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CSE 573: Artificial Intelligence
Autumn 2012

Particle FiltersParticle Filters 

for 

Hidden Markov Models

Daniel Weld
Many slides adapted from Dan Klein, Stuart Russell, Andrew 

Moore & Luke Zettlemoyer
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Homework 2

2

Homework 3

3

Logistics

 Mon 11/5 – Resubmit / regrade HW2, HW3

 Mon 11/12 – HW4 due

 Wed 11/14 – project groups & idea
 1 1 meetings to follow 1-1 meetings to follow

 See course webpage for ideas

 Plus a new one:
 Infinite number of card decks

 6 decks

 Add state variable
4

Outline
 Overview

 Probability review

 Random Variables and Events

 Joint / Marginal / Conditional Distributions

 Product Rule, Chain Rule, Bayes’ Rule

 Probabilistic inference

 Enumeration of Joint Distribution

 Bayesian Networks – Preview

 Probabilistic sequence models (and inference)

 Markov Chains

 Hidden Markov Models

 Particle Filters

Agent

Environment

Static vs. Dynamic

Fully 
vs.

Partially 
Ob bl Deterministic 

What action 
next?

Percepts Actions

Observable

Perfect
vs.

Noisy

ete st c
vs. 

Stochastic

Instantaneous 
vs. 

Durative
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Simple Bayes Net

E1

X1
Hidden Var

Observable Var

Defines a joint probability distribution:

= P(X1) P(E1|X1) 

P(X1, E1) =  ???

Hidden Markov Model

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

Hidden Vars

Observable Vars

Defines a joint probability distribution:

HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:n) for current time n
 Smoothing, find P(Xt|e1:n) for time t < n
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

Real HMM Examples

 Part-of-speech (POS) Tagging:
 Observations are words (thousands of them)
 States are POS tags (eg, noun, verb, adjective, det…)

det adj adj noun …

X2

E1

X1 X3 X4

E1 E3 E4

The    quick    brown fox …

j j

Real HMM Examples

 Speech recognition HMMs:
 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of 

thousands)

X2

E1

X1 X3 X4

E1 E3 E4

Real HMM Examples

 Machine translation HMMs:
 Observations are words 
 States are translation options

X2

E1

X1 X3 X4

E1 E3 E4
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Real HMM Examples

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)

X2

E1

X1 X3 X4

E1 E3 E4

Ghostbusters HMM

 P(X1) = uniform

 P(X’|X) = usually move clockwise, but sometimes 
move in a random direction or stay in place

 P(E|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X’|X=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X2

E1

X1 X3 X4

E1 E3 E4

E5

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3
P(E|X)

Conditional Independence

HMMs have two important independence properties:
 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state

X2X1 X3 X4

Quiz: does this mean successive observations are independent?
 [No, correlated by the hidden state]

E1 E1 E3 E4

Filtering aka Monitoring, State Estimation

 Filtering is the task of tracking the distribution B(X) (the 
belief state) over time

 We start with B(X) in an initial setting, usually uniform

A ti t b ti d t B(X) As time passes, or we get observations, we update B(X)

 Aside: the Kalman filter 
 Invented in the 60’s for trajectory estimation in the Apollo program

 State evolves using a linear model, eg x = x0 + vt

 Observe: value of x with Gaussian noise

Example: Robot Localization
Example from 
Michael Pfeiffer

t=0
Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example: Robot Localization

t=1

10Prob
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Example: Robot Localization

t=2

10Prob

Example: Robot Localization

t=3

10Prob

Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob

Inference Recap: Simple Cases

E1

X1

X2X1

Online Belief Updates

 Every time step, we start with current P(X | evidence)

 We update for time:
X2X1

 We update for evidence:
X2

E2
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Passage of Time

 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes: X2X1

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time 

step t the belief is about, and what evidence it includes

Example: Passage of Time

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise

Observation

 Assume we have current belief P(X | previous evidence):

 Then:

X1

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence

 Unlike passage of time, we have to renormalize

E1

Example: Observation

 As we get observations, beliefs get 
reweighted, uncertainty “decreases”

Before observation After observation

The Forward Algorithm

 We want to know:

 We can derive the following updates

 To get            , compute each entry and normalize

Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Example HMM Example Pac-man

Summary: Filtering

 Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )

Recap: Reasoning Over Time

 Stationary Markov models

X2X1 X3 X4

rain sun

0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

 Hidden Markov models

Add a slide

 Next slide (intro to particle filtering) is 
confusing because the state spaec is so 
small – show a huge grid, where it’s clear 
what advantage one getswhat advantage one gets.

 Maybe also introduce parametric 
representations (kalman filter) here

37

Particle Filtering
 Sometimes |X| is too big to use exact 

inference
 |X| may be too big to even store B(X)
 E.g. when X is continuous
 |X|2 may be too big to do updates

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of 

samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works in 
practice
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Representation: Particles

 Our representation of P(X) is now 
a list of N particles (samples)

 Generally, N << |X|

 Storing map from X to counts 
would defeat the point

 P(x) approximated by number of 
particles with value x

 So, many x will have P(x) = 0! 

 More particles, more accuracy

 For now, all particles have a 
weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

Particle Filtering: Elapse Time

 Each particle is moved by sampling 
its next position from the transition 
model

 This is like prior sampling – samples’ 
frequencies reflect the transition probs

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If we have enough samples, close to the 

exact values before and after (consistent)

Particle Filtering: Observe

 Slightly trickier:
 Use P(e|x) to sample observation, and 
 Discard particles which are inconsistent?

 (Called Rejection Sampling)

 Problems?

Particle Filtering: Observe

 Instead of sampling the observation…
 Fix It!
 A kind of likelihood weighting
 Downweight samples based on evidence

 Note that probabilities don’t sum to one:    
(most have been down-weighted) 
Instead, they sum to an approximation  
of P(e))

 What to do?!?

Particle Filtering: Resample

 Rather than tracking 
weighted samples, 
we resample – why?

 N times, we choose 
from our weighted 
sample distribution

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1) w=0.9  
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2 1) 0 9sample distribution 

(i.e. draw with 
replacement)

 This is equivalent to 
renormalizing the 
distribution

 Now the update is 
complete for this time 
step, continue with 
the next one

(2,1) w=0.9
(3,2) w=0.3

New Particles:
(2,1) w=1
(2,1) w=1
(2,1) w=1  
(3,2) w=1
(2,2) w=1
(2,1) w=1
(1,1) w=1
(3,1) w=1
(2,1) w=1
(1,1) w=1

Recap: Particle Filtering
At each time step t, we have a set of N particles (aka samples)

 Initialization: Sample from prior

 Three step procedure for moving to time t+1:

1. Sample transitions: for each each particle x, sample next 
state

2. Reweight: for each particle, compute its weight given the 
actual observation e

3. Resample: normalize the weights, and sample N new 
particles from the resulting distribution over states
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Robot Localization

 In robot localization:
 We know the map, but not the robot’s position

 Observations may be vectors of range finder readings

 State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

 Particle filtering is a main technique

Robot Localization

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?

Exact filter, uniform initial beliefs

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles

P4: Ghostbusters

 Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.  

 He was blinded by his power, but could 
h th h t ’ b i d l i

15

13

Noisy distance prob
True distance = 8

hear the ghosts’ banging and clanging.

 Transition Model: All ghosts move 
randomly, but are sometimes biased

 Emission Model: Pacman knows a 
“noisy” distance to each ghost

11

9

7

5

3

1
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Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, using 
multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at each time

 Variables from time t can condition on those from t-1
t =1 t =2 t =3

 Discrete valued dynamic Bayes nets are also HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

Exact Inference in DBNs

 Variable elimination applies to dynamic Bayes nets

 Procedure: “unroll” the network for T time steps, then 
eliminate variables until P(XT|e1:T) is computed

t =1 t =2 t =3

 Online belief updates: Eliminate all variables from the 
previous time step; store factors for current time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
bG3
b

DBN Particle Filters

 A particle is a complete sample for a time step

 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1
a = (3,3) G1

b = (5,3) 

 Elapse time: Sample a successor for each particle Elapse time: Sample a successor for each particle 

 Example successor: G2
a = (2,3) G2

b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample

 Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

 Resample: Select prior samples (tuples of values) in 
proportion to their likelihood

SLAM

 SLAM = Simultaneous Localization And Mapping
 We do not know the map or our location

 Our belief state is over maps and positions!

 Main techniques: Kalman filtering (Gaussian HMMs) and particle 
methods

DP-SLAM, Ron Parr


