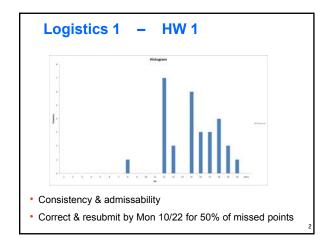


EECS, Oregon State University A few from me, Dan Klein, Luke Zettlmoyer, etc



Logistics 2

- HW2 due tomorrow evening
- HW3 due Mon10/29
 - Value iteration
 - Understand terms in Bellman eqn
 - Q-learning
 - Function approximation & state abstraction

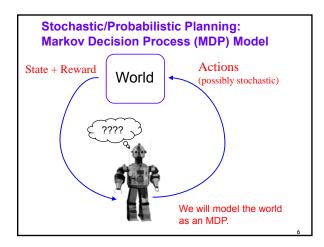
Logistics 3

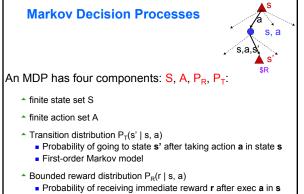
Projects

- Teams (~3 people)
- Ideas

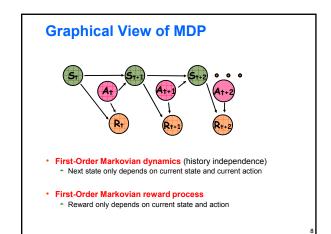
Outline

- Recap: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (PAC Bandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search
- Reinforcement Learning





First-order Markov model



Recap: Defining MDPs

• Policy, π

Function that chooses an action for each state

- Value function of policy
 - Aka Utility

Sum of discounted rewards from following policy

Objective?

Find policy which maximizes expected utility, V(s)

Policies ("plans" for MDPs)

- · Given an MDP we wish to compute a policy Could be computed offline or online.
- · A policy is a possibly stochastic mapping from states to actions
 - $^{\bullet}$ π:S → A π(s) is action to do at state s
 - specifies a continuously reactive controller

How to measure goodness of a policy?

Value Function of a Policy

- · We consider finite-horizon discounted reward, discount factor $0 \le \beta < 1$
- $V_{\pi}(s,h)$ denotes expected h-horizon discounted total reward of policy π at state s
- Each run of π for h steps produces a random reward sequence: R₁ R₂ R₃ ... R_h
- $V_{\pi}(s,h)$ is the expected discounted sum of this sequence

$$V_{\pi}(s,h) = E\left[\sum_{t=0}^{h} \beta^{t} R_{t} \mid \pi, s\right]$$

 Optimal policy π* is policy that achieves maximum value across all states

Relation to Infinite Horizon Setting

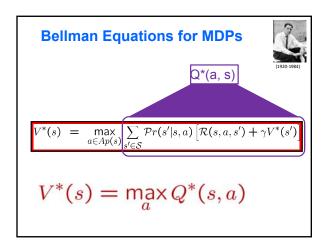
Often value function $V_{\pi}(s)$ is defined over infinite horizons for a discount factor $0 \le \beta < 1$

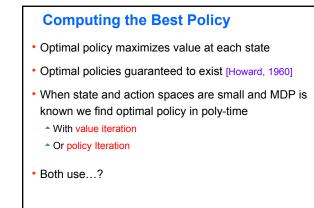
$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} R^{t} \mid \pi, s\right]$$

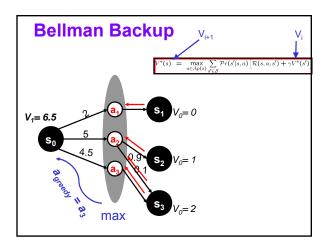
• It is easy to show that difference between $V_{\pi}(s,h)$ and $V_{\pi}(s)$ shrinks exponentially fast as h grows

$$\left|V_{\pi}(s) - V_{\pi}(s,h)\right| \leq \left(\frac{R_{\max}}{1-\beta}\right)\beta^{h}$$

h-horizon results apply to infinite horizon setting



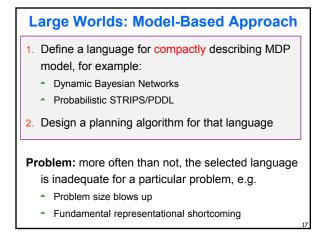


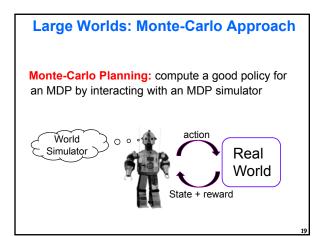


Computing the Best Policy

What if...

- Space is exponentially large?
- MDP transition & reward models are unknown?





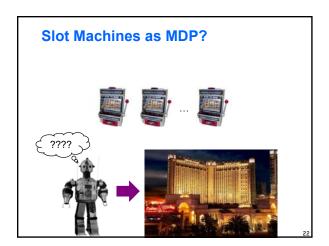
Example Domains with Simulators

- · Traffic simulators
- Robotics simulators
- Military campaign simulators
- Computer network simulators
- Emergency planning simulators
 A large-scale disaster and municipal
- Sports domains (Madden Football)
- Board games / Video games
 Go / RTS

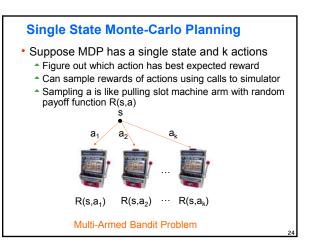
In many cases Monte-Carlo techniques yield state-of-the-art performance. Even in domains where model-based planner is applicable.

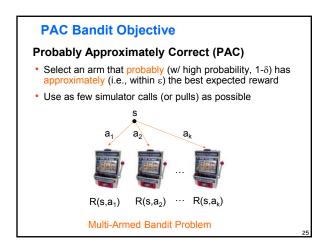
MDP: Simulation-Based Representation

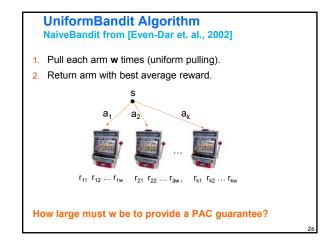
- A simulation-based representation gives: S, A, R, T:
 - finite state set S (generally very large)
 - finite action set A
 - Stochastic, real-valued, bounded reward function R(s,a) = r
 Stochastically returns a reward r given input s and a
 Can be implemented in arbitrary programming language
 - Stochastic transition function T(s,a) = s' (i.e. a simulator)
 Stochastically returns a state s' given input s and a
 - Probability of returning s' is dictated by Pr(s' | s,a) of MDP
 - T can be implemented in an arbitrary programming language

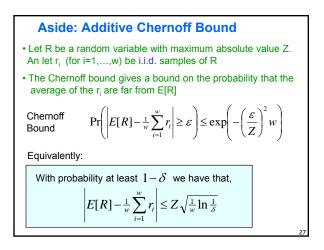


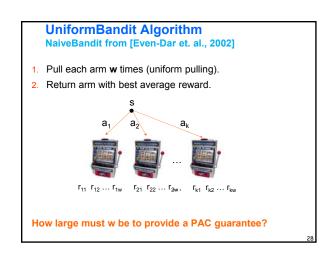
- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (Uniform Bandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

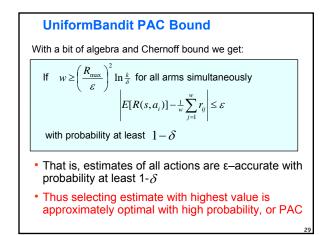


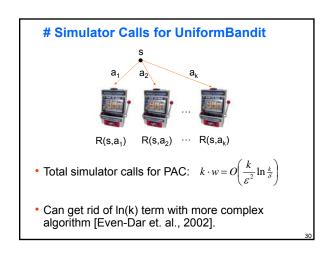










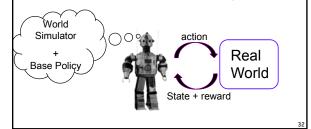


Outline

- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Non-Adaptive Monte-Carlo
 - Single State Case (PAC Bandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

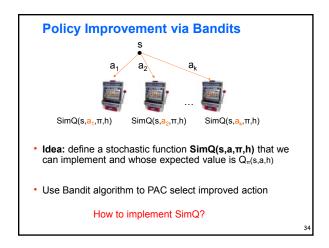
Policy Improvement via Monte-Carlo

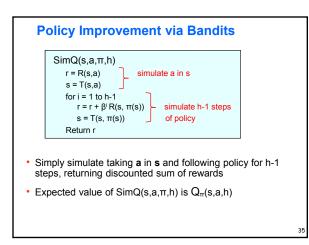
- Now consider a multi-state MDP.
- Suppose we have a simulator and a non-optimal policy
 * E.g. policy could be a standard heuristic or based on intuition
- · Can we somehow compute an improved policy?

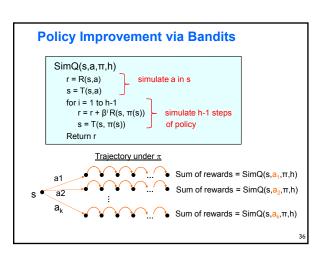


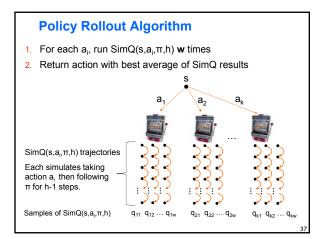
Policy Improvement Theorem

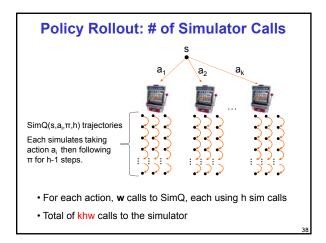
- The h-horizon Q-function Q_π(s,a,h) is defined as: expected total discounted reward of starting in state s, taking action a, and then following policy π for h-1 steps
- Define: $\pi'(s) = \arg \max_{a} Q_{\pi}(s, a, h)$
- Theorem [Howard, 1960]: For any non-optimal policy π the policy π ' a strict improvement over π .
- Computing π^{\prime} amounts to finding the action that maximizes the Q-function
 - Can we use the bandit idea to solve this?

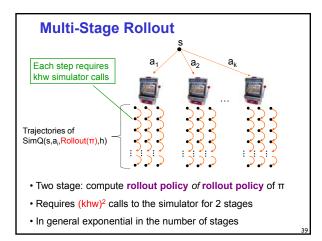


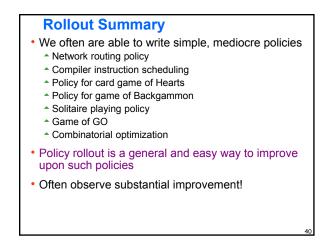












Example: Rollout for Thoughful Solitair [Yan et al. NIPS'04]				
Player	Success Rate	Time/Game		
Human Expert	36.6%	20 min		
(naïve) Base Policy	13.05%	0.021 sec		

-

Example: Rollout for Thoughful Solitaire [Yan et al. NIPS'04]

Player	Success Rate	Time/Game
Паусі	Ouccess Male	Time/Game
Human Expert	36.6%	20 min
(naïve) Base	13.05%	0.021 sec
Policy		
1 rollout	31.20%	0.67 sec

Example: Rollout for Thoughful Solitaire [Yan et al. NIPS'04]

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec
2 rollout	47.6%	7.13 sec

Example: Rollout for Thoughful Solitaire [Yan et al. NIPS'04]

Player	Success Rate	Time/Game
Human Expert	36.6%	20 min
(naïve) Base Policy	13.05%	0.021 sec
1 rollout	31.20%	0.67 sec
2 rollout	47.6%	7.13 sec
3 rollout	56.83%	1.5 min
4 rollout	60.51%	18 min
5 rollout	70.20%	1 hour 45 min

Deeper rollout can pay off, but is expensive

Outline

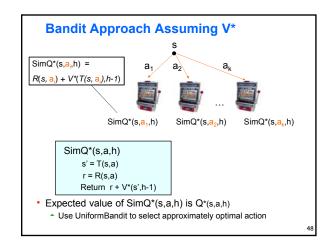
- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (UniformBandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

Sparse Sampling

- · Rollout does not guarantee optimality or near optimality
- Can we develop simulation-based methods that give us near optimal policies?
 Using computation that doesn't depend on number of states!
- In deterministic games and problems it is common to build a look-ahead tree at a state to determine best action
 Can we generalize this to general MDPs?
 - 0
- Sparse Sampling is one such algorithm
 Strong theoretical guarantees of near optimality

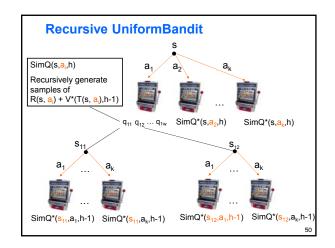
MDP Basics

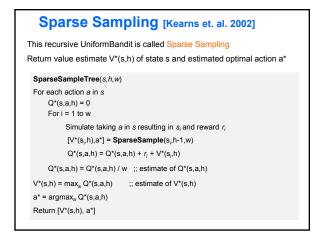
- Let V*(s,h) be the optimal value function of MDP
- Define Q*(s,a,h) = E[R(s,a) + V*(T(s,a),h-1)]
 Optimal h-horizon value of action a at state s.
 - R(s,a) and T(s,a) return random reward and next state
- **Optimal Policy:** $\pi^*(x) = \operatorname{argmax}_a Q^*(x,a,h)$
- What if we knew V*?
 Can apply bandit algorithm to select action that
 - approximately maximizes Q*(s,a,h)

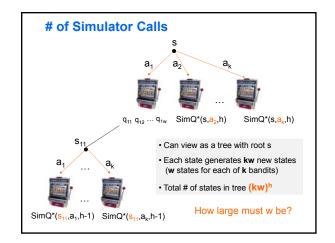


But we don't know V*

- To compute SimQ*(s,a,h) need V*(s',h-1) for any s'
- Use recursive identity (Bellman's equation):
 V*(s,h-1) = max_a Q*(s,a,h-1)
- Idea: Can recursively estimate V*(s,h-1) by running h-1 horizon bandit based on SimQ*
- **Base Case:** V*(s,0) = 0, for all s







Sparse Sampling

- For a given desired accuracy, how large should sampling width and depth be?
 Answered: [Kearns et. al., 2002]
- Good news: can achieve near optimality for value of w independent of state-space size!
 First near-optimal general MDP planning algorithm whose runtime didn't depend on size of state-space
- Bad news: the theoretical values are typically still intractably large---also exponential in h
- In practice: use small h and use heuristic at leaves (similar to minimax game-tree search)

Outline

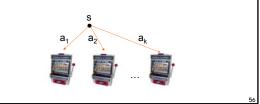
- Preliminaries: Markov Decision Processes
- · What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (UniformBandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

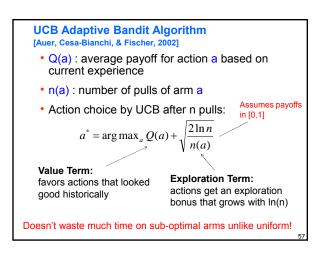
Uniform vs. Adaptive Bandits

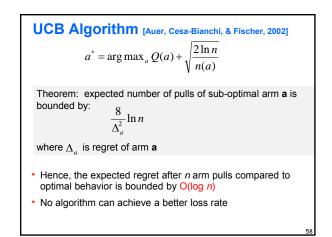
- Sparse sampling wastes time on bad parts of tree
 Devotes equal resources to each
 - state encountered in the tree
 - Would like to focus on most promising parts of tree
- But how to control exploration of new parts of tree??

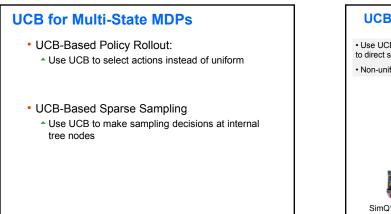
Regret Minimization Bandit Objective

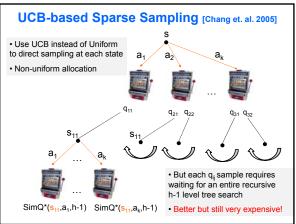
- **Problem:** find arm-pulling strategy such that the expected total reward at time n is close to the best possible (i.e. pulling the best arm always)
 - UniformBandit is poor choice --- waste time on bad arms
 Must balance exploring machines to find good payoffs and exploiting current knowledge





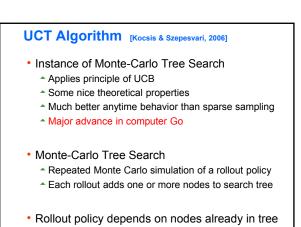


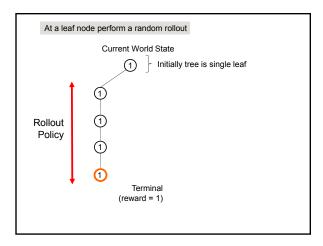


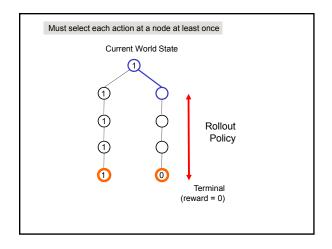


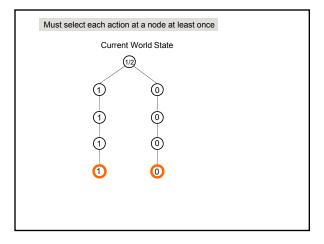
Outline

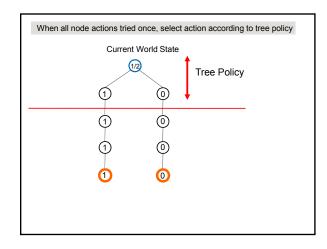
- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (UniformBandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

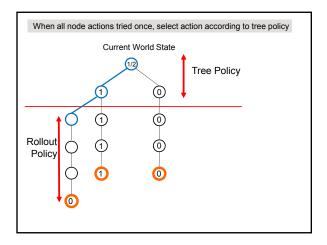


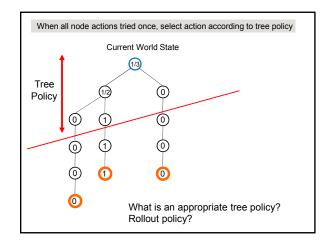


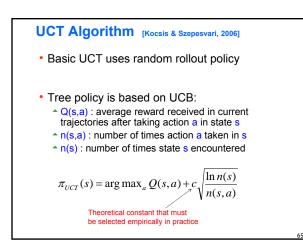




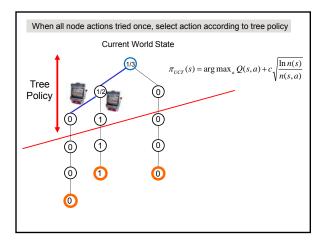


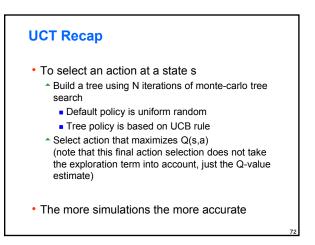












Computer Go

9x9 (smallest board)

- "Task Par Excellence for AI" (Hans Berliner)
- "New Drosophila of AI" (John McCarthy)
- Grand Challenge Task" (David Mechner)

A Brief History of Computer Go

2005: Computer Go is impossible!

- 2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)
- 2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)
- 2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

Computer GO Server: 1800 ELO → 2600 ELO

Other Successes

- Klondike Solitaire (wins 40% of games)
- General Game Playing Competition
- Real-Time Strategy Games
- Combinatorial Optimization
- List is growing
- Usually extend UCT is some ways

Some Improvements

- Use domain knowledge to handcraft a more intelligent default policy than random
 E.g. don't choose obviously stupid actions
- Learn a heuristic function to evaluate positions
 - Use the heuristic function to initialize leaf nodes (otherwise initialized to zero)

Summary

- When you have a tough planning problem and a simulator
 - Try Monte-Carlo planning
- Basic principles derive from the multi-arm bandit
- Policy Rollout is a great way to exploit existing policies and make them better
- If a good heuristic exists, then shallow sparse sampling can give good gains
- UCT is often quite effective especially when combined with domain knowledge