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CSE 573: Artificial Intelligence
Autumn 2012

B i N t kBayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer
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Outline

 Probabilistic models (and inference)
 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning

 Whirlwind, so…
 Take CSE 515 (Statistical Methods)

 Ben Taskar, Spring 2013 

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 Aka graphical model
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

Formally:

 A set of nodes, one per random variable

 Directed edges, forming an acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for each 

combination of parents’ values

X

A Bayes Net = Topology (graph) + Local Conditional Probabilities

Hidden Markov Models X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Example Bayes’ Net: Car
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Example: Car Insurance

7© D. Weld and D. Fox

Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 Does this always work?  Why?

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!

Example: Independent Coin Flips

X1 X2 Xn

 N independent coin flips

h 0.5 h 0.5 h 0.5

 No interactions between variables

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

2n - 1

Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about fire, smoke, alarm?

Example: Alarm Network

 Variables
 B: Burglary

 A: Alarm goes off

 M: Mary calls M: Mary calls

 J: John calls

 E: Earthquake!

 How big is joint distribution?
 2n-1 = 31 parameters

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

¬b 0.999

E P(E)

+e 0.002

¬e 0.998

B E A P(A|B,E)

+b +e +a 0 95

Only 10 params

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e ¬a 0.05

+b ¬e +a 0.94

+b ¬e ¬a 0.06

¬b +e +a 0.29

¬b +e ¬a 0.71

¬b ¬e +a 0.001

¬b ¬e ¬a 0.999

A J P(J|A)

+a +j 0.9

+a ¬j 0.1

¬a +j 0.05

¬a ¬j 0.95

A M P(M|A)

+a +m 0.7

+a ¬m 0.3

¬a +m 0.01

¬a ¬m 0.99
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Example: Traffic II

 Let’s build a graphical model

 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

A l i ti i d Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph

 Better answer: don’t make any false 
conditional independence assumptions

Example: Independence

 For this graph, you can fiddle with  (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2

All distributions

Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

X1 X2 X1 X2

h 0.5

t 0.5

1 2 1 2

h 0.5

t 0.5
h | h 0.5

t | h 0.5

h | t 0.5

t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5

t 0.5

Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 

X

Y

Z

X

Y

Z

(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution X

Y

Z

Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z independent?
 Answer: no.  

 Example: low pressure causes rain, which causes traffic.
 Knowledge about X may change belief in Z, 
 Knowledge about Z may change belief in X (via Y)
 Addendum: they could be independent: how?
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Causal Chains

 This configuration is a “causal chain”
X: Low pressure

Y: Rain

Z: Traffic

X Y Z

 Is X independent of Z given Y?

Yes!

Evidence along the chain “blocks” the influence

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

X

Y

Z

Y: Project due

X: Forum busy

Z: Lab full

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z
 Are X and Z independent given Y?

Yes!

Y: Project due

X: Forum busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

traffic, but they are not correlated

 Still need to prove they must be (try it!)

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

 No: seeing traffic puts the rain and the 
ballgame in competition as explanation!

 This is backwards from the other cases
 Observing an effect activates influence 

between possible causes.

traffic, but they are not correlated

 Still need to prove they must be (try it!)

 Are X and Z independent given Y?

The General Case

 Any complex example can be analyzed 
using these three canonical cases

G l ti i i BN t General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph



11/7/2012

5

Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple

Active Triples Inactive Triples

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)
 Common cause A  B  C 

where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Example: Independent?

Yes R B

Active Segments

No

T

T’

No

No

Example: Independent?

R B

L

Yes

Yes

Active Segments

TD

T’

Yes

No

No

Example

 Variables:
 R: Raining

 T: Traffic

 D: Roof drips

R

Active Segments

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

Yes

No

No

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 43

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 44

MB(X) = Par(X)  Childs(X)  Par(Childs(X))
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Summary

 Bayes nets compactly encode joint distributions (JDs)
 Other graphical models too: factor graphs, CRFs, …

 Guaranteed independencies of distributions can be 
deduced from BN graph structure

 D-separation gives precise conditional independence 
guarantees from graph alone

 A Bayes’ net’s JD may have further (conditional) 
independence known only from specific CPTs

Outline

 Probabilistic models (and inference)
 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning

Inference in BNs
This graphical independence representation yields efficient 

inference schemes

We generally want to compute 

Marginal probability: Pr(Z)Marginal probability: Pr(Z),

Pr(Z|E) where E is (conjunctive) evidence

 Z: query variable(s), 

 E: evidence variable(s)

 everything else: hidden variable

Computations organized by network topology
© D. Weld and D. Fox 54

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a)
e a

Variable Elimination
P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)

e        a

Repeated computations  Dynamic Programming
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Reducing 3-SAT to Bayes Nets

Approximate Inference in Bayes Nets
Sampling based methods

(Based on slides by Jack Breese 
and Daphne Koller)

67

Bayes Net is a generative model
 We can easily generate samples from the 

distribution represented by the Bayes net
 Generate one variable at a time in topological order

Use the samples to compute probabilities, say P(c) or P(n|c)

P(B|C) 

69

P(B|C) 

70

P(B|C) 

71
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P(B|C) 

72

P(B|C) 

73

P(B|C) 

74

P(B|C) 

75

P(B|C) 

76

P(B|C) 

77
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P(B|C) 

78

P(B|C) 

79

P(B|C) 

80

P(B|C) 

81

P(B|C) 

82

P(B|C) 

83
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P(B|C) 

84

Rejection Sampling

 Sample from the prior
 reject if do not match the evidence

R t i t t t i ti t Returns consistent posterior estimates

 Hopelessly expensive if P(e) is small
 P(e) drops exponentially with num of evidence vars

85

Likelihood Weighting

 Idea: 
 fix evidence variables

 sample only non-evidence variables

 weight each sample by the likelihood of weight each sample by the likelihood of 
evidence

86

P(B|C) 

87

P(B|C) 

88

P(B|C) 

89
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P(B|C) 

90

P(B|C) 

91

P(B|C) 

92

P(B|C) 

93

P(B|C) 

94

P(B|C) 

95



11/7/2012

12

P(B|C) 

96

Likelihood Weighting
 Sampling probability: S(z,e) =  
 Neither prior nor posterior

 Wt for a sample <z,e>:

 Weighted Sampling probability S(z,e)w(z,e)


i

))Parents(Z|P(z ii


i

ii )Parents(E|P(e  e) w(z,

=

= P(z,e)

 returns consistent estimates

performance degrades w/ many evidence vars
 a few samples get majority of the weight

 late occurring evidence vars don’t guide sample generation 


i

ii )Parents(E|P(e
i

))Parents(Z|P(z ii

97

MCMC with Gibbs Sampling
 Fix the values of observed variables

 Set the values of all non-observed variables randomly

 Perform a random walk through the space of complete 
variable assignments.  On each move:

1. Pick a variable X

98

1. Pick a variable X

2. Calculate Pr(X=true | all other variables)

3. Set X to true with that probability

 Repeat many times.  Frequency with which any variable 
Y is true = its posterior probability.

 Converges to true posterior when frequencies stop 
changing significantly

 stable distribution, mixing

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 99

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Markov Blanket Sampling
 How to calculate Pr(X=true | all other variables) ?

 Recall: a variable is independent of all others given it’s Markov 
Blanket

 parents

 children

th t f hild

100
( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

 other parents of children

 So problem becomes calculating Pr(X=true | MB(X))
 Fortunately, it is easy to solve exactly

Example

( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

( , , , )
( | , , )

( , , )

P X A B C
P X A B C

P A B C


A

101

( )

( , , )

( ) ( )
( | ) ( | , )

( , , )

( | )

( | ) ( ) ( | , )

( | , )

P A B

P A P X A P C P B

C

P A P C
P X A P B X C

P A B C

P X

X

A P B X C

C





 
  
 



X

B

C
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

102

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, b
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, g

 Sample H using P(H|s,g,b)

105

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

  Suppose result is ~h
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

107

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g

Sample G using P(G|s,~h,b)109

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g

Sample G using P(G|s,~h,b)

Suppose result is ~g
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Gibbs MCMC Summary

 Advantages:

 No samples are discarded

N bl ith l f l i ht

P(X|E) =
number of samples with X=x 

total number of samples

 No problem with samples of low weight 

 Can be implemented very efficiently
 10K samples @ second

 Disadvantages:

 Can get stuck if relationship between vars is deterministic

 Many variations devised to make MCMC more robust

111

Other inference methods

 Exact inference
 Junction tree

 Approximate inference Approximate inference
 Belief Propagation

 Variational Methods

112

Outline

 Probabilistic models 
 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning


