier than expected?)
 - What did you learn?
 - Experiments & validation
 - Plans for remaining week
 - Who did what

Final Reports (see web page)

- Goals for the project
- System design and algorithmic choices
- Sample screens of typical usage scenarios (if applicable)
- · Experiments and results
- · Anything you considered surprising or that you learned.
 - What would you do differently if you could?
- Conclusions and ideas for future work
- Appendices
- No limit on length, but we appreciate good organization and tight, precise writing. Points off for rambling and repetition.

Experiments

- Clearly state question being asked
- · Kinds of experiments
 - Informal user study
 - Formal user study
 - System (or module) performance comparison
 - Baselines
 - · Ablation experiments

Previously

- CSPs are a special (factored) kind of search problem:
 - States defined by values (domains) of a fixed set of variables
- Goal test defined by constraints on variable values
- Backtracking = DFS one legal variable assigned per node
- Heuristics
 - Variable ordering: min remaining values

Value ordering: least contraining value

Previously CSPs are a special (factored) kind of search problem: States defined by values (domains) of a fixed set of variables Goal test defined by constraints on variable values Backtracking = DFS - one legal variable assigned per node Variable ordering and value selection heuristics help Forward checking prevents assignments that fail later

Previously

- CSPs are a special (factored) kind of search problem:
 - States defined by values (domains) of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = DFS one legal variable assigned per node
- Variable ordering and value selection heuristics help
- Forward checking prevents assignments that fail later
- Constraint propagation (e.g., arc consistency)
- does additional work to constrain values and detect inconsistencies
- Constraint graph representation
 - Allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Local (stochastic) search often effective in practice
 - Iterative min-conflicts

Overview

- Knowledge Representation & Reasoning
- Propositional Logic
 - Foundations: Syntax, semantics & inference
 - Algorithms: DPLL, Resolution, WalkSAT
 - Tractable subsets
- First-Order Logic
- Markov Logic

Semantics Syntax: which arrangements of symbols are legal - (Def "sentences") Semantics: what the symbols mean in the world - (Mapping between symbols and worlds) Inference Sentences Sentences Representation World Models Models © Daniel S. Weld

Satisfiability, Validity, & Entailment

- S is satisfiable if it is true in some model (aka world, interpretation)
- S is unsatisfiable if it is false all models
- S is valid if it is true in all models
- S1 entails S2 if wherever S1 is true S2 is also true

Propositional Logic

- Syntax
 - Atomic sentences: P, Q, ...
 - Connectives: \land , \lor , \neg , \Longrightarrow
- **Semantics**
 - Model = an assignment of T/F values to every atomic sentence
 - Truth Tables

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Satisfiability, Validity, & Entailment

- S is satisfiable if it is true in some model (aka world, interpretation)
- S is unsatisfiable if it is false all models
- S is valid if it is true in all models
- S1 entails S2 if wherever S1 is true S2 is also true $P \lor (Q \land \neg S \land \neg P) =$

Types of Reasoning (Inference)

Deduction (showing entailment, |=)

S = question

Prove that KB | = S

Two approaches:

- Rules to derive new formulas from old (inference)
- Show (KB ∧ ¬ S) is unsatisfiable
- Model Finding (showing satisfiability)

S = description of problem

Show S is satisfiable

A kind of constraint satisfaction


```
Propositional Logic:
Inference Algorithms

1. Backward & Forward Chaining
2. Resolution (Proof by Contradiction)

3. Exhaustive Enumeration
4. DPLL (Davis, Putnam Loveland & Logemann)
5. GSAT

Model Finding
```

```
Representing Formulae

• CNF = Conjunctive Normal Form

- Conjunction (△) of Disjunctions (∨)

• Represent as set of sets

- ((A, B), (¬A, C), (¬C))

- ((¬A), (A))

- (())

- ((A))

- ()
```

```
Inference 4: DPLL

(Enumeration of Partial Models)

[Davis, Putnam, Loveland & Logemann 1962]

Version 1

dpl1_1(pa) {

if (pa makes F false) return false;

if (pa makes F true) return true;

choose P in F;

if (dpl1_1(pa U {P=0})) return true;

return dpl1_1(pa U {P=1});

}

Returns true if F is satisfiable, false otherwise
```

```
DPLL Version 1

(a \lor b \lor c)
(a \lor \neg b)
(a \lor \neg c)
(\neg a \lor c)
```


Improving DPLL

If literal L_1 is true, then clause $(L_1 \lor L_2 \lor ...)$ is true If clause C_1 is true, then $C_1 \land C_2 \land C_3 \land ...$ has the same value as $C_2 \land C_3 \land ...$

Therefore: Okay to delete clauses containing true literals!

Improving DPLL

If literal L_1 is true, then clause $(L_1 \vee L_2 \vee ...)$ is true If clause C_1 is true, then $C_1 \wedge C_2 \wedge C_3 \wedge ...$ has the same value as $C_2 \wedge C_3 \wedge ...$

Therefore: Okay to delete clauses containing true literals! If literal L_1 is false, then clause $(L_1 \lor L_2 \lor L_3 \lor ...)$ has the same value as $(L_2 \lor L_3 \lor ...)$

Therefore: Okay to shorten clauses containing false literals

© Daniel S. Weld

Weld

Improving DPLL

If literal L_1 is true, then clause $(L_1 \vee L_2 \vee ...)$ is true If clause C_1 is true, then $C_1 \wedge C_2 \wedge C_3 \wedge ...$ has the same value as $C_2 \wedge C_3 \wedge ...$

Therefore: Okay to delete clauses containing true literals! If literal L_1 is false, then clause $(L_1 \lor L_2 \lor L_3 \lor ...)$ has

the same value as $(L_1 \lor L_2 \lor L_3 \lor ...)$

Therefore: Okay to delete shorten containing false literals!

If literal L_1 is false, then clause (L_1) is false Therefore: the empty clause means false!

Daniel S. Weld

DPLL version 2

```
dpll_2(F, literal){
  remove clauses containing literal
  if (F contains no clauses)return true;
  shorten clauses containing ¬literal
  if (F contains empty clause)
     return false;
  choose V in F;
  if (dpll_2(F, ¬V))return true;
  return dpll_2(F, V);
}
```

Partial assignment corresponding to a node is the set of chosen literals on the path from the root to the node

© Daniel S. Weld

Veld

Benefit

- · Like forward checking
- Can backtrack before getting to leaf

© Daniel S. Weld

Structure in Clauses

Unit Literals

A literal that appears in a singleton clause {{¬b c}{¬c}{a ¬b e}{d b}{e a ¬c}}

Might as well set it true! And simplify {{¬b} {a ¬b e}{d b}}

{{d}}

- Pure Literals
 - A symbol that always appears with same sign
 - $-\{\{a \neg b c\} \{\neg c d \neg e\} \{\neg a \neg b e\} \{d b\} \{e a \neg c\}\}$ $\underbrace{Might \ as \ well \ set \ it \ true!}_{\{\neg a \neg b \ e\}} \{e \ a \neg c\}\}$

© Daniel S. Weld

60

```
DPLL (for real!)
    Davis-Putnam-Loveland-Logemann

dpll(F, literal) {
    remove clauses containing literal
    if (F contains no clauses) return true;
    shorten clauses containing ¬literal
    if (F contains empty clause)
        return false;
    if (F contains a unit or pure L)
        return dpll(F, L);
    choose V in F;
    if (dpll(F, ¬V))return true;
    return dpll(F, V);
}
```


Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (nonunit, non-pure) proposition for branching
- Idea: identify a most constrained variable
 - Likely to create many unit clauses
- MOM's heuristic:
 - Most occurrences in clauses of minimum length

Daniel S. Weld

Success of DPLL

- 1962 DPLL invented
- 1992 300 propositions
- 1997 600 propositions (satz)
- Additional techniques:
 - Learning conflict clauses at backtrack points
 - Randomized restarts
 - 2002 (zChaff) 1,000,000 propositions encodings of hardware verification problems

Daniel S. Weld

Other Ideas?

• How else could we solve SAT problems?

WalkSat (Take 1)

- Local search (Hill Climbing + Random Walk) over space of complete truth assignments
 - -With prob p: flip any variable in any unsatisfied clause
 - -With prob (1-p): flip best variable in any unsat clause
 - best = one which minimizes #unsatisfied clauses

Daniel S Weld

Refining Greedy Random Walk

- · Each flip
 - makes some false clauses become true
 - breaks some true clauses, that become false
- Suppose s1 \rightarrow s2 by flipping x. Then:

#unsat(s2) = #unsat(s1) - make(s1,x) + break(s1,x)

- Idea 1: if a choice breaks nothing, it's likely good!
- Idea 2: near the solution, only the break count matters
 - the make count is usually 1

Walksat (Take 2)

```
state = random truth assignment;
while ! GoalTest(state) do
    clause := random member { C | C is false in state };
    for each x in clause do compute break[x];
    if exists x with break[x]=0 then var := x;
    else
        with probability p do
        var := random member { x | x is in clause };
        else
        var := arg x min { break[x] | x is in clause };
    endif
    state[var] := 1 - state[var];
end
```

Put everything inside of a restart loop.
Parameters: p, max_flips, max_runs

Random 3-SAT

- · Random 3-SAT
 - sample uniformly from space of all possible 3clauses
 - n variables, I clauses
- Which are the hard instances?
 - around I/n = 4.3

Special Syntactic Forms

• General Form:

return state:

 $((q \land \neg r) \rightarrow s)) \land \neg (s \land t)$

Conjunction Normal Form (CNF)

 $(\neg q \lor r \lor s) \land (\neg s \lor \neg t)$ Set notation: $\{(\neg q, r, s), (\neg s, \neg t)\}$ empty clause () = false

• Binary clauses: 1 or 2 literals per clause

 $(\neg q \lor r)$ $(\neg s \lor \neg t)$

• Horn clauses: 0 or 1 positive literal per clause

 $(\neg q \lor \neg r \lor s) \quad (\neg s \lor \neg t)$ $(q \land r) \rightarrow s \quad (s \land t) \rightarrow false$ $(s \land t) \rightarrow false$

77

Prop. Logic Themes

Expressiveness

Expressive but awkward
No notion of objects, properties, or relations
Number of propositions is fixed
Brittle

Tractability

NP in general Completeness / speed tradeoff Horn clauses, binary clauses

Daniel S. Weld

d 78

Overview

- Knowledge Representation & Reasoning
- Propositional Logic
- First-Order Logic
 - Foundations: Syntax, semantics & inference
 - Algorithms: Chaining, Resolution, Compilation to SAT
 - Tractable subsets
- Markov Logic

Propos	itional. Log	gic vs. First Order	
Ontology	Propositional Symbols	Objects, Properties, Relations	
Syntax	Atomic sentences Connectives	Variables & quantification Sentences have structure: terms father-of(mother-of(X)))	
Semantics	Truth Tables	Interpretations (Much more complicated)	
Inference Algorithm	DPLL, WalkSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving	
Complexity	NP-Complete	Semi-decidable	
© Daniel S. Weld	80		

FOL Definitions

- Constants: a,b, dog33.
 - Name a specific object.
- Variables: X, Y.
- Refer to an object without naming it.
- Functions: dad-of
 - Mapping from objects to objects.
- **Terms**: dad-of(dog33)
 - Refer to objects
- **Atomic Sentences**: in(dad-of(dog33), food6)
 - Can be true or false
 - Correspond to propositional symbols P, Q

More Definitions

- Quantifiers:
 - − ∀ Forall
 - -∃ There exists
- Examples
 - Dumbo is grey grey(dumbo)
 - Elephants are grey

 \forall x elephant(x) \Rightarrow grey(x)

- There is a grey elephant

 $\exists x \ elephant(x) \land grey(x)$

Quantifier / Connective Interaction

E(x) == "x is an elephant"

G(x) == "x has the color grey"

1. $\forall x \ E(x) \land G(x)$

2. $\forall x \ E(x) \Rightarrow G(x)$

3. $\exists x \ E(x) \land G(x)$

4. $\exists x \ E(x) \Rightarrow G(x)$

Nested Quantifiers:

Order matters!

 $\forall x \exists y \ P(x,y) \neq \exists y \ \forall x \ P(x,y)$

Examples

- Every dog has a tail

Every dog *shares* a tail!

 $\forall d\exists t \text{ has}(d,t)$

 $\exists t \forall d \text{ has}(d,t)$

Someone is loved by everyone

 $\exists x \forall y \ \text{loves}(y, x)$

© Daniel S. Weld

Satisfiability, Validity, & Entailment

• S is valid if it is true in all models

• S is satisfiable if it is true in some model

• S is unsatisfiable if it is false all model

|=
• S1 entails S2 if

—For all models where S1 is true,

—S2 is also true

• Daniel S, Weld

92

FOL Reasoning • FO Forward & Backward Chaining • FO Resolution • Many other types of theorem proving • Specialized provers for restricted representations – Description logics – Horn Clauses • Compilation to SAT

Compilation to Prop. Logic I

- Typed Logic
 - $-\forall_{citv} a, b$ connected(a,b)
- Finite Universe
 - Cities: seattle, tacoma, enumclaw
- Equivalent propositional formula:

© Daniel S. Weld

Compilation to Prop. Logic II

- Universe
 - Cities: Seattle, ChicagoFirms: Microsoft, Boeing
- First-Order formula
 - $-\forall_{citv} c \exists_{firm} f$ hasHQ(c, f)
- Equivalent propositional formula?

niel S. Weld

Hey!

- You said FO Inference is semi-decidable
- But you compiled it to SAT
 - Which is NP Complete
- So now we can always do the inference?!?
 - Tho it might take exponential time...
- Something seems wrong here....????

© Daniel S Weld

10

Restricted Forms of FO Logic

- Known, Finite Universes
 - Compile to SAT
- Description Logics (Frame Systems)
 - Ban certain types of expressions
- Horn Clauses
 - Aka Prolog
- Function-Free Horn Clauses
 - Aka Datalog

el S Weld

We Need to Unify the Two

- The real world is complex and uncertain
- · Logic handles complexity
- · Probability handles uncertainty

Progress to Date

- Probabilistic logic [Nilsson, 1986]
- Statistics and beliefs [Halpern, 1990]
- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Etc.
- Here at UW: MLNs [Richardson & Domingos, 2004]

Markov Logic

- Syntax: Weighted first-order formulas
- Semantics: Templates for Markov nets
- Inference: WalkSAT, MCMC, KBMC
- Learning: Voted perceptron, pseudolikelihood, inductive logic programming
- Software: Alchemy
- **Applications:** Information extraction, link prediction, etc.

Overview

- Motivation
- Background
- · Markov logic
- Inference
- Learning
- Software
- Applications
- Discussion

Markov Networks

• Undirected graphical models

• Potential functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum \prod \Phi_c(x_c)$$

Smoking	Cancer	Φ(S,C)
False	False	4.5
False	True	4.5
True	False	2.7
True	True	4.5

Markov Networks

• Undirected graphical models

Log-linear model:

$$P(x) = \frac{1}{Z} \exp \left(\sum_{i} w_{i} f_{i}(x) \right)$$
Weight of Feature i | Feature i

$$f_{1}(Smoking, Cancer) = \begin{cases} 1 & \text{if } \neg Smoking \lor Cancer} \\ w_{1} = 1.5 \end{cases}$$
 otherwise

First-Order Logic

- Constants, variables, functions, predicates E.g.: Anna, x, MotherOf(x), Friends(x,y)
- Grounding: Replace all variables by constants

 F.g.: Friends (Anna, Bob)
- World (model, interpretation):
 Assignment of truth values to all ground predicates

Overview

- Motivation
- Background
- Markov logic
- Inference
- Learning
- Software
- Applications
- Discussion

Markov Logic

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints:
 When a world violates a formula,
 It becomes less probable, not impossible
- Give each formula a weight
 (Higher weight ⇒ Stronger constraint)

 $P(world) \propto exp(\sum weights of formulas it satisfies)$

Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the $\ensuremath{\mathsf{MLN}}$
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.

Example: Friends & Smokers

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world *x*:

 $P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$ Weight of formula i No. of true groundings of formula i in x

- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

Relation to Statistical Models

- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Max. entropy models
 - Gibbs distributions
 - Boltzmann machines - Logistic regression

 - Hidden Markov models
 - Conditional random fields

- · Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

Relation to First-Order Logic

- Infinite weights ⇒ First-order logic
- Satisfiable KB, positive weights ⇒ Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

Overview

- Motivation
- Background
- Markov logic
- Inference
- Learning
- Software
- Applications
- Discussion

MAP/MPE Inference

• Problem: Find most likely state of world given evidence

$$\begin{array}{c|c}
\operatorname{arg\,max} & P(y \mid x) \\
\hline
\text{Query} & \text{Evidence}
\end{array}$$

MAP/MPE Inference

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \ \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y) \right)$$

MAP/MPE Inference

Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

MAP/MPE Inference

Problem: Find most likely state of world given evidence

$$\arg\max_{y} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997])
- Potentially faster than logical inference (!)

The WalkSAT Algorithm

```
for i ← 1 to max-tries do
solution = random truth assignment
for j ← 1 to max-flips do
if all clauses satisfied then
return solution
c ← random unsatisfied clause
with probability p
flip a random variable in c
else
flip variable in c that maximizes
number of satisfied clauses
return failure
```

The MaxWalkSAT Algorithm

```
for i\leftarrow 1 to max-tries do solution = random truth assignment for j\leftarrow 1 to max-flips do if \sum weights(sat. clauses) > threshold then return solution c\leftarrow random unsatisfied clause with probability p flip a random variable in c else flip variable in c that maximizes \sum weights(sat. clauses) return failure, best solution found
```

But ... Memory Explosion

• Problem:

If there are **n** constants and the highest clause arity is **c**, the ground network requires **O(n c**) memory

• Solution:

Exploit sparseness; ground clauses lazily

→ LazySAT algorithm [Singla & Domingos, 2006]

Computing Probabilities

- P(Formula | MLN,C) = ?
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- If Formula2 = Conjunction of ground atoms
 - First construct min subset of network necessary to answer query (generalization of KBMC)
 - Then apply MCMC (or other)
- Can also do lifted inference [Braz et al, 2005]

Ground Network Construction

network ← Ø
queue ← query nodes
repeat
node ← front(queue)
remove node from queue
add node to network
if node not in evidence then
add neighbors(node) to queue
until queue = Ø

MCMC: Gibbs Sampling

state ← random truth assignment
for i ← 1 to num-samples do
 for each variable x
 sample x according to P(x | neighbors(x))
 state ← state with new value of x
P(F) ← fraction of states in which F is true

But ... Insufficient for Logic

- Problem:
 - Deterministic dependencies break MCMC Near-deterministic ones make it *very* slow
- Solution:

Combine MCMC and WalkSAT

→ MC-SAT algorithm [Poon & Domingos, 2006]

Overview

- Motivation
- Background
- Markov logic
- Inference
- Learning
- Software
- Applications
- Discussion

Learning

- Data is a relational database
- Closed world assumption (if not: EM)
- Learning parameters (weights)
 - Generatively
 - Discriminatively
- · Learning structure (formulas)

Generative Weight Learning

- · Maximize likelihood
- Use gradient ascent or L-BFGS
- No local maxima $\frac{\partial}{\partial w_i}\log\,P_{\scriptscriptstyle w}(x) = \underbrace{n_i(x)}_{n_i(x)} \underbrace{E_{\scriptscriptstyle w}\left[n_i(x)\right]}_{\text{No. of true groundings of clause i in data}$ Expected no. true groundings according to make

• Requires inference at each step (slow!)

Pseudo-Likelihood

$$PL(x) \equiv \prod_{i} P(x_i | neighbors(x_i))$$

- Likelihood of each variable given its neighbors in the data [Besag, 1975]
- Does not require inference at each step
- · Consistent estimator
- Widely used in vision, spatial statistics, etc.
- But PL parameters may not work well for long inference chains

Discriminative Weight Learning

 Maximize conditional likelihood of query (y) given evidence (x)

$$\frac{\partial}{\partial w_i} \log P_w(y \mid x) = \underbrace{n_i(x,y)}_{l} - \underbrace{E_w[n_i(x,y)]}_{l}$$
[No. of true groundings of clause *i* in data

[Expected no. true groundings according to models and the content of t

 Approximate expected counts by counts in MAP state of y given x

Voted Perceptron

- Originally proposed for training HMMs discriminatively [Collins, 2002]
- Assumes network is linear chain

$$w_i \leftarrow 0$$

for $t \leftarrow 1$ to T do
 $y_{MAP} \leftarrow Viterbi(x)$
 $w_i \leftarrow w_i + \eta$ [count_i (y_{Data}) - count_i (y_{MAP})]
return $\Sigma_t w_i / T$

Voted Perceptron for MLNs

- HMMs are special case of MLNs
- Replace Viterbi by MaxWalkSAT
- · Network can now be arbitrary graph

$$w_i \leftarrow 0$$
for $t \leftarrow 1$ to T do
$$y_{MAP} \leftarrow \text{MaxWalkSAT}(x)$$

$$w_i \leftarrow w_i + \eta \text{ [count}_i(y_{Data}) - \text{count}_i(y_{MAP})]$$
return $\sum_t w_i / T$

Structure Learning

- Generalizes feature induction in Markov nets
- Any inductive logic programming approach can be used, but . . .
- Goal is to induce any clauses, not just Horn
- Evaluation function should be likelihood
- Requires learning weights for each candidate
- Turns out not to be bottleneck
- · Bottleneck is counting clause groundings
- Solution: Subsampling

Structure Learning

- Initial state: Unit clauses or hand-coded KB
- Operators: Add/remove literal, flip sign
- Evaluation function:
 Pseudo-likelihood + Structure prior
- Search:
 - Beam [Kok & Domingos, 2005]
 - Shortest-first [Kok & Domingos, 2005]
 - Bottom-up [Mihalkova & Mooney, 2007]

Overview

- Motivation
- Background
- Markov logic
- Inference
- Learning
- Software
- Applications
- Discussion

Alchemy

Open-source software including:

- Full first-order logic syntax
- Generative & discriminative weight learning
- Structure learning
- Weighted satisfiability and MCMC
- Programming language features

alchemy.cs.washington.edu

	Alchemy	Prolog	BUGS
Represent- ation	F.O. Logic + Markov nets	Horn clauses	Bayes nets
Inference	Model check- ing, MC-SAT	Theorem proving	Gibbs sampling
Learning	Parameters & structure	No	Params.
Uncertainty	Yes	No	Yes
Relational	Yes	Yes	No

Overview

- Motivation
- Background
- Markov logic
- Inference
- Learning
- Software
- Applications
- Discussion

Applications

- Information extraction*
 - Computational biology
- Entity resolution
- Social network analysis
- Link prediction
- Robot mapping
- Collective classification
- · Activity recognition
- Web mining
- Probabilistic Cyc
- Natural language
- CALO • Etc.
- processing
 - * Markov logic approach won LLL-2005 information extraction competition [Riedel & Klein, 2005]

Information Extraction

Parag Singla and Pedro Domingos, "Memory-Efficient

Inference in Relational Domains" (AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent

inference in relatonal domains. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence

(pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference

State of the Art

- Segmentation
 - HMM (or CRF) to assign each token to a field
- Entity resolution
 - Logistic regression to predict same field/citation
 - Transitive closure
- Alchemy implementation: Seven formulas

Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
```

Types and Predicates

```
token = {Parag, Singla, and, Pedro,
field = {Author, Title, Venue, ...}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}
```

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
```

Types and Predicates

```
token = {Parag, Singla, and, Pedro, ...}
field = {Author, Title, Venue}
citation = {C1, C2, ...}
position = {0, 1, 2, ...}

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)
```

Formulas

Formulas

Formulas

Formulas

Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+f,c)
f != f' => (!InField(i,+f,c) v !InField(i,+f',c)

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i',c)
^ InField(i',+f,c') => SameField(+f,c,c')
SameField(f,c,c') <=> SameCit(c,c')

=> SameField(f,c,c') ^ SameField(f,c',c'')
=> SameCit(c,c'')
SameCit(c,c') ^ SameCit(c',c'') => SameCit(c,c'')

Formulas

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+1,+f,c)
f != f' => (!InField(i,+f,c) v !InField(i,+f',c)

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i',c)
^ InField(i',+f,c') => SameField(+f,c,c')
SameField(+f,c,c') <=> SameCit(c,c')
SameField(f,c,c') ^ SameField(f,c',c")
=> SameField(f,c,c') ^ SameCit(c',c'') => SameCit(c,c')

Formulas

Formulas

