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Markov Decision Process (MDP)
S: set of states

A: set of actions

Pr(s’|s,a): transition model

R(s,a,s’): reward model

: discount factor

s0: start state

Objective of a Fully Observable MDP

 Find a policy : S → A

 which maximizes expected discounted reward

 given an infinite horizon

 assuming full observability
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Partially-Observable MDP
S: set of states

A: set of actions

Pr(s’|s,a): transition model

R(s,a,s’): reward model

: discount factor

s0: start state

E set of possible pieces of evidence 

Pr(e|s) observation model

Ghostbusting Observations

 A ghost is in the grid 
somewhere

 Model 1: Sensor readings 
tell distance to ghost:
 On top of pacman: red On top of pacman: red

 1 or 2 away: orange

 3 or 4 away: yellow

 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

 Model 2: Sensors are noisy, but we know P(Color | Distance)

Objective of a POMDP

 Find a policy 
: BeliefStates(S) → A

A belief state is a probability distribution over states

 which maximizes expected discounted 
reward

 given an infinite horizon

 assuming full observability

Particle Filtering

Planning in HW 4

 Map Estimate

11

Projects

 You choose…

 Default 1
 Extend Pacman reinforcement learning, eg UCT 

 Default 2
 Extend Pacman to real POMDP

12
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Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty
 R = Is it raining?
 D = How long will it take to drive to work?
 L = Where am I?

 We denote random variables with capital letters

 Random variables have domains
 R in {true, false}
 D in [0, 1)
 L in possible locations, maybe {(0,0), (0,1), …}

Joint Distributions

 A joint distribution over a set of random variables:
specifies a real number for each outcome (ie each assignment): 

T W P

 Size of distribution if n variables with domain sizes d?

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

 Must obey:

 A probabilistic model is a joint distribution over variables of interest
 For all but the smallest distributions, impractical to write out

Terminology

Marginal Probability

Conditional 
ProbabilityJoint Probability

X value is given

Independence

P(AB) = P(A)P(B)
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A A  B

Conditional Independence

Are A & B independent?   P(A|B)  ?  P(A)

A
A  B



P(A)=(.25+.5)/2 
= .375
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B

P(B)= .75

P(A|B)=(.25+.25+.5)/3
=.3333

A, B Conditionally Independent Given C

P(A|B,C) = P(A|C)               C = spot free 

P(A|C) =.5AC A B C

© Daniel S. Weld 26

P(A|C)   .5 
P(A|B,C)=.5

AC         ABC

BC
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Probabilistic Inference

 Probabilistic inference: compute a desired probability from 
other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90

 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95

 P(on time | no accidents, 5 a.m., raining) = 0.80

 Observing new evidence causes beliefs to be updated

Inference by Enumeration

P(sun)?

P(hot | winter)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

s mmer cold s n 0 10summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

Inference by Enumeration

 General case:
 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First select the entries consistent with the evidence First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution

/

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

A1 An

, y g p

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

X

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example Bayes’ Net: Car
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The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

That’s my rule!

 Why is this at all helpful?
 Lets us build a conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later

 In the running for most important AI equation!

Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:

Example
givens

 m is meningitis, s is stiff neck

Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform

 Sensor reading model: P(R | G)
 Given: we know what our sensors do

 R = reading color measured at (1,1)

 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:

Markov Models (Markov Chains)

 A Markov model includes:
 Random variables Xt for all time steps t (the state)
 Parameters: called transition probabilities or 

dynamics, specify how the state evolves over time 
(also, initial probs)

and

 Later we’ll see that a Markov model is just a 

X2X1 X3 X4 XN

chain-structured Bayesian Network (BN)

Conditional Independence

 Basic conditional independence:

X2X1 X3 X4

 Each time step only depends on the previous
 Future conditionally independent of past given the present
 This is called the (first order) Markov property

 This chain is just a (growing) BN
 We could use generic BN reasoning on it if we truncate 

the chain at a fixed length
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Markov Models (Markov Chains)

 A Markov model defines
 a joint probability distribution:

X2X1 X3 X4 XN

 One common inference problem:
 Compute marginals P(Xt) for some time step, t

States vs. Random Variables

Weather Probabilistic FSM:
 States = {rain, sun}

 Transitions: rain sun

0.9

0.9

0.1

0.1
This is a 

diti lconditional 
distribution

X2X1 X3 X4 XN

Markov Chain

Example: Markov Chain

 Weather:
 States = {rain, sun}

 Transitions: rain sun

0.9

0.9

0.1

0.1

 Initial distribution: 1.0 sun

 What’s the probability distribution after one step?

Markov Chain Inference

 Question: probability of being in state x at time t?

 Slow answer:
 Enumerate all sequences of length t which end in s

 Add up their probabilitiesp p

…

Mini-Forward Algorithm

 Question: What’s P(X) on some day t?
 We don’t need to enumerate all 2t sequences!

sun sun sun sun

rain rain rain rain

Forward simulation

Example

 From initial observation of sun

 From initial observation of rain

P(X1) P(X2) P(X3) P(X)

P(X1) P(X2) P(X3) P(X)
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Stationary Distributions

 If we simulate the chain long enough:
 What happens?
 Uncertainty accumulates
 Eventually, we have no idea what the state is!

 Stationary distributions:
 For most chains, the distribution we end up in is 

independent of the initial distribution
 Called the stationary distribution of the chain
 Usually, can only predict a short time out

Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!

Web Link Analysis

 PageRank over a web graph
 Each web page is a state
 Initial distribution: uniform over pages
 Transitions:

 With prob. c, follow a random outlink (solid lines)
 With prob. 1-c, uniform jump to a random pageWith prob. 1 c, uniform jump to a random page 

(dotted lines, not all shown)

 Stationary distribution
 Will spend more time on highly reachable pages
 E.g. many ways to get to the Acrobat Reader download page
 Somewhat robust to link spam
 Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting less 
important over time)

Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

Example

P(Wt)

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Wett-1 Wett Wett+1

Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Hidden Markov Models

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 Defines a joint probability distribution:

Ghostbusters HMM

 P(X1) = uniform

 P(X’|X) = usually move clockwise, but sometimes 
move in a random direction or stay in place

 P(E|X) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X’|X=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X2

E1

X1 X3 X4

E1 E3 E4

E5

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3
P(E|X)

HMM Computations

 Given 
 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)


