
10/26/2012

1

CSE 573: Artificial Intelligence
Reinforcement Learning II

Dan Weld

Many slides adapted from either Alan Fern, Dan Klein, Stuart
Russell, Luke Zettlemoyer or Andrew Moore 1

Today’s Outline

 Review Reinforcement Learning

 Review MDPs
 New MDP Algorithm: Q-value iteration

 Review Q-learning

 Large MDPs
 Linear function approximation

 Policy gradient

Applications

 Robotic control
 helicopter maneuvering, autonomous vehicles
 Mars rover - path planning, oversubscription planningg g
 elevator planning

 Game playing - backgammon, tetris, checkers
 Neuroscience
 Computational Finance, Sequential Auctions
 Assisting elderly in simple tasks
 Spoken dialog management
 Communication Networks – switching, routing, flow control
 War planning, evacuation planning

Demos

 http://inst.eecs.berkeley.edu/~ee128/fa11/
videos.html

4

Agent Assets

5

Value Iteration
Policy Iteration

Monte Carlo
Planning

Reinforcement
Learning

Small vs. Huge MDPs

 First cover RL methods for small MDPs
 Number of states and actions is reasonably

small
 Eg can represent policy as explicit table

 These algorithms will inspire more advanced

6

methods

 Later we will cover algorithms for huge
MDPs
 Function Approximation Methods
 Policy Gradient Methods
 Least-Squares Policy Iteration

10/26/2012

2

Passive vs. Active learning

 Passive learning
 The agent has a fixed policy and tries to learn the utilities of

states by observing the world go by

 Analogous to policy evaluation

 Often serves as a component of active learning algorithms

 Often inspires active learning algorithms

7

 Often inspires active learning algorithms

 Active learning
 The agent attempts to find an optimal (or at least good) policy

by acting in the world

 Analogous to solving the underlying MDP, but without first
being given the MDP model

Model-Based vs. Model-Free RL

 Model-based approach to RL:
 learn the MDP model, or an approximation of it
 use it for policy evaluation or to find the optimal

policy

8

 Model-free approach to RL:
 derive optimal policy w/o explicitly learning the

model
 useful when model is difficult to represent

and/or learn

 We will consider both types of approaches

Comparison

 Model-based approaches:
Learn T + R

|S|2|A| + |S||A| parameters (40,400)

 Model-free approach:
Learn Q

|S||A| parameters (400)

Supposing 100 states, 4 actions…

RL Dimensions

Active ADP -greedy

Optimistic
Explore / RMax

TD Learning

Q Learning

10

Passive
Uses
Model

Model
Free

Direct Estimation

ADP

TD Learning

Recap: MDPs
 Markov decision processes:
 States S
 Actions A
 Transitions T(s,a,sʼ) aka P(sʼ|s,a)
 Rewards R(s,a,sʼ) (and discount)
 Start state s0 (or distribution P0)

a

s

s, a

s,a,sʼ
sʼ

0 (0)
 Algorithms
 Value Iteration
 Q-value iteration

 Quantities:
 Policy = map from states to actions
 Utility = sum of discounted future rewards
 Q-Value = expected utility from a q-state

 Ie. from a state/action pair
Andrey Markov
(1856‐1922)

Bellman Equations

12

Q*(a, s) =

10/26/2012

3

Value Iteration
 Regular Value iteration: find successive approx optimal values

 Start with V0
*(s) = 0

 Given Vi
*, calculate the values for all states for depth i+1:

Qi+1(s,a)

Q-

 Storing Q-values is more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:

Vi(s’)]

Q-Value Iteration

Initialize each q-state: Q0(s,a) = 0

Repeat
For all q-states, s,a

Compute Qi+1(s,a) from Qi by Bellman backup at s,a.

Until maxs,a |Qi+1(s,a) – Qi(s,a)| <

Vi(s’)]

Reinforcement Learning
 Markov decision processes:
 States S
 Actions A
 Transitions T(s,a,sʼ) aka P(sʼ|s,a)
 Rewards R(s,a,sʼ) (and discount)
 Start state s0 (or distribution P0)

a

s

s, a

s,a,sʼ0 (0)

 Algorithms
 Q-value iteration Q-learning

sʼ

Recap: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work? Because samples appear with the right
frequencies!

Recap: Exp. Moving Average

 Exponential moving average
 Makes recent samples more important

 Forgets about the past (distant past values were wrong anyway)

 Easy to compute from the running average

 Decreasing learning rate can give converging averages

Q-Learning Update

 Q-Learning = sample-based Q-value iteration

 How learn Q*(s,a) values?(,)
 Receive a sample (s,a,sʼ,r)
 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

10/26/2012

4

Q-Learning Update

Q-Learning = sample-based Q-value iteration

 How learn Q*(s,a) values?

 Alternatively….

difference = sample – Q(s, a)

(,)
 Receive a sample (s,a,sʼ,r)
 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Exploration / Exploitation

 Exploration function

 greedy
 Every time step, flip a coin: with probability , act randomly
 With probability 1- , act according to current policy

 Explore areas whose badness is not (yet) established
 Takes a value estimate and a count, and returns an

optimistic utility, e.g.
(exact form not important)

 Exploration policy π(s’)=

vs.

Q-Learning Final Solution

 Q-learning produces tables of q-values:

Q-Learning: Greedy

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy
 If you explore enough

 If you make the learning rate small enough

 … but not decrease it too quickly!

 Not too sensitive to how you select actions (!)y ()

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E

Q-Learning – Small Problem

 Doesn’t work

 In realistic situations, we can’t possibly learn about
every single state!
 Too many states to visit them all in trainingToo many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we need to generalize:
 Learn about a few states from experience
 Generalize that experience to new, similar states

(Fundamental idea in machine learning)

10/26/2012

5

RL Dimensions

Active

25

Passive
Uses
Model

Model
Free

Many States

Example: Pacman

 Letʼs say we discover
through experience
that this state is bad:

 In naïve Q learning,
we know nothing
about related states
and their Q values:

 Or even this third one!

Feature-Based Representations

 Solution: describe a state using a
vector of features (properties)
 Features are functions from states to

real numbers (often 0/1) that capture
important properties of the state

 Example features: Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.

 Can also describe a q-state (s, a) with features
(e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a
q function (or value function) for any state
using a linear combination of a few weights:

 Disadvantage: states may share features but
actually be very different in value!

 Advantage: our experience is summed up in
a few powerful numbers

|S|2|A| ? |S||A| ?

 Advantage:

 Disadvantage:

Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states

with that stateʼs features

 Formal justification: online least squares

Exact Qʼs

Approximate Qʼs

Example: Q-Pacman

10/26/2012

6

Q-learning with Linear Approximators
1. Start with initial parameter values
2. Take action a according to an explore/exploit policy

(should converge to greedy policy, i.e. GLIE) transitioning
from s to s’

3. Perform TD update for each parameter

31

4. Goto 2

•Q-learning can diverge. Converges under some conditions.

Q-learning, no features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Q-learning, no features, 1000 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Q-learning, simple features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Why Does This Work?

35

20

40

20

22

24

26

Linear Regression

0 20
0

0
10

20
30

40

0

10

20

30

20

Prediction Prediction

10/26/2012

7

Ordinary Least Squares (OLS)

Error or “residual”

0 20
0

Error or residual

Prediction

Observation

Minimizing Error
Imagine we had only one point x with features f(x):

Approximate q update:

“target” “prediction”

Recap: Linear Function Approximation
 Define a set of state features f1(s), …, fn(s)
 The features are used as our representation of states

 States with similar feature values will be considered to be similar

 Often represent V(s) with linear approximation

 Approx. accuracy is fundamentally limited by the features

 Can we always define features for perfect approximation?

)(...)()()(ˆ 22110 sfsfsfsV nn

39

 Can we always define features for perfect approximation?
 Yes! Assign each state an indicator feature. (I.e. i’th feature is 1 iff i’th state

is present and i represents value of i’th state)

 No! This requires far too many features, gives no generalization.

Example
 Grid with no obstacles, deterministic actions U/D/L/R, no

discounting, -1 reward everywhere except +10 at goal
 Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)
 V(s) = 0 + 1 x + 2 y
 Is there a good linear

approximation?
 Yes.
 0 =10, 1 = -1, 2 = -1

10

0

0

6

40

0 , 1 , 2

 (note upper right is origin)

 V(s) = 10 - x - y
subtracts Manhattan dist.
from goal reward

6

But What If We Change Reward?
 V(s) = 0 + 1 x + 2 y
 Is there a good linear approximation?
 No. 0

0

41

10

But What If…

 V(s) = 0 + 1 x + 2 y + 3 z

 Include new feature z
 z= |3-x| + |3-y|

 z is dist. to goal location

0

0

3

42

10

Does this allow a

good linear approx?
 0 =10, 1 = 2 = 0,

0 = -1

3

10/26/2012

8

15

20

25

30

Degree 15 polynomial

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

RL via Policy Gradient Search
 So far all of our RL techniques have tried to learn an exact

or approximate utility function or Q-function
 Learn optimal “value” of being in a state, or taking an action from state.

 Value functions can often be much more complex to
represent than the corresponding policy
 Do we really care about knowing Q(s,left) = 0.3554, Q(s,right) = 0.533

44

 Or just that “right is better than left in state s”

 Motivates searching directly in a parameterized policy
space
 Bypass learning value function and “directly” optimize the value of a policy

Aside: Gradient Ascent
 Gradient ascent iteratively follows the gradient direction

starting at some initial point

 Initialize to a random value

 Repeat until stopping condition

where
)(f

45

where

2

1

Local optima
of f

With proper decay of
learning rate gradient
descent is guaranteed to
converge to local optima.

n

ff
f

)(
,,

)(
)(

1

RL via Policy Gradient Ascent
 The policy gradient approach has the following schema:

1. Select a space of parameterized policies

2. Compute the gradient of the value of current policy wrt parameters

3. Move parameters in the direction of the gradient

4. Repeat these steps until we reach a local maxima

46

p p

5. Possibly also add in tricks for dealing with bad local maxima (e.g.

random restarts)

 So we must answer the following questions:

 How should we represent parameterized policies?

 How can we compute the gradient?

Parameterized Policies
 One example of a space of parametric policies is:

where may be a linear function, e.g.

),(...),(),(),(ˆ 22110 asfasfasfasQ nn

),(ˆmaxarg)(asQs
a

),(ˆ asQ

47

 The goal is to learn parameters that give a good policy
 Note that it is not important that be close to the

actual Q-function
 Rather we only require is good at ranking actions in order of

goodness

),(ˆ asQ

),(ˆ asQ

Policy Gradient Ascent

 Policy gradient ascent tells us to iteratively update
parameters via:

 Problem: () is generally very complex and it is rare
that we can compute a closed form for the gradient of
() even if we have an exact model of the system

)(

48

() even if we have an exact model of the system.

 Key idea: estimate the gradient based on experience

