CSE 573: Atrtificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

11/30/2012

Space of Search Strategies

= Blind Search
= DFS, BFS, IDS

Informed Search
= Systematic: Uniform cost, greedy, A*, IDA*
= Stochastic: Hill climbing w/ random walk & restarts

Constraint Satisfaction
Adversary Search
= Min-max, alpha-beta, expectimax, MDPS...

Recap: Search Problem

= States
= configurations of the world
= Successor function:

= function from states to lists of triples
(state, action, cost)

= Start state
= Goal test

Constraint Satisfaction

= Kind of search in which
= States are factored into sets of variables
= Search = assigning values to these variables
= Goal test is encoded with constraints
= - Gives structure to search space
= Exploration of one part informs others

= Special techniques add speed

= Propagation
= Variable ordering ‘g‘

= Preprocessing !

Constraint Satisfaction Problems

= Subset of search problems

= State is factored - defined by

= Variables X; with values from a ‘ . *
-y
-

= Domain D (often D depends on i)

= Goal test is a set of constraints

WHY STUDY?

= Simple example of a formal representation language
= Allows more powerful search algorithms

Example: Map-Coloring

= Variables: WA, NT, Q, NSW, V, SA, T

* Domain: p — {red, green, blue} . *
= Constraints: adjacent regions must have ‘ n
different colors ‘ "_
WA#NT ‘-
(WA, NT) € {(red, green), (red, blue), (green, red), ...}

= Solutions are assignments satisfying all
constraints, e.g.:

{WA =red, NT = green,Q = red,
NSW = green,V = red, SA = blue, T = green}

Constraint Graphs

= Binary CSP: each constraint relates (at most) two
variables

= Binary constraint graph: nodes are variables, arcs
show constraints

L

= General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

11/30/2012

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when
and where?

Hardware configuration
Gate assignment in airports
Transportation scheduling
Factory scheduling

Fault diagnosis

.. lots more!

Many real-world problems involve
real-valued variables...

Example: Sudoku

‘ , = Variables:
8 /‘(= Each (open) square
8|4 116 .
5 | = Domains:
= {1,2,....9
1 3|8 9 { . _}
6 8 4 3 = Constraints:
2 915 1 9-way alldiff for each column
! 2 9-way alldiff for each row
7.8 2|6
2 3 9-way alldiff for each region

Example: Cryptarithmetic

= Variables (circles):
FTUWRO X1 Xo X3 +

= Domains: F
{0,1,2,3,4,5,6,7,8,9}

= Constraints (boxes):
alldiff(F, T, U, W, R, O)

O0+0=R+10-X;

Crossword Puzzle

= Variables & domains?

= Constraints?
—

i
ROy crea,

Pty sy —

sy e

Hib prn cve, cam e i
e e T wame, end

Lurﬁr st sond s
s S
et

ety 7. Misk Temseas poduma
polar ATTM fim Eame L1 T e of she who 308 0 Soopanty!
[iptepadol andd Wi Wash T e & Aosbeeaer

11

Example: N-Queens

= CSP Formulation 1:
= Variables: Xi;
» Domains: {0,1}
= Constraints

Vi7j7k)(g/+)(l/(51
Vi, j, k X +‘X:+kJ+kSI
Vi, j, k Xyt X<
2 Xij=N

i,

11/30/2012

Example: N-Queens Example: N-Queens
= CSP Formulation 1: = Formulation 2: Q1
= Variables: Xij = Variables: Q, Q2|
= Domains: {0,1} Q3
= Constraints * Domains: {1,2,3,...N} Qa|
Vi, g,k (Xij, Xg;) € {(0,0),(0,1),(1,0)} = Constraints:
vz:’]i’ k (Xi,j» Xi+k,j+k) € {(0, 0)7 (07 1)’ (17 O)} Implicit: V4, j non—threatening(Qi, Q])
Vi, j, k (Xl]7 Xl—‘rk:,]—k:) € {(Ov O)a (01 1)1 (17 O)} -or-
Y Xi;=N Blici: (Q1,Q2) € {(1,3),(1,4),...}
ij “ ..
-..““a’r’;.;@ Chinese Constraint _
.. e .
;3/;3?"3 Network Example: The Waltz Algorithm
-
@ ‘:.Q X Must be = The Waltz algorithm is for interpreting line drawings of
> A Hot&sour solid polyhedra
Soup = An early example of a computation posed as a CSP

Total Cost

<$40
No
Vegetable Peanuts
P
Not Both | Seafood
Spicy Not = Look at all intersections

N

Chow Mein = Adjacent intersections impose constraints on each other
Waltz on Simple Scenes Legal Junctions
= Assume all objeCtS: = Oﬁly_ceﬁtainjur}g}ions are wA A S
= Have no shadows or cracks physically possible WA N E W
« Three-faced vertices = How can we formulate a CSP to
;F ree vertices J label an image? R R T R
= “General position”: no junctions - = Variables: vertices L - v A
tc#ange with small movements of « Domains: junction labels ¢ ¢ << ¢ e &t
e eye. A -
= Then e);ch line on image is) Cﬁmsféaﬂm& bﬁth endeJfba.”ne ' v
. shou ave the same labe - +
one of the following: il ol N B

= Boundary line (edge of an
object) (>) with right hand of

v e
arrow denoting “solid” and left ' - _ “:‘3{ :’:‘\,
hand denoting “space” (xy) in 'y
- X008, .

= Interior convex edge (+)
= Interior concave edge (-)

11/30/2012

Local vs Global Consistency

22

Varieties of CSPs

= Discrete Variables
= Finite domains
= Size d means O(d") complete assignments
= E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations
= Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

= Varieties of Constraints
= Unary constraints involve a single variable (equiv. to shrinking domains):

SA # green
= Binary constraints involve pairs of variables:
SA# WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., red is better than green
= Often representable by a cost for each variable assignment
= Gives constrained optimization problems
= (We'llignore these until we get to Bayes’ nets)

CSPs as Search?

= States?

= Successor function?

Start state?

= Goal test?

Standard Search Formulation

States are defined by the values assigned so far
Initial state: the empty assignment, {}

Successor function:
¢ assign value to an unassigned variable

Goal test:
« the current assignment is complete &
« gsatisfies all constraints

Backtracking Example

1 6

— T
‘%'.L:: ‘FL;"
— T

VSRR

Backtracking Search

= Note 1: Only consider a single variable at each point

= Variable assignments are commutative, so fix ordering of variables
l.e., [WA=red then NT = blue] same as

[NT = blue then WA = red]

= Whatis branching factor of this search?

11/30/2012

Backtracking Search

Note 2: Only allow legal assignments at each point

= |.e. Ignore values which conflict previous assignments

= Might need some computation to eliminate such conflicts

= “Incremental goal test”

“Backtracking Search”

Depth-first search for CSPs with these two ideas
= One variable at a time, fixed order

= Only trying consistent assignments

Is called “Backtracking Search”

= Basic uninformed algorithm for CSP
= Can solve n-queens for n =25

‘:: ‘_:' ‘_—_

e

Improving Backtracking

General-purpose ideas give huge gains in speed

= Ordering:

= Which variable should be assigned next?
= In what order should its values be tried?

= Filtering: Can we detect inevitable failure early?

= Structure: Can we exploit the problem structure?

Backtracking Search

capr) returns solution /failure
aNG({ }esp)
n REcugsivE- Backrrackive]as
If assignment is complete then return os

func

sp) returns soln failure
SELECT-TTNAssIENED-VARIARLE VARIARLES]:
for each i iV

¢ in ORDER-DOMAIN-Y
if valu

nent, csp) do
RAINTS[esp] then

f, esp)
return failure

= What are the choice points?

Forward Checking =t

= |dea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

= |dea: Terminate when any variable has no legal values

NT Q N3W v SA T
CE IR ICE ICEC ICE I 1C 1

11/30/2012

Forward Checking

Forward Checking

Qa Qs Qc Qo
Row 1 |[Q

Row 2
Row 3
Row 4

1111

2 2 2

333

4 4 4
S
possivie value

37

Qa Qs Qc Qo
Row 1
Row 2
Row 3
Row 4
1111
2 2 2 2
3333
4 4 4 4
possible VAU
36
Forward Checking
Qa Qs Qc Qo
Row 1l |Q
Row 2 Prune inconsistent values
Row 3
Row 4

H~wW
AN
w N

P OSS\b\

Forward Checking

Qa Qe Qc Qo

Row 1l |Q
Row 2
Row 3
Row 4

Where can Qg Go?

e \la\\les

39

Poss'\b\e values
38
Forward Checking
Qa Qs Qc Qo
Row 1 |Q
Row 2 Prune inconsistent values
Row 3 Q
Row 4
1
2
3
ole values \
possivi® \No yalues \eft

40

P oss\b

Forward Checking

Qa Qs Qc Qo

Row 1 |[Q
Row 2
Row 3
Row 4

Where can Qg Go?

e values

41

11/30/2012

Forward Checking
Cuts the Search Space Are We Done?

i
T 1 ===

16
B EEEE S EE D EE DD B
64

256 e e s s et st s s s oot st ot s s et st ot e
43
42
. . WA NT Q . WA NT Q
Constraint Propagation = 1) Arc Consistency = e
\7 4
= Forward checking propagates information from assigned to adjacent = Simplest form of propagation makes each arc consistent
unassigned variables, but doesn't detect more distant failures: = X~ is consistent iff for every value x there is some allowed y
(TNl TNl ..‘ _.‘[_x%
Lo~ 442 SSER oS

WA NT aQ NSW v SA T

(| mjmews sjesE] SjiesE|
'\y

= NT and SA cannot both be blue! « If X loses a value, neighbors of X need to be rechecked!
* Why didn't we detect this yet? ' « Arc consistency detects failure earlier than forward checking

B ; . * What's the downside of arc consistency?
= Constraint propagation repeatedly enforces constraints (locally) « Can be run as a preprocessor or after each assignment

Arc Consistency Limitations of Arc Consistency

function AC-5[cop) returns the CSP. possibly with reduced domains

inputs: cxp, a binary CSP with variables (X}, Xz ..., Xu] After running arc consistency:
= Can have one solution left

while gueae o
X, : i uves) = Can have multiple solutions left ‘
if IEMOVE- T ALUES(X. X)) then Q

local variables: gurire, 3 quese of ares, initially all the ares in o

:

(X do = Can have no solutions left
(and not know it)

function REMOVE-IRCORSSTENT-VALUES X,. X)) returns troe iff succeeds

for each =« in Dow,

s

if mo value y in
then delete 5 fi

return o

) to satisfy the constraint X X

.
.

= Runtime: O(n?d?), can be reduced to O(n%d?) What went
= ... but detecting all possible future problems is NP-hard — why? wrong here?
[demo: arc consistency animation]

11/30/2012

K-Consistency*

= Increasing degrees of consistency
= 1-Consistency (Node Consistency): Q
Each single node’s domain has a value
which meets that node’s unary
constraints O =20
2-Consistency (Arc Consistency): For
each pair of nodes, any consistent

assignment to one can be extended to O
the other

= K-Consistency: For each k nodes, any O = O
consistent assignment to k-1 can be O

extended to the k™" node.

= Higher k more expensive to compute ®

Variable Ordering Heuristics

= Minimum remaining values (MRV):
= Choose the variable with the fewest legal values

SSas S SEe oS

= Why min rather than max?
Also called “most constrained variable”
= “Fail-fast” ordering

Ordering: Degree Heuristic

= Tie-breaker among MRV variables

= Degree heuristic:

= Choose the variable participating in the most
constraints on remaining variables

L

= Why most rather than fewest constraints?

Ordering: Least Constraining Value

= Given a choice of variable:
= Choose the least constraining value

= The one that rules out the fewest
values in the remaining variables ‘
= Note that it may take some
computation to determine this! ‘).it
= Why least rather than most? ‘ &

= Combining these heuristics
makes 1000 queens feasible

Problem Structure

= Tasmania and mainland are
independent subproblems

= |dentifiable as connected
components of constraint
graph

= Suppose each subproblem
has c variables out of n total

= Worst-case solution cost is
O((n/c)(d®)), linear in n
* Eg,n=80,d=2,¢c=20

= 280 =4 pillion years at 10
million nodes/sec

= (4)(22°) = 0.4 seconds at 10
million nodes/sec

Tree-Structured CSPs

= Choose a variable as root, order Iy ."E\
variables from root to leaves such A,
. |B—D)
that every node's parent precedes AN
it in the ordering c) (F)

'y N AN N = -
OONOO\G
= Fori=n:2, apply Removelnconsistent(Parent(X;),X;)

= Fori=1:n,assign X; consistently with Parent(X;)

= Runtime: O(n d?)

11/30/2012

Tree-Structured CSPs Nearly Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can
be solved in O(n d?) time!

« Compare to general CSPs, where worst-case time is O(d") = Conditioning: instantiate a variable, prune its neighbors' domains
))) o = Cutset conditioning: instantiate (in all ways) a set of variables
= This property also applies to logical and probabilistic such that the remaining constraint graph’is a tree

reasoning: an important example of the relation between

syntactic restrictions and the complexity of reasoning. « Cutset size ¢ gives runtime O((d) (n-c) d?), very fast for small ¢

Local Search for CSPs Example: 4-Queens

= Greedy and stochastic methods typically search over
“complete” states, i.e., all variables assigned

= To apply to CSPs:
= Allow states with unsatisfied constraints
= Operators reassign variable values

= Variable selection: randomly select any conflicted variable

= States: 4 queens in 4 columns (44 = 256 states)
)) = Operators: move queen in column

= Min-conflicts

= Choose value that violates the fewest constraints = Goal te_st: no attacks
= Le., hill climb with h(n) = total number of violated constraints = Evaluation: h(n) = number of attacks

= Value selection heuristic:

CSP Summary

= CSPs are a special (factored) kind of search problem:
= Given random initial state, can solve n-queens in almost constant time = States defined by values (domains) of a fixed set of variables
for large n (e.g., 10,000,000) with high probability = Goal test defined by constraints on variable values

= Backtracking = DFS - one legal variable assigned per node
= Variable ordering and value selection heuristics help

Performance of Min-Conflicts

= The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

number of constraints = Forward checking prevents assignments that fail later
= “number of variables = Constraint propagation (e.g., arc consistency)
= does additional work to constrain values and detect inconsistencies
e [= Constraint graph representation

| = Allows analysis of problem structure

j.'ll = Tree-structured CSPs can be solved in linear time
- k-— —

—r = Local (stochastic) search often effective in practice
critical
rAtio = [terative min-conflicts

