
11/30/2012

1

CSE 573: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Space of Search Strategies

 Blind Search
 DFS, BFS, IDS

 Informed Search

2

Informed Search
 Systematic: Uniform cost, greedy, A*, IDA*

 Stochastic: Hill climbing w/ random walk & restarts

 Constraint Satisfaction

 Adversary Search
 Min-max, alpha-beta, expectimax, MDPS…

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of triplesfunction from states to lists of triples

(state, action, cost)

 Start state
 Goal test

Constraint Satisfaction
 Kind of search in which
 States are factored into sets of variables

 Search = assigning values to these variables

 Goal test is encoded with constraints
  Gives structure to search space

4

 Gives structure to search space

 Exploration of one part informs others

 Special techniques add speed
 Propagation

 Variable ordering

 Preprocessing

Constraint Satisfaction Problems

 Subset of search problems

 State is factored - defined by
 Variables Xi with values from a

 Domain D (often D depends on i)

 Goal test is a set of constraints

WHY STUDY?
 Simple example of a formal representation language
 Allows more powerful search algorithms

Example: Map-Coloring

 Variables:

 Domain:

 Constraints: adjacent regions must have
different colors

 Solutions are assignments satisfying all
constraints, e.g.:

11/30/2012

2

Constraint Graphs
 Binary CSP: each constraint relates (at most) two

variables
 Binary constraint graph: nodes are variables, arcs

show constraints

 General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Real-World CSPs

 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when

and where?
 Hardware configuration
 Gate assignment in airports Gate assignment in airports
 Transportation scheduling
 Factory scheduling
 Fault diagnosis
 … lots more!

 Many real-world problems involve
real-valued variables…

Example: Sudoku

 Variables:

 Domains:

 Each (open) square

Domains:

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

 {1,2,…,9}

Example: Cryptarithmetic

 Variables (circles):

 Domains:

 Constraints (boxes):

Crossword Puzzle

 Variables & domains?

 Constraints?

11

Example: N-Queens

 CSP Formulation 1:
 Variables:

 Domains:

 Constraints Constraints

Xij + Xik ≤ 1

Xij + Xkj ≤ 1

Xij + Xi+k,j+k ≤ 1

Xij + Xi+k,j-k ≤ 1

11/30/2012

3

Example: N-Queens

 CSP Formulation 1:
 Variables:

 Domains:

 Constraints Constraints

Example: N-Queens

 Formulation 2:
 Variables:

 Domains:Domains:

 Constraints:

Implicit:

Explicit:

-or-

Chinese Constraint
Network

Soup

Chicken
DishAppetizer

Must be
Hot&Sour

No
Peanuts

18

Total Cost
< $40

Dish

Vegetable

RiceSeafood

Pork Dish No
Peanuts

Not
Chow Mein

Not Both
Spicy

Example: The Waltz Algorithm

 The Waltz algorithm is for interpreting line drawings of
solid polyhedra

 An early example of a computation posed as a CSP

 Look at all intersections
 Adjacent intersections impose constraints on each other

?

Waltz on Simple Scenes

 Assume all objects:
 Have no shadows or cracks
 Three-faced vertices
 “General position”: no junctions

change with small movements of
ththe eye.

 Then each line on image is
one of the following:
 Boundary line (edge of an

object) (>) with right hand of
arrow denoting “solid” and left
hand denoting “space”

 Interior convex edge (+)
 Interior concave edge (-)

Legal Junctions

 Only certain junctions are
physically possible

 How can we formulate a CSP to
label an image?

 Variables: vertices
 Domains: junction labelsDomains: junction labels
 Constraints: both ends of a line

should have the same label

x

y

(x,y) in

, , …

11/30/2012

4

Local vs Global Consistency

22

Varieties of CSPs

 Discrete Variables
 Finite domains

 Size d means O(dn) complete assignments

 E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

 Infinite domains (integers, strings, etc.)
 E.g., job scheduling, variables are start/end times for each job

 Linear constraints solvable, nonlinear undecidable

 Continuous variables
 E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints
 Varieties of Constraints

 Unary constraints involve a single variable (equiv. to shrinking domains):

 Binary constraints involve pairs of variables:

 Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

 Preferences (soft constraints):
 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

CSPs as Search?

 States?

 Successor function?

 Start state?

 Goal test?

Standard Search Formulation

• States are defined by the values assigned so far

• Initial state: the empty assignment, {}

• Successor function:
• assign value to an unassigned variable

• Goal test:
• the current assignment is complete &
• satisfies all constraints

Backtracking Example

11/30/2012

5

Backtracking Search

 Note 1: Only consider a single variable at each point
 Variable assignments are commutative, so fix ordering of variables

I.e., [WA = red then NT = blue] same as

[NT = blue then WA = red][]

 What is branching factor of this search?

Backtracking Search

Note 2: Only allow legal assignments at each point

 I.e. Ignore values which conflict previous assignments

 Might need some computation to eliminate such conflicts

 “Incremental goal test”

“Backtracking Search”

Depth-first search for CSPs with these two ideas

 One variable at a time, fixed order

 Only trying consistent assignments

Is called “Backtracking Search”
 Basic uninformed algorithm for CSPs

 Can solve n-queens for n  25

Backtracking Search

 What are the choice points?

Improving Backtracking

General-purpose ideas give huge gains in speed

 Ordering:
 Which variable should be assigned next?c a ab e s ou d be ass g ed e t

 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

Forward Checking

 Idea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

 Idea: Terminate when any variable has no legal values

WA
SA

NT Q

NSW

V

11/30/2012

6

Forward Checking

Row 1

Row 2

Row 3

QA QB QC QD

36

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3

QA QB QC QD

37

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Prune inconsistent values

QA QB QC QD

38

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Where can QB Go?

QA QB QC QD

39

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3 Q

QA QB QC QD

Prune inconsistent values

40

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Where can QB Go?

QA QB QC QD

41

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

11/30/2012

7

Forward Checking
Cuts the Search Space

4

16

42

16

64

256

Are We Done?

43

Constraint Propagation

 Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

WA
SA

NT Q

NSW

V

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

 Simplest form of propagation makes each arc consistent
 X  Y is consistent iff for every value x there is some allowed y

WA
SA

NT Q

NSW

V

• If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• What’s the downside of arc consistency?
• Can be run as a preprocessor or after each assignment

Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]

Limitations of Arc Consistency

After running arc consistency:
 Can have one solution left

 Can have multiple solutions left

 Can have no solutions left
(and not know it)

What went
wrong here?

11/30/2012

8

K-Consistency*

 Increasing degrees of consistency
 1-Consistency (Node Consistency):

Each single node’s domain has a value
which meets that node’s unary
constraints

 2-Consistency (Arc Consistency): For y (y)
each pair of nodes, any consistent
assignment to one can be extended to
the other

 K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

 Higher k more expensive to compute

Variable Ordering Heuristics

 Minimum remaining values (MRV):
 Choose the variable with the fewest legal values

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Degree Heuristic

 Tie-breaker among MRV variables
 Degree heuristic:
 Choose the variable participating in the most

constraints on remaining variables

 Why most rather than fewest constraints?

Ordering: Least Constraining Value

 Given a choice of variable:
 Choose the least constraining value
 The one that rules out the fewest

values in the remaining variables
 Note that it may take some

computation to determine this!computation to determine this!

 Why least rather than most?

 Combining these heuristics
makes 1000 queens feasible

Problem Structure
 Tasmania and mainland are

independent subproblems

 Identifiable as connected
components of constraint
graph

 Suppose each subproblemSuppose each subproblem
has c variables out of n total

 Worst-case solution cost is
O((n/c)(dc)), linear in n

 E.g., n = 80, d = 2, c =20

 280 = 4 billion years at 10
million nodes/sec

 (4)(220) = 0.4 seconds at 10
million nodes/sec

Tree-Structured CSPs

 Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes
it in the ordering

 For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2)

11/30/2012

9

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can
be solved in O(n d2) time!
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to logical and probabilistic
reasoning: an important example of the relation between
syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains

 Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

 Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Local Search for CSPs

 Greedy and stochastic methods typically search over
“complete” states, i.e., all variables assigned

 To apply to CSPs:
 Allow states with unsatisfied constraints

O t i i bl l Operators reassign variable values

 Variable selection: randomly select any conflicted variable

 Value selection heuristic:
 Min-conflicts
 Choose value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time
for large n (e.g., 10,000,000) with high probability

 The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

CSP Summary
 CSPs are a special (factored) kind of search problem:

 States defined by values (domains) of a fixed set of variables

 Goal test defined by constraints on variable values

 Backtracking = DFS - one legal variable assigned per node

 Variable ordering and value selection heuristics help

 Forward checking prevents assignments that fail later Forward checking prevents assignments that fail later

 Constraint propagation (e.g., arc consistency)
 does additional work to constrain values and detect inconsistencies

 Constraint graph representation
 Allows analysis of problem structure

 Tree-structured CSPs can be solved in linear time

 Local (stochastic) search often effective in practice
 Iterative min-conflicts

