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CSE 573: Artificial Intelligence
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Reasoning about Uncertainty 

&&

Hidden Markov Models

Daniel Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer
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Outline
 Overview

 Probability review

 Random Variables and Events

 Joint / Marginal / Conditional Distributions

 Product Rule, Chain Rule, Bayes’ Rule

 Probabilistic inference

 Enumeration of Joint Distribution

 Bayesian Networks – Preview

 Probabilistic sequence models (and inference)

 Markov Chains

 Hidden Markov Models

 Particle Filters
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Markov Decision Process (MDP)
S: set of states

A: set of actions

Pr(s’|s,a): transition model

R(s,a,s’): reward model

: discount factor

s0: start state

Objective of a Fully Observable MDP

 Find a policy : S → A

 which maximizes expected discounted reward

 given an infinite horizon

 assuming full observability
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Partially-Observable MDP
S: set of states

A: set of actions

Pr(s’|s,a): transition model

R(s,a,s’): reward model

: discount factor

s0: start state

E set of possible pieces of evidence 

Pr(e|s) observation model

Ghostbusting Observations

 A ghost is in the grid 
somewhere

 Model 1: Sensor readings 
tell distance to ghost:
 On top of pacman: red On top of pacman: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Model 2: Sensors are noisy, but we know P(Color | Distance)

Objective of a POMDP

 Find a policy 
: BeliefStates(S) → A

A belief state is a probability distribution over states

 which maximizes expected discounted 
reward

 given an infinite horizon

 assuming full observability

Particle Filtering

Planning in HW 4

 Map Estimate

11

Projects

 You choose…

 Default 1
 Extend Pacman reinforcement learning, eg UCT 

 Default 2
 Extend Pacman to real POMDP

12



10/31/2012

3

Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty
 R = Is it raining?
 D = How long will it take to drive to work?
 L = Where am I?

 We denote random variables with capital letters

 Random variables have domains
 R in {true, false}
 D in [0, 1)
 L in possible locations, maybe {(0,0), (0,1), …}

Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each outcome (ie each assignment): 

T W P

 Size of distribution if n variables with domain sizes d?

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 Must obey:

 A probabilistic model is a joint distribution over variables of interest
 For all but the smallest distributions, impractical to write out

Terminology

Marginal Probability

Conditional 
ProbabilityJoint Probability

X value is given

Independence

P(AB) = P(A)P(B)

© Daniel S. Weld 21

T
ru

e

B

A A  B

Conditional Independence

Are A & B independent?   P(A|B)  ?  P(A)

A
A  B



P(A)=(.25+.5)/2 
= .375

© Daniel S. Weld 22

B

P(B)= .75

P(A|B)=(.25+.25+.5)/3
=.3333

A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)               C = spot free 

P(A|C) =.5AC A B C

© Daniel S. Weld 26

P(A|C)   .5 
P(A|B,C)=.5

AC         ABC

BC
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Probabilistic Inference

 Probabilistic inference: compute a desired probability from 
other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90

 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95

 P(on time | no accidents, 5 a.m., raining) = 0.80

 Observing new evidence causes beliefs to be updated

Inference by Enumeration

P(sun)?

P(hot | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration

 General case:
 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First select the entries consistent with the evidence First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution

/

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

, y g p

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example Bayes’ Net: Car
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The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

That’s my rule!

 Why is this at all helpful?
 Lets us build a conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later

 In the running for most important AI equation!

Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:

Example
givens

 m is meningitis, s is stiff neck

Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform

 Sensor reading model: P(R | G)
 Given: we know what our sensors do

 R = reading color measured at (1,1)

 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

Markov Models (Markov Chains)

 A Markov model includes:
 Random variables Xt for all time steps t (the state)
 Parameters: called transition probabilities or 

dynamics, specify how the state evolves over time 
(also, initial probs)

and

 Later we’ll see that a Markov model is just a 

X2X1 X3 X4 XN

chain-structured Bayesian Network (BN)

Conditional Independence

 Basic conditional independence:

X2X1 X3 X4

 Each time step only depends on the previous
 Future conditionally independent of past given the present
 This is called the (first order) Markov property

 This chain is just a (growing) BN
 We could use generic BN reasoning on it if we truncate 

the chain at a fixed length
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Markov Models (Markov Chains)

 A Markov model defines
 a joint probability distribution:

X2X1 X3 X4 XN

 One common inference problem:
 Compute marginals P(Xt) for some time step, t

States vs. Random Variables

Weather Probabilistic FSM:
 States = {rain, sun}

 Transitions: rain sun

0.9

0.9

0.1

0.1
This is a 

diti lconditional 
distribution

X2X1 X3 X4 XN

Markov Chain

Example: Markov Chain

 Weather:
 States = {rain, sun}

 Transitions: rain sun

0.9

0.9

0.1

0.1

 Initial distribution: 1.0 sun

 What’s the probability distribution after one step?

Markov Chain Inference

 Question: probability of being in state x at time t?

 Slow answer:
 Enumerate all sequences of length t which end in s

 Add up their probabilitiesp p

…

Mini-Forward Algorithm

 Question: What’s P(X) on some day t?
 We don’t need to enumerate all 2t sequences!

sun sun sun sun

rain rain rain rain

Forward simulation

Example

 From initial observation of sun

 From initial observation of rain

P(X1) P(X2) P(X3) P(X)

P(X1) P(X2) P(X3) P(X)
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Stationary Distributions

 If we simulate the chain long enough:
 What happens?
 Uncertainty accumulates
 Eventually, we have no idea what the state is!

 Stationary distributions:
 For most chains, the distribution we end up in is 

independent of the initial distribution
 Called the stationary distribution of the chain
 Usually, can only predict a short time out

Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!

Web Link Analysis

 PageRank over a web graph
 Each web page is a state
 Initial distribution: uniform over pages
 Transitions:

 With prob. c, follow a random outlink (solid lines)
 With prob. 1-c, uniform jump to a random pageWith prob. 1 c, uniform jump to a random page 

(dotted lines, not all shown)

 Stationary distribution
 Will spend more time on highly reachable pages
 E.g. many ways to get to the Acrobat Reader download page
 Somewhat robust to link spam
 Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting less 
important over time)

Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

Example

P(Wt)

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Wett-1 Wett Wett+1

Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Hidden Markov Models

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 Defines a joint probability distribution:

Ghostbusters HMM

 P(X1) = uniform

 P(X’|X) = usually move clockwise, but sometimes 
move in a random direction or stay in place

 P(E|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X’|X=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X2

E1

X1 X3 X4

E1 E3 E4

E5

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3
P(E|X)

HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)


