

Particle Filters

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1 t=1
 t=2
 t=3

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 Example particle: G₁^a = (3,3) G₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 Example successor: G₂^a = (2,3) G₂^b = (6,3)
- **Observe**: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(\mathbf{E}_1^a | \mathbf{G}_1^a) * P(\mathbf{E}_1^b | \mathbf{G}_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

