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What is Machine Learning ?
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Machine Learning

Study of algorithms that

= improve their performance
= at some task

= with experience

Machine

Data = Learning

==) Understanding
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Exponential Growth in Data

Machine

Data = Learning

== Understanding
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Supremacy of Machine Learning

= Machine learning is preferred approach to
= Speech recognition, Natural language processing
Web search — result ranking
Computer vision
= Medical outcomes analysis
Robot control
Computational biology
= Sensor networks

= This trend is accelerating
= Improved machine learning algorithms
= Improved data capture, networking, faster computers
= Software too complex to write by hand
= New sensors / 10 devices
= Demand for self-customization to user, environment
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Space of ML Problems
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Classification

from data to discrete classes
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Spam filtering




Weather prediction
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Object detection

(Prof. H. Schneiderman) =

Example training images
for each orientation
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The classification pipeline

©2009 Carlos 17

Machine Learning
e

Supervised Learning Unsupervised Learning

Reinforcement Learning

Parametric Non-parametric
N

\
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5 ‘Nearest neighbor
. Kernel density estimat
‘Support vector machin

Machine Learning
~ .

Supervised Learning Unsupervised Learning

Reinforcement Learning

Parametric Non-parametric
Y Continuous Y Discrete
K _ Decision Trees
Gaussians Greedy search; pruning

Learned in closed form »
Probability of class | features

Linear Functions 1. Learn P(Y), P(X|Y); apply Bayes
1. Learned in closed form 2. Learn P(Y|X) w/ gradient descent

2. Using gradient descent Non-probabilistic Linear Classifier

Learn w/ gradient descent 19

Regression

predicting a numeric value
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Stock market
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Clustering

discovering structure in data

23
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Weather prediction revisted
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Temperature
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Machine Learning

/
Supervised Learning Unsupervised Learning
-1
- 1

Reinforcement Learning __--~

Parametric Non-parametric __--

Agglomerative Clustering
K-means

Expectation Maximization (EM)
Principle Component Analysis
(PCA)
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Clustering Data: Group similar things

Clustering images

[GM etal.]
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Clustering web search results
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Key Concepts

29
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In Summary

Type of Supervision
(eg, Experience, Feedback)
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Hypothesis:
Function for labeling examples
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Generalization

= Hypotheses must generalize to correctly
classify instances not in the training data.

= Simply memorizing training examples is a
consistent hypothesis that does not
generalize.

A Learning Problem
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Hypothesis Spaces
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Why is Learning Possible?

Experience alone never justifies any
conclusion about any unseen instance.

Learning occurs when
PREJUDICE meets DATA!

Learning a “Frobnitz”

34

Frobnitz Not a Frobnitz

E ‘:

Bias

=The nice word for prejudice is “bias”.
= Different from “Bias” in statistics

=What kind of hypotheses will you consider?

= What is allowable range of functions you use wher

approximating?
=\What kind of hypotheses do you prefer?

Some Typical Biases

= Occam’s razor
“Itis needless to do more when less will suffice”
— William of Occam,
died 1349 of the Black plague
= MDL — Minimum description length
= Concepts can be approximated by
= .. conjunctions of predicates
... by linear functions

T
el

... by short decision trees

ML = Function Approximation

May not be any perfect fit
Classification ~ discrete functions
h(x) = contains("nigeria’, x) A
contains("wire-transfer’, x)
h(x)

()




Learning as Optimization

= Preference Bias
= Loss Function

= Minimize loss over training data (test data)

= Loss(h,data) = error(h, data) + complexity(h)

= Error + regularization
= Methods

= Closed form

= Greedy search

= Gradient ascent
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Bias / Variance Tradeoff
= Variance: E[ (h(x*) —h(x*))?]
How much h(x*) varies between training sets
Reducing variance risks underfitting

= Bias: [h(x*) — f(x*)] >
Describes the average error of h(x*) .
Reducing bias risks overfitting

Note: inductive bias vs estimator bias

Slide from T Dietterich

Regularization

RegularizationErms  vSn A

Training
Test

-3 = -3 -9
35 30 Wk 25 20

Learning as Optimization

= Methods
= Closed form
= Greedy search
= Gradient ascent
= Loss Function
= Minimize loss over training data (test data)
= Loss(h,data) = error(h, data) + complexity(h)
= Error + regularization

Bia / Variance Tradeoff
= Variance: E[ (h(x*) —h(x*))?]
How much h(x*) varies between training sets
Reducing variance risks underfitting

= Bias: [h(x*) — f(x*)]
Describes the average error of h(x*)
Reducing bias risks overfitting

Slide from T Dietterich
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Regularization RegularizationErms  ven A
; Training
Test
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Overfitting Overfitting

= Hypothesis H is overfit when 3 H' and
= H has smaller error on training examples, but

= Hypothesis H is overfit when 3 H’ and * H has bigger error on test examples

= H has smaller error on training examples, but

= H has bigger error on test examples = Causes of overfitting

= Training set is too small
= Large number of features

= Big problem in machine learning
= Solutions: bias, regularization
= Validation set

Overfitting Learning Bayes Nets

On training data
Accurac
4 On test data

09 // = Learning Parameters for a Bayesian Network

= Fully observable

08 = Maximum Likelihood (ML)
= Maximum A Posteriori (MAP)
07/ = Bayesian

= Hidden variables (EM algorithm)

06 = Learning Structure of Bayesian Networks

Model complexity (e.g., number of nodes in decision tree)

© Daniel S. Weld 49
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What's in a Bayes Net?

/
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Parameter Estimation and Bayesian

Networks
Earthquake @ E|[B|IR|A|T M
£ / TIF|T|T|F|T
Calarm ) FIF|F|F|F|T
FIT[F[T][T[T
FIT|F|F|FIF
We have:

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and Bayesian
Networks
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Parameter Estimation and Bayesian

Parameter Estimation and Bayesian
Networks

Networks
Qg [E[B
! D T|F
FIF
& [
FIF
@D [T
P(AIE,B) = ?
P(AIE,-B) = ?
P(A|-E,B) = ?
P(A|-E,-B) = ?
Coin Flip
c_:_l C, C—?
LU /; S
P(HIC,)=0.1 P(H|C,)=0.5 P(H|C,)=0.9

Which coin will | use?

P(C)=1/3

P(C,) = 1/3

P(C,) = 1/3

Prior: Probability of a hypothesis
before we make any observations




Coin Flip
Cl CZ C3
= T ~,
=¢!\ By '\// M) ]

P(H|C,)=0.1 P(H|C,)=05 P(H|C3) =09

Which coin will | use?

P(C)=1/3  P(C,)=1/3 P(C,) = 1/3
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Uniform Prior: All hypothesis are equally likely
before we make any observations

Experiment 1: Heads

Which coin did | use?
P(C,H)="7 P(C,H)="7 P(C,H) =

P(Gi|H) = _ P(H) = EP(HIC':JP(GJ

Cl CZ C3
- P =
W\ ) v
S A 4 7 Y

[PH|C)=0.1] P(H|C,)=05 P(H|C,) =0.9
[Pcy)=13] Pc)=13 P(C) = 1/3

Experiment 1: Heads

Which coin did | use?
P(C,|H) = 0.066 P(C,|H) = 0.333 P(C,|H)=0.6

| Posterior: Probability of a hypothesis given data |

Cl CZ C3
i =
(L =) !/, ¢ waa

P(HIC)=0.1 P(H|C,)=05 P(H|C,)=0.9
P(C)=1/3 P(C,) = 1/3 P(C) = 1/3

Terminology

=Prior:

= Probability of a hypothesis before we see any data
=sUniform Prior:

= A prior that makes all hypothesis equally likely
=Posterior:

= Probability of a hypothesis after we saw some data
sLikelihood:

= Probability of data given hypothesis

Experiment 2: Tails

Now, Which coin did | use?
P(C,HT)="? P(C,HT) =7 P(C,HT) =7

P(C\1|BT) = aP(ETIC')P(C1) = aP(BIC)P(T|CL) P{C1}

C, C, C,
,' = _'_""’h : :
i ‘ =4 !_/ wals) ' J‘édv'f |
2 \,H_«g"/ Y

P(H|C,)=0.1 P(H|C,)=05 P(HIC,)=0.9
P(C)=1/3  P(C)=1/3 P(C)=1/3

Experiment 2: Tails

Now, Which coin did | use?
P(C,|HT) = 0.21P(C,|HT) = 0.58 P(C,|HT) = 0.21

P(C1|BT) = aP(AT|C1)P(CL) = aP(BIC1}P(TIC,)P(CL)

G < S,
=*Q =) '/ vl Wi '%::v.;.i
v &

P(HIC)=0.1 P(H|C)=05 P(H|C,)=0.9
P(C)=1/3  P(C)=1/3 P(C)=1/3
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Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C,|HT) = 0.58 P(C,JHT) = 0.21

Cl CZ CE
‘\‘_ ,,9:' \:_é/»' ‘\\;‘\J"‘

P(HIC,)=0.1 [P(HIC,)=05| P(HIC,)=0.9

P(C)=1/3 P(C,) = 1/3 P(C.,) = 1/3

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)

P
C. (G P(H|C,) = 0.5

"xtﬂ___/'

C, Ei\ C,

el 4 w

P(H|C,)=0.1 P(H|é2) =05 P(H|C,)=0.9
P(C)=1/3 P(C,)=1/3 P(€)=1/8

Your Estimate?

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

Best estimate for P(H)

P(HIC,) = 0.5

Most likely coin:

._'m
G, ( :@!‘/_'

&
P(H|C,) =05
P(C,) = 1/3

Using Prior Knowledge

= Should we always use a Uniform Prior ?

= Background knowledge:
Heads => we have to buy Dan chocolate

Dan likes chocolate...
=> Dan is more likely to use a coin biased in his favor

S /9; S,

P(H|C)=0.1 P(H|C)=05 P(H|C,)=0.9

Using Prior Knowledge

We can encode it in the prior:

P(C)=0.05 P(C,)=025 P(C)=0.70

C, C.. S

P(H|C,)=0.1 P(H|C,)=05 P(HIC,)=0.9

Experiment 1. Heads

Which coin did | use?
P(C,H)=?  P(C,JH)="? P(CyH) =7

P(C1|B} = aP{HIC)P(Cy)

S /9; S,
L\ & S

P(H|IC,)=0.1 P(H|C,))=05 P(HIC,)=0.9

[[P(C)=005 P(C)=0.25 P(C)=0.70 ]

11
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Experiment 1. Heads Experiment 2: Tails
Which coin did | use? _ o 5
P(C,|H) = 0.006 P(C,|H) = 0.165 P(C,|H) = 0.829 Which coin did | use*
Compare with ML posterior after Exp 1: P(CHT)=? P(CJHT)=?  P(C,HT)=7?
P(CllH)C: 0.066 P(C2|H)c= 0.333 P(C3|H)C= 0.600 P(Cy|HT) = aP(HT|C1)P(G1) = aP(HIC)P(T|C1) P(Ch}
- & - :‘Q\ o .(/-, ¢/ W
P(HIC)=0.1 P(HIC,)=0.5 P(H|C,)=0.9 < ¥ 8
P(C)=0.05 P(C)=025 P(C,)=0.70 P(HIC)=0.1 P(HIC,)=05 P(H|C)=0.9
P(C)=0.05 P(C)=0.25 P(C)=0.70

Experiment 2: Tails Experiment 2: Tails
Which coin did | use? Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485 P(C,|HT) = 0.035 P(C,|HT)=0.481 P(C,/HT) = 0.485

P(CL|HT) = aP(HTICP(G:) = aP(HICYP{TICIP(CL)

Cl C:2 C3 Cl C2 C3

LU (@t/ S LU 4 L
P(HIC)=0.1 P(H|IC,)=05 P(H|C,)=0.9 P(HIC)=0.1 P(H|C,)=0.5 [|P(HI|C,)=0.9
P(C,)=0.05 P(C)=0.25 P(C,) =0.70 P(C,)=0.05 P(C)=0.25 | P(C,)=0.70

: Your Estimate?
Your Estimate? _ — ;
Maximum A Posteriori (MAP) Estimate:
What is the probability of heads after two experiments? The best hypothesis that fits observed data
assuming a non-uniform prior
e I'ke.LX coin: Eiesi @silmelE o P Most likely coin: Best estimate for P(H)
C, g P(H|C,) = 0.9
> g (HIC,) c, & P(HIC,) = 0.9
Cl CZ C3 C3
PH|C)=0.1 P(H|C,)=05 P(H|C,)=0.9 P(HI|C,)=0.9
P(C)=0.05 P(C)=0.25 P(C,) =0.70 P(C,) =0.70

12



Did We Do The Right Thing?

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

(. — Vi _I | :~ ,
W & S
C, c, c,

P(H|C,)=0.1 P(H|C,)=05 P(HIC,)=0.9

A Better Estimate

]
Recall: P(H)=Y_ P(HIC:)P(C:} = 0.680
P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

C,

C C,
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Did We Do The Right Thing?

P(C,|HT) =0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

C, and C, are almost
equally likely

c C, C,

1

P(H|C,)=0.1 P(H|C,) =05 P(HIC,)=0.9

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,
given data assuming an arbitrary prior

]
P{H) = P(H|C)P(C) = 0.680

i—1

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

C,

C C

1

-

2
P(H|IC,)=0.1 P(H|C,) =05 P(HIC,)=0.9

1
P(H|C,)=0.1 P(H|C,)=05 P(HIC,)=0.9

Comparison
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H)=0.5
after 10 experiments: P(H) = 0.9
MAP (Maximum A Posteriori):
P(H) = 0.9

after 10 experiments: P(H) = 0.9
Bayesian:
P(H) =0.68

after 10 experiments: P(H) = 0.9

Easy to compute S u mm ary
Prior Hypothesis

Maximum Likelihood Uniform The most likely
Estimate
Maximum A Any The most likely
Posteriori Estimate,
An Weighted
Bayesian Estimate Y combination

~
Still easy to compute

Incorporates prior

knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute

13



Bayesian Learning

- Prior
Data Likelihood ]

S
Posterior P(Y | X) = P(X]Y) P(Y)

| P(X)
@/ ™~ Normalization

Use Bayes rule:

Or equivalently: P(Y | X) o« P(X|Y) P(Y)

11/9/2012

Parameter Estimation and Bayesian
Networks

Now compute

P(B) = + data = % either MAP or
Bayesian estimate

What Prior to Use?

= Prev, you knew: it was one of only three coins
L T ~ \.'. H
W T ay
= Now more complicated...
= The following are two common priors
= Binary variable Beta
= Posterior distribution is binomial
= Easy to compute posterior

= Discrete variable Dirichlet
= Posterior distribution is multinomial
= Easy to compute posterior

© Dgniel 5. Weld

Beta Distribution

Beta Distribution

= Example: Flip coin with Beta distribution as prior
over p [prob(heads)]
1. Parameterized by two positive numbers: a, b
2. Mode of distribution (E[p]) is a/(a+b)
3. Specify our prior belief for p = a/(a+b)
4. Specify confidence in this belief with high initial values
foraand b
= Updating our prior belief based on data
= incrementing a for every heads outcome
= incrementing b for every tails outcome
= So after h heads out of n flips, our posterior
distribution says P(head)=(a+h)/(a+b+n)

One Prior: Beta Distribution

I'(a + b)

OO

) =
0 <z <1andabd >0

Here I'(y) = fﬂm ¥l =dy

For any positive integer y, ['(y) = (y-1)!

14



Parameter Estimation and Bayesian

Networks
=
@reca)

Prior B

-B
P(B|data) = Beta(1,4) “+ data’ = (3,7)

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

11/9/2012

Parameter Estimation and Bayesian

Networks
S
&
&> [
Prior

P(A|-E,B) = Beta(2,3)

Parameter Estimation and Bayesian

Networks
...
(@) [
o [T

Prior

P(A|-E,B) = Beta(2,3) + data= Beta(3,4)

Output of Learning
B

Pr(A|
25 X

IR
I
I

Did Learning Work Well?

P(data) for learned parameters

LIEIEIRIEIES

M
T
T Can easily calculate
T
T
F

Learning with Continuous Variables

e P Earthquake "

BMLE =

ﬁ
Il
el

|
=] =
M=
33

2 1Y 2
OMLE = NZ(%‘—/?)
i=1

15
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Using Bayes Nets for Classification

= One method of classification:
= Use a probabilistic model!
= Features are observed random variables F;
= Y is the query variable
= Use probabilistic inference to compute most likely Y

y = argmaxy, P(y|f1...fn)

= You already know how to do this inference

A Popular Structure: Naive Bayes

P(Y,F1...Fp) = P(Y)HP(FI-|Y)

F1 F2 F3

FN

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

[ But forces probabilities towards 0 and 1

Naive Bayes
= Naive Bayes assumption:

= Features are independent given class:

P(X1,Xo|Y) = P(X1]X2,Y)P(X2]Y)
= P(X1]Y)P(Xo]Y)
= More generally:

P(X1..Xn|Y) = HP(XAY)‘

= How many parameters?

= Suppose X is composed of n binary features

A Spam Filter

Naive Bayes spam filter

X

Data:

= Collection of emails,
labeled spam or ham

= Note: someone has to
hand label all this data! x

= Split into training, held-
out, test sets

Classifiers
= Learn on the training set

= (Tune it on a held-out set) V

= Testit on new emails

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature as
being utterly confidencial and top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Naive Bayes for Text

= Bag-of-Words Naive Bayes:
= Predict unknown class label (spam vs. ham)
= Assume evidence features (e.g. the words) are independent
= Warning: subtly different assumptions than before!

Word at position
i, not i" word in

= Generative model the dictionary!

P(C,W1... W) =P(O)]] P(WL/
i
= Tied distributions and bag-of-words
. g(sgﬁl(lgy, each variable gets its own conditional probability distribution

= In a bag-of-words model
= Each position is identically distributed
= All positions share the same conditional probs P(W|C)
= Why make this assumption?

Estimation: Laplace Smoothing

Laplace’s estimate:
pretend you saw every outcome
once more than you actually did

@)1
Yele(z) +1]

_e(x)+1
T N+IX]

Ppap(z) =

@00

Pyr(X) =

Prap(X) =

Can derive this as a MAP estimate with Dirichlet priors

(Bayesian justification)

16
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NB with Bag of Words for text

classification
= |Learning phase:
= Prior P(Y)
= Count how many documents from each topic (prior)
" PXIY)
= For each of m topics, count how many times you saw
word X; in documents of this topic (+ k for prior)
= Divide by number of times you saw the word (+ kx|words|)

= Test phase:
= For each document

= Use naive Bayes decision rule
LengthDoc

hyp(x) = argmax P(y) II

i=1

P(xily)

Probabilities: Important Detail!

= P(spam | X; ... X}) = I1 P(spam | X))
Any more potential problems here?
= We are multiplying lots of small numbers

Danger of underflow!
= 0.5=7E-18

= Solution? Use logs and add!
" P, * P, = e 109(p1)+og(p2)

= Always keep in log form

Naive Bayes

P(Y,F1...Fa) = POO I P(FIY)

Works surprisingly well for classification (predicting the right class)

Assume that features are conditionally independent given class variable
But forces probabilities towards 0 and 1

Example Bayes’ Net: Car

What if we don’t know
structure?

Learning The Structure
of Bayesian Networks

= Search thru the space...
= of possible network structures!
= (for now still assume can observe all values)
= For each structure, learn parameters
= As just shown...
= Pick the one that fits observed data best
= Calculate P(data)

17
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Two problems:
« Fully connected will be most probable
< Exponential number of structures

11/9/2012

Learning The Structure

of Bayesian Networks

= Search thru the space...
= of possible network structures!

= For each structure, learn parameters
= As just shown...

= Pick the one that fits observed data best
= Calculate P(data)

Two problems:
» Fully connected will be most probable
» Add penalty term (regularization) ¢ model complexity

« Exponential number of structures
* Local search

Score Functions

= Bayesian Information Criteion (BIC)
= P(D | BN) — penalty
= Penalty = % (# parameters) Log (# data points)

= MAP score
= P(BN | D) = P(D | BN) P(BN)
= P(BN) must decay exponentially with # of
parameters for this to work well

© Daniel 5. Weld

Learning as Optimization

= Preference Bias
= Loss Function

= Minimize loss over training data (test data)

= Loss(h,data) = error(h, data) + complexity(h)

= Error + regularization
= Methods

= Closed form

= Greedy search

= Gradient ascent

Topics

Learning Parameters for a Bayesian Network
= Fully observable

= Maximum Likelihood (ML),

= Maximum A Posteriori (MAP)

= Bayesian
= Hidden variables (EM algorithm)

Learning Structure of Bayesian Networks

© Daniel 5 Weld
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