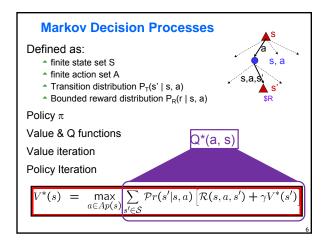
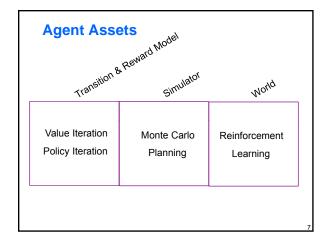
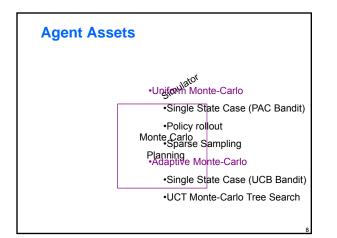


Todo

- Add simulations from 473
- Add UCB bound (cut bolzman & constant epsilon
- Add snazzy videos (pendulum, zico kolter...
 See <u>http://wwwinst.eecs.berkeley.edu/~ee128/fa11/videos.html</u>







So far

- Given an MDP model we know how to find optimal policies (for moderately-sized MDPs)
 Value Iteration or Policy Iteration
- Given just a simulator of an MDP we know how to select actions
 - Monte-Carlo Planning
- What if we don't have a model or simulator? • Like when we were babies . . .
 - Like in many real-world applications
 - All we can do is wander around the world observing what happens, getting rewarded and punished

Reinforcement Learning

- No knowledge of environment
 Can only act in the world and observe states and reward
- Many factors make RL difficult:
 - Actions have non-deterministic effects
 - Which are initially unknown
 - Rewards / punishments are infrequent
 - Often at the end of long sequences of actions
 - How do we determine what action(s) were really
 - responsible for reward or punishment?
 - (credit assignment)
 - World is large and complex
- But learner must decide what actions to take • We will assume the world behaves as an MDP

Pure Reinforcement Learning vs. Monte-Carlo Planning

- In pure reinforcement learning:
 - the agent begins with no knowledge
 - wanders around the world observing outcomes
- In Monte-Carlo planning
 - the agent begins with no declarative knowledge of the world
 has an interface to a world simulator that allows observing the
 - outcome of taking any action in any state
- The simulator gives the agent the ability to "teleport" to any state, at any time, and then apply any action
- A pure RL agent does not have the ability to teleport
 Can only observe the outcomes that it happens to reach

Pure Reinforcement Learning vs. Monte-Carlo Planning

- MC planning aka RL with a "strong simulator"
 I.e. a simulator which can set the current state
- Pure RL aka RL with a "weak simulator"
 I.e. a simulator w/o teleport
- A strong simulator can emulate a weak simulator
 So pure RL can be used in the MC planning framework
 But not vice versa

Applications

- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
- elevator planning
 Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning

Passive vs. Active learning

Passive learning

- The agent has a *fixed policy* and tries to learn the utilities of states by observing the world go by
- Analogous to policy evaluation
- Often serves as a component of active learning algorithms
- Often inspires active learning algorithms

Active learning

- The agent attempts to find an optimal (or at least good) policy by acting in the world
- Analogous to solving the underlying MDP, but without first being given the MDP model

Model-Based vs. Model-Free RL

Model-based approach to RL:

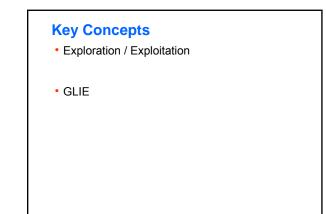
- ▲ learn the MDP model, or an approximation of it
- ▲ use it for policy evaluation or to find the optimal policy

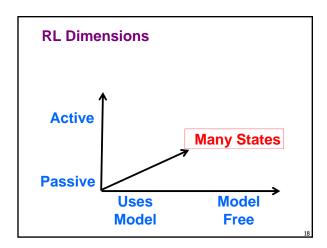
Model-free approach to RL:

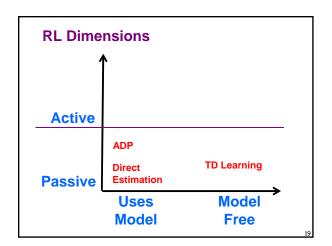
- derive optimal policy w/o explicitly learning the model
- useful when model is difficult to represent and/or learn
- · We will consider both types of approaches

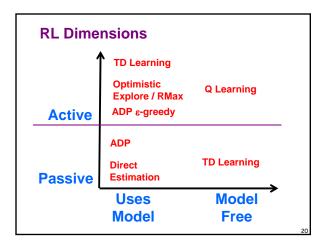
Small vs. Huge MDPs

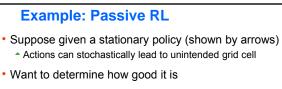
- First cover RL methods for small MDPs
 - Number of states and actions is reasonably small
 Eg can represent policy as explicit table
 - These algorithms will inspire more advanced methods
- Later we will cover algorithms for huge MDPs
 Function Approximation Methods
 - Policy Gradient Methods
 - Least-Squares Policy Iteration

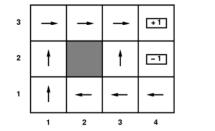


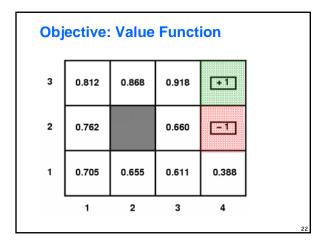


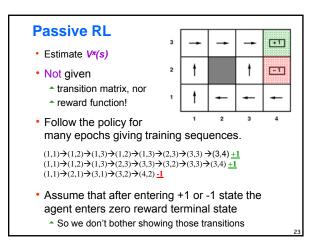










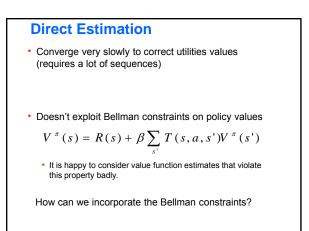


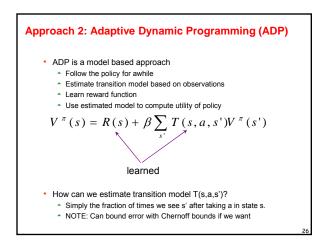
Approach 1: Direct Estimation

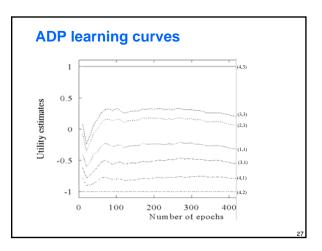
- Direct estimation (also called Monte Carlo)
 Estimate V^r(s) as average total reward of epochs containing s (calculating from s to end of epoch)
- Reward to go of a state s

the sum of the (discounted) rewards from that state until a terminal state is reached

- Key: use observed *reward to go* of the state as the direct evidence of the actual expected utility of that state
- Averaging the reward-to-go samples will converge to true value at state



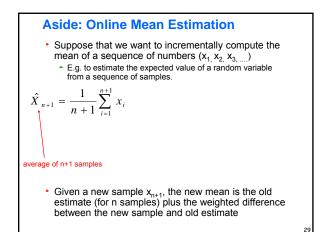


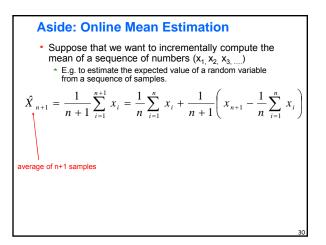


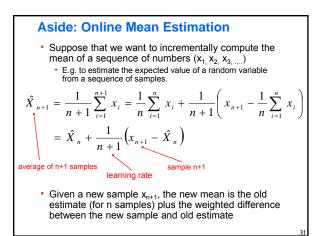
Approach 3: Temporal Difference Learning (TD)
• Can we avoid the computational expense of full DP
policy evaluation?
• Temporal Difference Learning (model free)
• Do local updates of utility/value function on a per-action basis
• Don't try to estimate entire transition function!
• For each transition from s to s', we perform the following update:

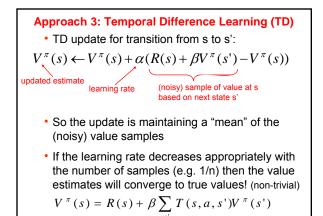
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(R(s) + \beta V^{\pi}(s') - V^{\pi}(s))$$

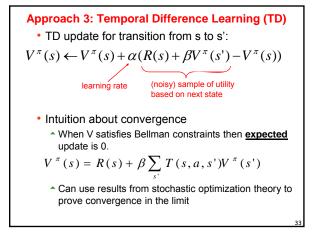
updated estimate learning rate discount factor
• Intuitively moves us closer to satisfying Bellman
constraint
 $V^{\pi}(s) = R(s) + \beta \sum_{s'} T(s, a, s')V^{\pi}(s')$
Why?

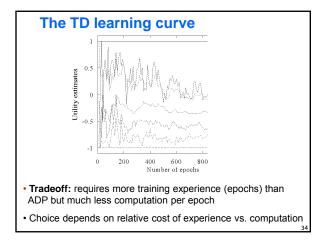


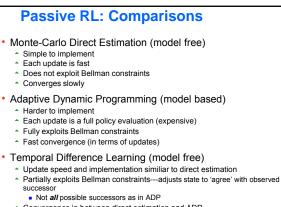










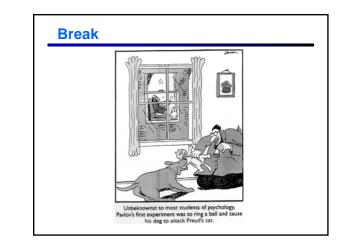


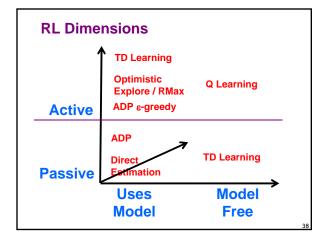
Convergence in between direct estimation and ADP

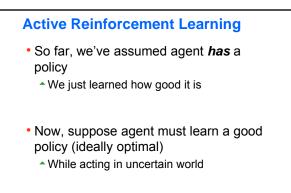
Between ADP and TD

Moving TD toward ADP

- At each step perform TD updates based on observed transition and "imagined" transitions
- Imagined transition are generated using estimated model
- The more imagined transitions used, the more like ADP
 - Making estimate more consistent with next state distribution
 - Converges in the limit of infinite imagined transitions to ADP
- Trade-off computational and experience efficiency More imagined transitions require more time per step, but fewer steps of actual experience







Naïve Model-Based Approach

- Act Randomly for a (long) time 1.
 - Or systematically explore all possible actions
- 2 Learn
 - Transition function
 - Reward function
- 3. Use value iteration, policy iteration, ...
- 4. Follow resulting policy thereafter.

Will this work? Yes (if we do step 1 long enough and there are no "dead-ends")

Any problems? We will act randomly for a long time before exploiting what we know.

Revision of Naïve Approach

- Start with initial (uninformed) model 1.
- 2 Solve for optimal policy given current model (using value or policy iteration)
- Execute action suggested by policy in current state 3.
- Update estimated model based on observed transition 4
- 5. Goto 2

This is just ADP but we follow the greedy policy suggested by current value estimate

Will this work? No. Can get stuck in local minima. What can be done?

Exploration versus Exploitation

- Two reasons to take an action in RL
 - Exploitation: To try to get reward. We exploit our current knowledge to get a payoff.
 - <u>Exploration</u>: Get more information about the world. How do we know if there is not a pot of gold around the corner.
- To explore we typically need to take actions that do not seem best according to our current model.
- Managing the trade-off between exploration and exploitation is a critical issue in RL
- Basic intuition behind most approaches: Explore more when knowledge is weak
 - Exploit more as we gain knowledge

ADP-based (model-based) RL

- Start with initial model 1.
- Solve for optimal policy given current model 2. (using value or policy iteration)
- Take action according to an explore/exploit policy 3. (explores more early on and gradually uses policy from 2)
- 4. Update estimated model based on observed transition
- Goto 2 5.

This is just ADP but we follow the explore/exploit policy

Will this work? Depends on the explore/exploit policy. Any ideas?

Explore/Exploit Policies

Greedy action is action maximizing estimated Q-value

$$Q(s,a) = R(s) + \beta \sum T(s,a,s')V(s')$$

- ▲ where V is current optimal value function estimate (based on current model), and R, T are current estimates of model
- Q(s,a) is the expected value of taking action a in state s and then getting the estimated value $V(s^{\prime})$ of the next state s^{\prime}
- Want an exploration policy that is greedy in the limit of infinite exploration (GLIE) Guarantees convergence
- **GLIE Policy 1**
- On time step t select random action with probability p(t) and greedy action with probability 1-p(t)
- p(t) = 1/t will lead to convergence, but is slow

Explore/Exploit Policies

GLIE Policy 1

- On time step t select random action with probability p(t) and greedy action with probability 1-p(t)
- p(t) = 1/t will lead to convergence, but is slow

In practice it is common to simply set p(t) to a small constant ε (e.g. ε =0.1 or ε =0.01) Called ε-greedy exploration

Explore/Exploit Policies

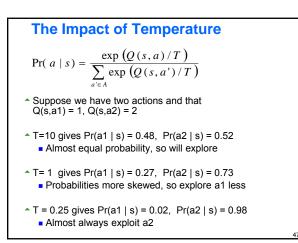
GLIE Policy 2: Boltzmann Exploration

$$\frac{\partial (\alpha - \alpha)}{\partial x}$$

$$\Pr(a \mid s) = \frac{\exp\left(Q(s, a)/T\right)}{\sum_{a \mid s, a} \exp\left(Q(s, a')/T\right)}$$

 T is the temperature. Large T means that each action has about the same probability. Small T leads to more greedy behavior.

Typically start with large T and decrease with time



Alternative Model-Based Approach: Optimistic Exploration

- 1. Start with initial model
- Solve for "optimistic policy" (uses optimistic variant of value iteration) (inflates value of actions leading to unexplored regions)
- 3. Take greedy action according to optimistic policy
- 4. Update estimated model
- 5. Goto 2

Basically act as if all "unexplored" state-action pairs are maximally rewarding.

Optimistic Exploration

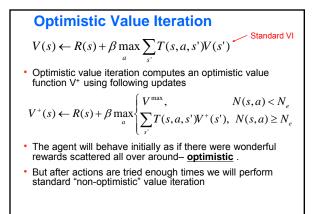
 Recall that value iteration iteratively performs the following update at all states:

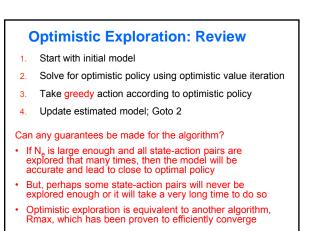
$$V(s) \leftarrow R(s) + \beta \max_{a} \sum_{s} T(s, a, s') V(s')$$

- Optimistic variant adjusts update to make actions that lead to unexplored regions look good
- Optimistic VI: assigns highest possible value V^{max} to any state-action pair that has not been explored enough
 Maximum value is when we get maximum reward forever

$$V^{\max} = \sum_{t=0}^{\infty} \beta^t R^{\max} = \frac{R^{\max}}{1-\beta}$$

What do we mean by "explored enough"?
 ^ N(s,a) > N_e, where N(s,a) is number of times action a has been tried in state s and N_e is a user selected parameter





Optimistic Exploration

- Rmax ≅ optimistic exploration via optimistic VI
- PAC Guarantee (Roughly speaking): There is a value of N_e (depending on n,k, and Rmax), such that with high probability the Rmax algorithm will select at most a polynomial number of action with value less than ε of optimal)
- RL can be solved in poly-time in n, k, and Rmax!

TD-based Active RL

- 1. Start with initial value function
- 2. Take action from explore/exploit policy giving new state s' (should converge to greedy policy, i.e. GLIE)
- 3. Update estimated model
- 4. Perform TD update
 - $V(s) \leftarrow V(s) + \alpha(R(s) + \beta V(s') V(s))$

 $V(s) \mbox{ is new estimate of optimal value function at state s. }$

5. Goto 2

Just like TD for passive RL, but we follow explore/exploit policy

Given the usual assumptions about learning rate and GLIE, TD will converge to an optimal value function!

TD-based Active RL

- 1. Start with initial value function
- 2. Take action from explore/exploit policy giving new state s' (should converge to greedy policy, i.e. GLIE)
- 3. Update estimated model
- 4. Perform TD update
 - $V(s) \leftarrow V(s) + \alpha(R(s) + \beta V(s') V(s))$
 - V(s) is new estimate of optimal value function at state s.
- 5. Goto 2

Requires an estimated model. Why? To compute the explore/exploit policy.

RL Dimensions		
	TD Learning	
	Optimistic Explore / RMax	Q Learning
Active	ADP ε-greedy	
	ADP	
Passive	Direct Estimation	TD Learning
	Uses	Model
	Model	Free

TD-Based Active Learning

- Explore/Exploit policy requires computing Q(s,a) for the exploit part of the policy
 Computing Q(s,a) requires T and R in addition to V
- Thus TD-learning must still maintain an estimated model for action selection
- It is computationally more efficient at each step compared to Rmax (i.e. optimistic exploration)
 - TD-update vs. Value Iteration
 - But model requires much more memory than value function
- Can we get a model-free variant?

Q-Learning: Model-Free RL

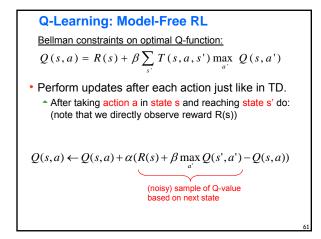
- Instead of learning the optimal value function V, directly learn the optimal Q function.
- $\hat{}$ Recall Q(s,a) is the expected value of taking action a in state s and then following the optimal policy thereafter
- Given the Q function we can act optimally by selecting action greedily according to Q(s,a) *without a model*
- The optimal Q-function satisfies $V(s) = \max_{a'} Q(s, a')$ which gives:

$$Q(s,a) = R(s) + \beta \sum_{s'} T(s,a,s') V(s')$$

= $R(s) + \beta \sum_{s'} T(s,a,s') \max_{a'} Q(s',a')$

How can we learn the Q-function directly?

58



Q-Learning

1.	Start with initial Q-function (e.g. all zeros)		
2.	Take action from explore/exploit policy giving new state s' (should converge to greedy policy, i.e. GLIE)		
3.	Perform TD update		
	$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \beta \max_{a'} Q(s',a') - Q(s,a))$		
	Q(s,a) is current estimate of optimal Q-function.		
4.	Goto 2		
• D(oes not require model since we learn Q directly!		
 Uses explicit S x A table to represent Q 			
 Explore/exploit policy directly uses Q-values 			
E.g. use Boltzmann exploration.			

Book uses exploration function for exploration (Figure 21.8)

Q-Learning: Speedup for Goal-Based Problems

- Goal-Based Problem: receive big reward in goal state and then transition to terminal state
- Consider initializing Q(s,a) to zeros and then observing the following sequence of (state, reward, action) triples
 - ▲ (s0,0,a0) (s1,0,a1) (s2,10,a2) (terminal,0)
- The sequence of Q-value updates would result in: Q(s0,a0) = 0, Q(s1,a1) =0, Q(s2,a2)=10
- So nothing was learned at s0 and s1
 Next time this trajectory is observed we will get non-zero for Q(s1,a1) but still Q(s0,a0)=0

Q-Learning: Speedup for Goal-Based Problems

- From the example we see that it can take many learning trials for the final reward to "back propagate" to early state-action pairs
- Two approaches for addressing this problem:
 <u>Trajectory replay</u>: store each trajectory and do several iterations of Q-updates on each one
 - 2. <u>**Reverse updates**</u>: store trajectory and do Q-updates in reverse order
- In our example (with learning rate and discount factor equal to 1 for ease of illustration) reverse updates would give
 Q(s2,a2) = 10, Q(s1,a1) = 10, Q(s0,a0)=10

Active Reinforcement Learning Summary

- Methods
 - ADP
 - Temporal Difference Learning
 - Q-learning
- All converge to optimal policy assuming a GLIE exploration strategy
 - Optimistic exploration with ADP can be shown to converge in polynomial time with high probability
- All methods assume the world is not too dangerous (no cliffs to fall off during exploration)
- So far we have assumed small state spaces

ADP vs. TD vs. Q

- Different opinions....
 - When n is small then doesn't matter much.
- Computation Time
- ADP-based methods use more computation time per step
- Memory Usage
 - ADP-based methods uses O(mn²) memory
 - ▲ Active TD-learning uses O(mn²) memory (for model)
 - ▲ Q-learning uses O(mn) memory for Q-table
- Learning efficiency (performance per experience) ADP methods reuse experience by reasoning about a learned model (e.g. via value iteration)
- But ... need to learn more parameters (\uparrow variance)

What about large state spaces?

- One approach is to map the original state space S to a much smaller state space S' via some hashing function. • Ideally "similar" states in S are mapped to the same state in S'
- Then do learning over S' instead of S.

 - Note that the world may not look Markovian when viewed through the lens of S', so convergence results may not apply
 But, still the approach can work if a good enough S' is engineered (requires careful design), e.g.
 Empirical Evaluation of a Reinforcement Learning Spoken Dialogue System. With S. Singh, D. Litman, M. Walker. Proceedings of the 17th National Conference on Artificial Intelligence, 2000
- Three other approaches for dealing with large state-spaces
 - Value function approximation
 - Policy gradient methods Least Squares Policy Iteration