
10/26/2012

1

CSE 573: Artificial Intelligence
Reinforcement Learning II

Dan Weld

Many slides adapted from either Alan Fern, Dan Klein, Stuart
Russell, Luke Zettlemoyer or Andrew Moore 1

Today’s Outline

 Review Reinforcement Learning

 Review MDPs
 New MDP Algorithm: Q-value iteration

 Review Q-learning

 Large MDPs
 Linear function approximation

 Policy gradient

Applications

 Robotic control
 helicopter maneuvering, autonomous vehicles
 Mars rover - path planning, oversubscription planningg g
 elevator planning

 Game playing - backgammon, tetris, checkers
 Neuroscience
 Computational Finance, Sequential Auctions
 Assisting elderly in simple tasks
 Spoken dialog management
 Communication Networks – switching, routing, flow control
 War planning, evacuation planning

Demos

 http://inst.eecs.berkeley.edu/~ee128/fa11/
videos.html

4

Agent Assets

5

Value Iteration
Policy Iteration

Monte Carlo
Planning

Reinforcement
Learning

Small vs. Huge MDPs

 First cover RL methods for small MDPs
 Number of states and actions is reasonably

small
 Eg can represent policy as explicit table

 These algorithms will inspire more advanced

6

methods

 Later we will cover algorithms for huge
MDPs
 Function Approximation Methods
 Policy Gradient Methods
 Least-Squares Policy Iteration

10/26/2012

2

Passive vs. Active learning

 Passive learning
 The agent has a fixed policy and tries to learn the utilities of

states by observing the world go by

 Analogous to policy evaluation

 Often serves as a component of active learning algorithms

 Often inspires active learning algorithms

7

 Often inspires active learning algorithms

 Active learning
 The agent attempts to find an optimal (or at least good) policy

by acting in the world

 Analogous to solving the underlying MDP, but without first
being given the MDP model

Model-Based vs. Model-Free RL

 Model-based approach to RL:
 learn the MDP model, or an approximation of it
 use it for policy evaluation or to find the optimal

policy

8

 Model-free approach to RL:
 derive optimal policy w/o explicitly learning the

model
 useful when model is difficult to represent

and/or learn

 We will consider both types of approaches

Comparison

 Model-based approaches:
Learn T + R

|S|2|A| + |S||A| parameters (40,400)

 Model-free approach:
Learn Q

|S||A| parameters (400)

Supposing 100 states, 4 actions…

RL Dimensions

Active ADP -greedy

Optimistic
Explore / RMax

TD Learning

Q Learning

10

Passive
Uses
Model

Model
Free

Direct Estimation

ADP

TD Learning

Recap: MDPs
 Markov decision processes:
 States S
 Actions A
 Transitions T(s,a,sʼ) aka P(sʼ|s,a)
 Rewards R(s,a,sʼ) (and discount )
 Start state s0 (or distribution P0)

a

s

s, a

s,a,sʼ
sʼ

0 (0)
 Algorithms
 Value Iteration
 Q-value iteration

 Quantities:
 Policy = map from states to actions
 Utility = sum of discounted future rewards
 Q-Value = expected utility from a q-state

 Ie. from a state/action pair
Andrey Markov
(1856‐1922)

Bellman Equations

12

Q*(a, s) =

10/26/2012

3

Value Iteration
 Regular Value iteration: find successive approx optimal values

 Start with V0
*(s) = 0

 Given Vi
*, calculate the values for all states for depth i+1:

Qi+1(s,a)

Q-

 Storing Q-values is more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:

Vi(s’)]

Q-Value Iteration

Initialize each q-state: Q0(s,a) = 0

Repeat
For all q-states, s,a

Compute Qi+1(s,a) from Qi by Bellman backup at s,a.

Until maxs,a |Qi+1(s,a) – Qi(s,a)| < 

Vi(s’)]

Reinforcement Learning
 Markov decision processes:
 States S
 Actions A
 Transitions T(s,a,sʼ) aka P(sʼ|s,a)
 Rewards R(s,a,sʼ) (and discount )
 Start state s0 (or distribution P0)

a

s

s, a

s,a,sʼ0 (0)

 Algorithms
 Q-value iteration  Q-learning

sʼ

Recap: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work? Because samples appear with the right
frequencies!

Recap: Exp. Moving Average

 Exponential moving average
 Makes recent samples more important

 Forgets about the past (distant past values were wrong anyway)

 Easy to compute from the running average

 Decreasing learning rate can give converging averages

Q-Learning Update

 Q-Learning = sample-based Q-value iteration

 How learn Q*(s,a) values?(,)
 Receive a sample (s,a,sʼ,r)
 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

10/26/2012

4

Q-Learning Update

Q-Learning = sample-based Q-value iteration

 How learn Q*(s,a) values?

 Alternatively….

difference = sample – Q(s, a)

(,)
 Receive a sample (s,a,sʼ,r)
 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Exploration / Exploitation

 Exploration function

  greedy
 Every time step, flip a coin: with probability  , act randomly
 With probability 1- , act according to current policy

 Explore areas whose badness is not (yet) established
 Takes a value estimate and a count, and returns an

optimistic utility, e.g.
(exact form not important)

 Exploration policy π(s’)=

vs.

Q-Learning Final Solution

 Q-learning produces tables of q-values:

Q-Learning:  Greedy

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy
 If you explore enough

 If you make the learning rate small enough

 … but not decrease it too quickly!

 Not too sensitive to how you select actions (!)y ()

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E

Q-Learning – Small Problem

 Doesn’t work

 In realistic situations, we can’t possibly learn about
every single state!
 Too many states to visit them all in trainingToo many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we need to generalize:
 Learn about a few states from experience
 Generalize that experience to new, similar states

(Fundamental idea in machine learning)

10/26/2012

5

RL Dimensions

Active

25

Passive
Uses
Model

Model
Free

Many States

Example: Pacman

 Letʼs say we discover
through experience
that this state is bad:

 In naïve Q learning,
we know nothing
about related states
and their Q values:

 Or even this third one!

Feature-Based Representations

 Solution: describe a state using a
vector of features (properties)
 Features are functions from states to

real numbers (often 0/1) that capture
important properties of the state

 Example features: Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.

 Can also describe a q-state (s, a) with features
(e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a
q function (or value function) for any state
using a linear combination of a few weights:

 Disadvantage: states may share features but
actually be very different in value!

 Advantage: our experience is summed up in
a few powerful numbers

|S|2|A| ? |S||A| ?

 Advantage:

 Disadvantage:

Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states

with that stateʼs features

 Formal justification: online least squares

Exact Qʼs

Approximate Qʼs

Example: Q-Pacman

10/26/2012

6

Q-learning with Linear Approximators
1. Start with initial parameter values
2. Take action a according to an explore/exploit policy

(should converge to greedy policy, i.e. GLIE) transitioning
from s to s’

3. Perform TD update for each parameter

31

4. Goto 2

•Q-learning can diverge. Converges under some conditions.

Q-learning, no features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Q-learning, no features, 1000 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Q-learning, simple features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Why Does This Work?

35

20

40

20

22

24

26

Linear Regression

0 20
0

0
10

20
30

40

0

10

20

30

20

Prediction Prediction

10/26/2012

7

Ordinary Least Squares (OLS)

Error or “residual”

0 20
0

Error or residual

Prediction

Observation

Minimizing Error
Imagine we had only one point x with features f(x):

Approximate q update:

“target” “prediction”

Recap: Linear Function Approximation
 Define a set of state features f1(s), …, fn(s)
 The features are used as our representation of states

 States with similar feature values will be considered to be similar

 Often represent V(s) with linear approximation

 Approx. accuracy is fundamentally limited by the features

 Can we always define features for perfect approximation?

)(...)()()(ˆ 22110 sfsfsfsV nn 

39

 Can we always define features for perfect approximation?
 Yes! Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th state

is present and i represents value of i’th state)

 No! This requires far too many features, gives no generalization.

Example
 Grid with no obstacles, deterministic actions U/D/L/R, no

discounting, -1 reward everywhere except +10 at goal
 Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)
 V(s) = 0 + 1 x + 2 y
 Is there a good linear

approximation?
 Yes.
 0 =10, 1 = -1, 2 = -1

10

0

0

6

40

0 , 1 , 2

 (note upper right is origin)

 V(s) = 10 - x - y
subtracts Manhattan dist.
from goal reward

6

But What If We Change Reward?
 V(s) = 0 + 1 x + 2 y
 Is there a good linear approximation?
 No. 0

0

41

10

But What If…

 V(s) = 0 + 1 x + 2 y + 3 z

 Include new feature z
 z= |3-x| + |3-y|

 z is dist. to goal location

0

0

3

42

10

Does this allow a

good linear approx?
 0 =10, 1 = 2 = 0,

0 = -1

3

10/26/2012

8

15

20

25

30

Degree 15 polynomial

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

RL via Policy Gradient Search
 So far all of our RL techniques have tried to learn an exact

or approximate utility function or Q-function
 Learn optimal “value” of being in a state, or taking an action from state.

 Value functions can often be much more complex to
represent than the corresponding policy
 Do we really care about knowing Q(s,left) = 0.3554, Q(s,right) = 0.533

44

 Or just that “right is better than left in state s”

 Motivates searching directly in a parameterized policy
space
 Bypass learning value function and “directly” optimize the value of a policy

Aside: Gradient Ascent
 Gradient ascent iteratively follows the gradient direction

starting at some initial point

 Initialize  to a random value

 Repeat until stopping condition

where
)(  f

45

where

2

1

Local optima
of f

With proper decay of
learning rate gradient
descent is guaranteed to
converge to local optima.
















n

ff
f







)(
,,

)(
)(

1



RL via Policy Gradient Ascent
 The policy gradient approach has the following schema:

1. Select a space of parameterized policies

2. Compute the gradient of the value of current policy wrt parameters

3. Move parameters in the direction of the gradient

4. Repeat these steps until we reach a local maxima

46

p p

5. Possibly also add in tricks for dealing with bad local maxima (e.g.

random restarts)

 So we must answer the following questions:

 How should we represent parameterized policies?

 How can we compute the gradient?

Parameterized Policies
 One example of a space of parametric policies is:

where may be a linear function, e.g.

),(...),(),(),(ˆ 22110 asfasfasfasQ nn 

),(ˆmaxarg)(asQs
a

 

),(ˆ asQ

47

 The goal is to learn parameters  that give a good policy
 Note that it is not important that be close to the

actual Q-function
 Rather we only require is good at ranking actions in order of

goodness

),(ˆ asQ

),(ˆ asQ

Policy Gradient Ascent

 Policy gradient ascent tells us to iteratively update
parameters via:

 Problem: () is generally very complex and it is rare
that we can compute a closed form for the gradient of
() even if we have an exact model of the system

)( 

48

() even if we have an exact model of the system.

 Key idea: estimate the gradient based on experience

