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CSE 573: Artificial Intelligence
Spring 2012

L i B i N t kLearning Bayesian Networks

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan 
Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Environment
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vs.
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Blind search
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State estimation
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First-order logic

Description logic

Constraint networks

Markov logic networks

…

Learning

?

What is Machine Learning ?What is Machine Learning ?
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Machine Learning

Study of algorithms that
 improve their performance
 at some task

ith i

7©2005-2009 Carlos Guestrin

 with experience

Data Understanding
Machine 
Learning

Exponential Growth in Data

8©2005-2009 Carlos Guestrin

Data Understanding
Machine 
Learning

Supremacy of Machine Learning

 Machine learning is preferred approach to
 Speech recognition, Natural language processing
 Web search – result ranking
 Computer vision
 Medical outcomes analysis
 Robot control

C t ti l bi l

9©2005-2009 Carlos Guestrin

 Computational biology
 Sensor networks
 …

 This trend is accelerating
 Improved machine learning algorithms 
 Improved data capture, networking, faster computers
 Software too complex to write by hand
 New sensors / IO devices
 Demand for self-customization to user, environment

Space of ML Problems

W
hat is

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing
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s B
eing Learned?
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Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning

Classification

11©2009 Carlos 
Guestrin

Classification

from data to discrete classes

Spam filtering 
data prediction

12©2009 Carlos 
Guestrin
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Weather prediction

14©2009 Carlos 
Guestrin

Object detection
(Prof. H. Schneiderman)

15©2009 Carlos 
Guestrin

Example training images 
for each orientation

The classification pipeline
Training

17©2009 Carlos 
Guestrin

Testing

Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric

18

Nearest neighbor

Kernel density estimatio

Support vector machine

Machine Learning

Supervised Learning

Y Di tY C ti

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric

19

Y Discrete Y Continuous 

Gaussians
Learned in closed form

Linear Functions
1. Learned in closed form
2. Using gradient descent

Decision Trees
Greedy search; pruning

Probability of class | features
1. Learn P(Y), P(X|Y); apply Bayes 
2. Learn P(Y|X) w/ gradient descent

Non-probabilistic Linear Classifier
Learn w/ gradient descent

Regression

20©2009 Carlos 
Guestrin

Regression

predicting a numeric value
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Stock market

21©2009 Carlos 
Guestrin

Weather prediction revisted

22©2009 Carlos 
Guestrin

TemperatureTemperature

Clustering

23©2009 Carlos 
Guestrin

Clustering

discovering structure in data

Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric

24

Agglomerative Clustering

K-means  

Expectation Maximization (EM)

Principle Component Analysis 
(PCA)

Clustering Data: Group similar things Clustering images

26©2009 Carlos 
Guestrin

[Goldberger et al.]

Set of Images
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Clustering web search results

27©2009 Carlos 
Guestrin

In Summary 

W
hat is

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing

28

s B
eing Learned?
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Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning

Key Concepts
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Key Concepts 

Classifier
3
.0

Hypothesis:
Function for labeling examples
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Generalization

 Hypotheses must generalize to correctly 
classify instances not in the training data.

31

 Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize.

A Learning Problem

© Daniel S. Weld 32
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Hypothesis Spaces

© Daniel S. Weld 33

Why is Learning Possible?

Experience alone never justifies any 
conclusion about any unseen instance.

© Daniel S. Weld 34

Learning occurs when 

PREJUDICE meets DATA!

Learning a “Frobnitz”

Frobnitz Not a Frobnitz

35

Bias

The nice word for prejudice is “bias”.
Different from “Bias” in statistics

© Daniel S. Weld 36

What kind of hypotheses will you consider?
What is allowable range of functions you use when

approximating?

What kind of hypotheses do you prefer?

Some Typical Biases

Occam’s razor
“It is needless to do more when less will suffice” 

– William of Occam, 

di d 1349 f th Bl k l

© Daniel S. Weld 37

died 1349 of the Black plague

MDL – Minimum description length

Concepts can be approximated by 

 ... conjunctions of predicates

... by linear functions

... by short decision trees

ML = Function Approximation
May not be any perfect fit
Classification ~ discrete functions

h(x)

h(x) = contains(`nigeria’, x)          
contains(`wire-transfer’, x)

c(x)

x
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Learning as Optimization

 Preference Bias

 Loss Function
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)( ) ( ) p y( )

 Error + regularization

 Methods
 Closed form

 Greedy search

 Gradient ascent

Bias / Variance Tradeoff
 Variance: E[ (h(x*) – h(x*))2 ]

How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]

Slide from T Dietterich

[ ( ) ( )]

Describes the average error of h(x*)

Reducing bias risks overfitting

Note: inductive bias vs estimator bias

Regularization Regularization:            vs. 

Learning as Optimization
 Methods
 Closed form

 Greedy search

 Gradient ascent

 Loss Function
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)

 Error + regularization

Bia / Variance Tradeoff
 Variance: E[ (h(x*) – h(x*))2 ]

How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]

Slide from T Dietterich

[ ( ) ( )]

Describes the average error of h(x*)

Reducing bias risks overfitting
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Regularization Regularization:            vs. 

Overfitting

 Hypothesis H is overfit when  H’ and
 H has smaller error  on training examples, but
 H has bigger error on test examplesgg p

Overfitting

 Hypothesis H is overfit when  H’ and
 H has smaller error  on training examples, but
 H has bigger error on test examples

 Causes of overfitting Causes of overfitting
 Training set is too small
 Large number of features 

 Big problem in machine learning
 Solutions: bias, regularization
 Validation set

Overfitting

Accuracy

0.9

0 8

On training data
On test data

© Daniel S. Weld 49

0.8

0.7

0.6

Model complexity (e.g., number of nodes in decision tree)

Learning Bayes Nets

 Learning Parameters for a Bayesian Network
 Fully observable
 Maximum Likelihood (ML)

© Daniel S. Weld

 Maximum A Posteriori (MAP)

 Bayesian

 Hidden variables (EM algorithm)

 Learning Structure of Bayesian Networks
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What’s in a Bayes Net?

Earthquake Burglary
Pr(B=t) Pr(B=f)

0.05    0.95

Pr(A|E,B)
e b    0 9 (0 1)

© Daniel S. Weld 51

Alarm

Nbr2CallsNbr1Calls

e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...We have: 

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?

P(¬B) = 1- P(B) 

= 0.4

= 0.6

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Parameter Estimation and Bayesian 
Networks

Coin

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations
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Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1)=0.1 

C1 C2 C3

P(C1)=1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

Terminology

Prior: 
 Probability of a hypothesis before we see any data

Uniform Prior: 
 A prior that makes all hypothesis equally likelyA prior that makes all hypothesis equally likely

Posterior: 
 Probability of a hypothesis after we saw some data

Likelihood: 
 Probability of data given hypothesis

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3
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Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 5

Most likely coin: 

C

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(H|C2) = 0.5C2

Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C ) = 0 5C

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

P(H|C2) = 0.5

C2

P(C2) = 1/3

P(H|C2) = 0.5C2

Using Prior Knowledge

 Should we always use a Uniform Prior ?

 Background knowledge:
Heads => we have to buy Dan chocolate

D lik h l tDan likes chocolate…

=> Dan is more likely to use a coin biased in his favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Using Prior Knowledge

We can encode it in the prior:

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006P(C2|H) = 0.165 P(C3|H) = 0.829

P(C |H) 0 066P(C |H) 0 333 P(C |H) 0 600
Compare with ML posterior after Exp 1:

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.600

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT)=0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 9C

Most likely coin: 

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(H|C3) = 0.9C3

Your Estimate?

Most likely coin: Best estimate for P(H) 

Maximum A Posteriori (MAP) Estimate: 
The best hypothesis that fits observed data 

assuming a non-uniform prior

P(H|C3) = 0.9C3

P(H|C3) = 0.9

C3

P(C3) = 0.70
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Did We Do The Right Thing?

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

Did We Do The Right Thing?

P(C1|HT) =0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

C2 and C3 are almost 
equally likely

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

equally likely

A Better Estimate

Recall: = 0.680

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

Bayesian Estimate

= 0.680

Bayesian Estimate: Minimizes prediction error, 
given data assuming an arbitrary prior

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

Comparison 
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H) = 0.5
after 10 experiments: P(H) = 0.9

MAP (Maximum A Posteriori):( )
P(H) = 0.9
after 10 experiments: P(H) = 0.9

Bayesian:
P(H) = 0.68
after 10 experiments: P(H) = 0.9

Summary
Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Uniform The most likely

Any The most likely

Any Weighted 

Easy to compute

Bayesian Estimate Any g
combination

Still easy to compute
Incorporates prior 
knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute
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Bayesian Learning

Use Bayes rule:
Prior

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Or equivalently:  P(Y | X)  P(X | Y) P(Y)

Normalization

P(X)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?
-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Prior

+ data = 
-2

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

Now compute
either MAP or

Bayesian estimate

What Prior to Use?
 Prev, you knew: it was one of only three coins

 Now more complicated…

 The following are two common priors

 Binary variable Beta
 Posterior distribution is binomial

 Easy to compute posterior

 Discrete variable Dirichlet
 Posterior distribution is multinomial

 Easy to compute posterior © Daniel S. Weld83

Beta Distribution

Beta Distribution
 Example: Flip coin with Beta distribution as prior 

over p [prob(heads)]
1. Parameterized by two positive numbers: a, b

2. Mode of distribution (E[p]) is a/(a+b)

3. Specify our prior belief for p = a/(a+b)

4. Specify confidence in this belief with high initial values 
for a and b

 Updating our prior belief based on data
 incrementing a for every heads outcome

 incrementing b for every tails outcome

 So after h heads out of n flips, our posterior 
distribution says P(head)=(a+h)/(a+b+n)

One Prior: Beta Distribution

a,b

For any positive integer y, (y) = (y-1)!
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B|data) = ?

Prior
“+ data” = Beta(1,4) (3,7) .3

B ¬B

.7

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

Beta(2,3)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

+ data= Beta(2,3) Beta(3,4)

Output of Learning

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

E B R A J M

T F T T F T

F F F F F T

F T F T T T

F F F T T T

F T F F F F

...

Did Learning Work Well?

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

E B R A J M

T F T T F T

F F F F F T

F T F T T T

F F F T T T

F T F F F F

...

Can easily calculate  
P(data) for learned parameters

Learning with Continuous Variables

Earthquake

Pr(E=x)
mean:  = ?

variance:  = ?

© Daniel S. Weld
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Using Bayes Nets for Classification

 One method of classification:
 Use a probabilistic model!

 Features are observed random variables Fi

 Y is the query variable

 Use probabilistic inference to compute most likely Y

 You already know how to do this inference

A Popular Structure: Naïve Bayes

Y
Class
Value

…

F 2 F NF 1 F 3

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

But forces probabilities towards 0 and 1 

Naïve Bayes

 Naïve Bayes assumption:
 Features are independent given class:

 More generally:

 How many parameters?
 Suppose X is composed of n binary features

A Spam Filter

 Naïve Bayes spam filter

 Data:
 Collection of emails, 

labeled spam or ham

Dear Sir.

First, I must solicit your confidence in this 
transaction, this is by virture of its nature as 
being utterly confidencial and top secret. …

TO BE REMOVED FROM FUTURE 

 Note: someone has to 
hand label all this data!

 Split into training, held-
out, test sets

 Classifiers
 Learn on the training set
 (Tune it on a held-out set)
 Test it on new emails

MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened.

Naïve Bayes for Text
 Bag-of-Words Naïve Bayes:

 Predict unknown class label (spam vs. ham)
 Assume evidence features (e.g. the words) are independent
 Warning: subtly different assumptions than before!

 Generative model
Word at position 
i, not ith word in 
the dictionary!

 Tied distributions and bag-of-words
 Usually, each variable gets its own conditional probability distribution 

P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|C)
 Why make this assumption?

the dictionary!

Estimation: Laplace Smoothing

 Laplace’s estimate:
pretend you saw every outcome 

once more than you actually did
H H T

Can derive this as a MAP estimate with Dirichlet priors
(Bayesian justification)
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NB with Bag of Words for text 
classification

 Learning phase:
 Prior P(Y)

 Count how many documents from each topic (prior)

 P(Xi|Y) 

 For each of m topics, count how many times you saw 
word Xi in documents of this topic (+ k for prior)word Xi in documents of this topic (  k for prior)

 Divide by number of times you saw the word (+ k|words|)

 Test phase:
 For each document

 Use naïve Bayes decision rule

Probabilities: Important Detail!

Any more potential problems here?

 P(spam | X1 … Xn) =   P(spam | Xi)i

 We are multiplying lots of small numbers We are multiplying lots of small numbers 
Danger of underflow!

 0.557 = 7 E -18       

 Solution? Use logs and add!
 p1 * p2 = e log(p1)+log(p2)

 Always keep in log form

Naïve Bayes

Y
Class
Value

…

F 2 F NF 1 F 3

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

But forces probabilities towards 0 and 1 

Example Bayes’ Net: Car

What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!
 (for now still assume can observe all values)

 For each structure, learn parameters
 As just shown…

 Pick the one that fits observed data best
 Calculate P(data)
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Two problems:
• Fully connected will be most probable
• Exponential number of structures

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!

 For each structure, learn parameters
 As just shown…j

 Pick the one that fits observed data best
 Calculate P(data)

Two problems:
• Fully connected will be most probable

• Add penalty term (regularization)  model complexity
• Exponential number of structures

• Local search
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Score Functions

 Bayesian Information Criteion (BIC)
 P(D | BN) – penalty

 Penalty = ½ (# parameters) Log (# data points)

 MAP score
 P(BN | D) = P(D | BN) P(BN)

 P(BN) must decay exponentially with # of 
parameters for this to work well

© Daniel S. Weld

117

Learning as Optimization

 Preference Bias

 Loss Function
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)( ) ( ) p y( )

 Error + regularization

 Methods
 Closed form

 Greedy search

 Gradient ascent

Topics

 Learning Parameters for a Bayesian Network
 Fully observable
 Maximum Likelihood (ML), 

 Maximum A Posteriori (MAP)

© Daniel S. Weld

 Maximum A Posteriori (MAP)

 Bayesian

 Hidden variables (EM algorithm)

 Learning Structure of Bayesian Networks


