

- Find a policy π : $S \to A$
- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming full observability

S:	set of states
A :	set of actions
P r(s' s,a):	transition model
R (s,a,s'):	reward model
γ:	discount factor
s ₀ :	start state
E	set of possible pieces of evidence
Pr(e s)	observation model

Projects

- You choose...
- Default 1
 - Extend Pacman reinforcement learning, eg UCT
- Default 2
 - Extend Pacman to real POMDP

Random Variables

- A *random variable* is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false}
 - D in [0, 1)
 - L in possible locations, maybe {(0,0), (0,1), …}

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

S summer	T hot	W	Ρ
summer	hot	0110	
		sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20
	summer summer winter winter winter	summer cold summer cold winter hot winter hot winter cold	summer cold sun summer cold rain winter hot sun winter hot rain winter cold sun

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

 $P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$

$$P(x_1, x_2, \dots x_n) = \prod_{i} P(x_i | x_1 \dots x_{i-1})$$

Markov Models (Markov Chains)

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \cdots \rightarrow (X_N)$$

A Markov model defines
 a joint probability distribution:

$$P(X_1,\ldots,X_n)=P(X_1)\prod_{t=0}^N P(X_t|X_{t-1})$$

One common inference problem:
Compute marginals P(X_t) for some time step, t

Stationary Distributions

- If we simulate the chain long enough:
 - What happens?
 - Uncertainty accumulates
 - Eventually, we have no idea what the state is!

Stationary distributions:

- For most chains, the distribution we end up in is independent of the initial distribution
- Called the stationary distribution of the chain
- Usually, can only predict a short time out

Pac-man Markov Chain

HMM Computations

- Given
 - joint $P(X_{1:n}, E_{1:n})$
 - evidence $E_{1:n} = e_{1:n}$
- Inference problems include:
 - Filtering, find $P(X_t/e_{1:t})$ for all t
 - Smoothing, find $P(X_t/e_{1:n})$ for all t
 - Most probable explanation, find
 - $x^*_{1:n} = \operatorname{argmax}_{x_{1:n}} P(x_{1:n}/e_{1:n})$