10/12/2012

CSE 473 Markov Decision Processes

Dan Weld

Many slides from Chris Bishop, Mausam, Dan Klein,

Stuart Russell, Andrew Moore & Luke Zettlemoyer

Logistics

= PS 2 due My - Thursday 10/18

= PS 3 due Thursday 10/25

MDPs

Markov Decision Processes
¢ Planning Under Uncertainty

¢ Mathematical Framework
e Bellman Equations

¢ Value Iteration N
¢ Real-Time Dynamic Programming

Andrey Markov
(1856-1922)

e Policy Iteration

¢ Reinforcement Learning

Planning Agent

Static vs. Dynamic

Fully
vs.
Partially
Observable
What action

next?

Perfect
vs.
Noisy

Percepts
ey

Actions

Deterministic

vs.
Stochastic

Instantaneous

Vs,
Durative

Objective of an MDP

e Find a policy n: V=D

¢ which optimizes
® minimizes (discounted) €xpected cost to reach a
goal or
* maximizes bindiscount) expected reward

* maximizes expected (reward-cost)

e givena____ horizon
o finite
e infinite
¢ indefinite

Review: Expectimax

= What if we don’t know what the result of an action
will be? E.g.,
e In solitaire, next card is unknown
¢ In pacman, the ghosts act randomly

= Can do expectimax search
= Max nodes as in minimax search
= Chance nodes, like min nodes, except
the outcome is uncertain - take
average (expectation) of children
= Calculate expected utilities

k Today, we formalize as an Markov Decision Process
= Handle intermediate rewards & infinite plans
= More efficient processing

Grid World

10/12/2012

= Walls block the agent’s path

= Agent’s actions may go astray: 3 ||
= 80% of the time, North action
takes the agent North 2 . [}
(assuming no wall)

= 10% - actually go West
= 10% - actually go East

1 HTART

= If there is a wall in the chosen 1 2 3 4
direction, the agent stays put

= Small “living” reward each step

= Big rewards come at the end o1 01

= Goal: maximize sum of rewards

.

Markov Decision Processes

= An MDP is defined by:

e AsetofstatesseS 3
e Asetofactionsa e A

* A transition function T(s,a,s’)
* Prob that a from s leads to s’ 2 ==
e ie.,P(s'|s,a)

* Also called “the model”

* Areward function R(s, a, s’) 1 | sTART
* Sometimes just R(s) or R(s’)
* Astart state (or distribution) 1 2 3 4

* Maybe a terminal state

MDPs: non-deterministic search

Reinforcement learning: MDPs where we don’t 0.1 01
know the transition or reward functions

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that
¢ conditioned on the present state,
o the future is independent of the past

= For Markov decision processes,
“Markov” means:

P(Sr+1 = S'\Sz =s,Ar=a1,Si-1 =511, A1, .S = Sn)

P(Si1 = 5’|Sz =51, A = ay)

Solving MDPs

= In deterministic single-agent search problems, want an optimal
plan, or sequence of actions, from start to a goal

= Inan MDP, we want an optimal policy t*: S > A
* Apolicy 7 gives an action for each state
* An optimal policy maximizes expected utility if followed
* Defines a reflex agent

3 — — —
Optimal policy when |t . t (=3
R(s, a,s’) =-0.03
for all non-terminals s 1 f -— | -— | -—
1 2 3 4

Example Optimal Policies

= || =0

A o (=

b =[=T
R(s) = -0.01

Example Optimal Policies

-]

E|

-l]

E

A |

e

) -

b |=|=|=

A—q-q"

R(s) = -0.01

R(s) = -0.03

Example Optimal Policies

10/12/2012

= ||| = = ||
) - |m) \ |
R(s) =-0.01 R(s) =-0.03
= |||
) (W=
b=]=
R(s) =-0.4

Example Optimal Policies

= |= | = ||
] o = [(W [=:]
L =|=<]7 b =|<]=
R(s) =-0.01 R(s) =-0.03
= || = ===
] A |= [} e (=]
V|=[4]= —|=[=[1

R(s)=-0.4 R(s) =-2.0

Example: High-Low

Three card types: 2, 3,4

¢ Infinite deck, twice as many 2’s
Start with 3 showing
After each card, you say “high” or “low”
New card is flipped

¢ If you're right, you win the points shown on
the new card

¢ Ties are no-ops (no reward)-0
¢ If you're wrong, game ends

= Differences from expectimax problems:
= #1: get rewards as you go
= #2: you might play forever!

High-Low as an MDP

= States:

e 2,3,4,done
= Actions:

* High, Low
= Model: T(s, a, s'):
P(s'=4 | 4, Low) = 1/4
P(s'=3 | 4, Low) = 1/4
P(s'=2 | 4, Low) = 1/2
P(s’=done | 4, Low) =0
P(s'=4 | 4, High) = 1/4
P(s'=3 | 4, High) =0
P(s'=2 | 4, High) =0
P(s’=done | 4, High) =3/4

= Rewards: R(s, a, '):
¢ Number shown ons’ if s’<s A a="high” ...
¢ 0otherwise

= Start: 3

Search Tree: High-Low

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

x

(s,a)isa <
g-state

state

(s,a,s”) called a

“sas N\ transition

R(s,a,s”)

-

T T(s,a,8’) = P(s’[s,a)

10/12/2012

I Infinite Utilities?!
Utilities of Sequences

= In order to formalize optimality of a policy, need to = Problem: infinite state sequences have infinite rewards
understand utilities of sequences of rewards
. . . || e|m
= Typically consider stationary preferences: = Solutions:
' = |
Finite horizon:
Q.1 T2y = [rrh b, °
[002] o [0712] * Terminate episodes after a fixed T steps (e.g. life) =|=l-]!
* Gives nonstationary policies (t depends on time left)
[rﬂ, L T T] - [1’0 r’l, J'JQ_ as I B . . N
¢ Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “done” for High-Low)
= Theorem: only two ways to define stationary utilities « Discounting: for 0<y <1
= Additive utility:
U(lrg,r1.ro,..) =rg+ri+rm+- Ullrg, ...]} = v'r1 < Rmax/(1 v)

=0

= Discounted utility:

U([rg.r1.72,...]) = rg + 41 + 72ro--- « Smaller y means smaller “horizon” — shorter term focus

Discounting Recap: Defining MDPs

= Markov decision processes:
e States S
e Startstate s, .
e Actions A o
e Transitions P(s’|s, a)
aka T(s,a,s’)
e Rewards R(s,a,s’) (and discount y)

“18

¥ < Rmax/(1

Ullrg,...r]} =

|
o

= Typically discount
rewards by y < 1 each

1)
time step
e Sooner rewards have - {

higher utility than
later rewards

= MDP quantities so far:
e Policy, 7 = Function that chooses an action for each state

¢ Also helps the o Utility (aka “return”) = sum of discounted rewards

algorithms converge

Optimal Utilities Why Not Search Trees?

= Define the value of a state s: = Why not solve with expectimax?
V*(s) = expected utility starting in s and acting optimally

= Define the value of a g-state (s,a):
Q’(s,a) = expected utility starting in s, taking actiona -~
and thereafter acting optimally
= Define the optimal policy:)
7'(s) = optimal action from state s e

= Problems:
o This tree is usually infinite (why?)
* Same states appear over and over (why?)
* We would search once per state (why?)

= |dea: Value iteration
Compute optimal values for all states all at

3 [omz | e | ooz | [FT] S Bl Ml Bl 2 once using successive approximations
* Will be a bottom-up dynamic program similar
N Rl s 2| | t | in cost to memoization
* Do all planning offline, no replanning needed!
1 nws | 0558 (2] 0.3 1 , -— —-— —
1 z 3 4 1 2 3 4

The Bellman Equations

= Definition of “optimal utility” leads to a simple
one-step look-ahead relationship between
optimal utility values:

Veis) = mﬂaxQ'(x. a)

Q*(s,a) = ZT(S,(L,S/) [R(.s,a,)+ "/V*(S’)]

(1920-1984)
V*'(s) = max }_: T(s,a,s") |‘R(.ﬁ',”. ")+ 1"(.«’)]

10/12/2012

Bellman Equations for MDPs

/ Y T
S R(s.a.8") +7V*(s)

V*(s) = max LZ Pr(s'|s,a)

V(s = max Q"(s,a)

Bellman Backup (MDP)

* Given an estimate of V* function (say V,)
* Backup V, function at state s
e calculate a new estimate (V,,,) :

Qnt1(s,a) = 3 Pr(s'|s,a) EJ(& a,s’) +YVn(5/)}
s'eS
Vpg1(s) = aefz%) [Qn+1(s,0)]

* Q,,4(s,a) : value/cost of the strategy:
e execute action a in s, execute 7, subsequently
* T, = argMaX,eapsQn(s,a)

Bellman Backup
Qi(s,a;)=2+70

Q,(s,a,) =5 +70.97
0 +v0.17
~6.1

Qq(s,a3) =4.5+y2
~6.5

Value iteration (seimansz

* assign an arbitrary assignment of V, to each state.

* repeat

o for all state
compute V,,,(s) by Bellman backup at s,)«— lteration n+1
* until maxg WG
" Residual(s)

g-convergence

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value Iteration

= |dea:
e Start with V,"(s) = 0, which we know is right (why?)
¢ Given V/, calculate the values for all states for depth i+1:

Vig1(s) — max}_ T(s,a,s") |z‘i’(5.u,.~f’) o 1;(.5-’)|

* This is called a value update or Bellman update
¢ Repeat until convergence

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

10/12/2012

Example: ©=0.9, ing

Value Estimates Example: Bellman Update$=""=>*
= Calculate estimates V,"(s) 3| 0 0 a| 9 9 9
¢ The optimal value considering only next k time steps
(k rewards) ‘(1
* Ask->o, V,approaches the optimal value Vn : 0 = : ? ? =
= Why: 110 0 0 0 1 ? ? ? ?
= |f discounting, distant rewards become
negligible 1] 3 4 1 2 3 4

= |f terminal states reachable from
everywhere, fraction of episodes not
ending becomes negligible
= Otherwise, can get infinite expected
utility and then this approach actually)
won’t work

Visa(s) = max) T{s,a, ") [R(s, 0,) +7Vils)] = maxQus:(s, 8}
4
Qu((3, %), dight} = Y T((3, 3), right, #)) [R((3, %), right, &'} +7Vi(#)]

=085 [00+0.9510+0.1=[0.0+0.90.0] +0.1 =[0.0 +0.9s0.0|

Example: Value Iteration Example: Value Iteration
Vl v2
3 0 0 |0.72 3 0 |0.52|0.78

L]
o
o

L]
o
o
»
)

! 0 0 0 0 ! 0 0 0 0

1 2 3 4 1 2 3 4

= |Information propagates outward from terminal
states and eventually all states have correct value

estimates
Practice: Computing Actions Comments
¢ Decision-theoretic Algorithm
= Which action should we chose from state s: * Dynamic Programming
¢ Fixed Point Computation
« Given optimal values Q? * Probabilistic version of Bellman-Ford Algorithm

o for shortest path computation
N ¢ MDP, : Stochastic Shortest Path Problem
argmax Q*(s,a)
a
= Time Complexity
* oneiteration: O(|V|?|D |)
o number of iterations: poly(| V[, |D |, 1/(1-y))
= Space Complexity: O(|V])

e Given optimal values V?

argmax > T(s,a,s)[R(s,a,s") +~vV*(s")]

Factored MDPs = Planning under uncertainty

e Lesson: actions are easier to select from Q’s!) i
* exponential space, exponential time

Convergence Properties

V, — V*in the limit asn—4
g-convergence: V, function is within g of V*
Optimality: current policy is within 2gy/(1—y) of optimal

Monotonicity
¢ VoS V=V, < V* (V, monotonic from below)
e Vo2 V"2V, 2 V* (V, monotonic from above)
¢ otherwise V, non-monotonic

10/12/2012

Convergence

= Define the max-norm: |U|| = maxs |U(s)]

= Theorem: For any two approximations Ut and Vt
(Ut - viHY | < 5 U = VY|
* |.e. any distinct approximations must get closer to each other, so, in
particular, any approximation must get closer to the true V* (aka U)
and value iteration converges to a unique, stable, optimal solution
= Theorem:
Ut — U] <€, = |[UHTL - U] < 2ev/(1 — %)

* |.e.once the change in our approximation is small, it must also be
close to correct

Value Iteration Complexity

= Problem size:
e |A| actions and |S| states

= Each Iteration
e Computation: O(|A|-|S]?)
® Space: O(|S])

= Num of iterations
¢ Can be exponential in the discount factor y

Markov Decision Processes

MDPs

¢ Planning Under Uncertainty

e Mathematical Framework
¢ Bellman Equations

¢ Value Iteration N
¢ Real-Time Dynamic Programming

Andrey Markov
(1856-1922)

e Policy Iteration

¢ Reinforcement Learning

Asynchronous Value Iteration

= States may be backed up in any order
¢ Instead of systematically, iteration by iteration

= Theorem:
¢ As long as every state is backed up infinitely often...
¢ Asynchronous value iteration converges to optimal

Asynchonous Value Iteration
Prioritized Sweeping
Why backup a state if values of successors same?

Prefer backing a state
¢ whose successors had most change

Priority Queue of (state, expected change in value)
Backup in the order of priority

After backing a state update priority queue
o for all predecessors

Asynchonous Value Iteration

Real Time Dynamic Programming
[Barto, Bradtke, Singh’95]

e Trial: simulate greedy policy starting from start state;
perform Bellman backup on visited states

e RTDP:
¢ Repeat Trials until value function converges

10/12/2012

Why?

= Why is next slide saying min

RTDP Trial

Q+1(Sp2)

Comments

* Properties
* if all states are visited infinitely often then V, > V*

¢ Advantages
e Anytime: more probable states explored quickly

¢ Disadvantages
e complete convergence can be slow!

Labeled RTDP

= Stochastic Shortest Path Problems
 Policy w/ min expected cost to reach goal
= |nitialize vO(s) with admissible heuristic
¢ Underestimates remaining cost
= Theorem:
« if residual of VX(s) < € and
VK(s’) < & for all succ(s), ', in greedy graph
¢ Then Vkis e-consistent and will remain so
= Labeling algorithm detects convergence

[Bonet&Geffner ICAPS03]

MDPs

Markov Decision Processes
¢ Planning Under Uncertainty

¢ Mathematical Framework

¢ Bellman Equations

¢ Value Iteration

¢ Real-Time Dynamic Programming
e Policy Iteration

Andrey Markov
(1856-1922)

¢ Reinforcement Learning

Changing the Search Space

* Value Iteration
e Search in value space
e Compute the resulting policy

e Policy Iteration
e Search in policy space
e Compute the resulting value

10/12/2012

Utilities for Fixed Policies

= Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy
= Define the utility of a state s, under
a fixed policy 7
V7(s) = expected total discounted
rewards (return) starting in s and S"F(Sjss’
following 7 s

= Recursive relation (one-step look-
ahead / Bellman equation):

Viia) = ZT{.H_F(,N_}_.«IJ[H{.-'_F .‘s)_.-if) + '.-'l"“'(.-\"l)]

Policy Evaluation

= How do we calculate the V’s for a fixed policy?

= |dea one: modify Bellman updates

Vi(s) =0

V() = X T(s,m(s), 8)[R(s, m(s),8") + V()]

= |deatwo:it’s juét a linear system, solve with Matlab
(or whatever)

Policy Iteration

= Problem with value iteration:

¢ Considering all actions each iteration is slow: takes |A| times
longer than policy evaluation

* But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

e Step 1: Policy evaluation: calculate utilities for a fixed policy (not
optimal utilities!) until convergence (fast)

e Step 2: Policy improvement: update policy using one-step
lookahead with resulting converged (but not optimal!) utilities
(slow but infrequent)

¢ Repeat steps until policy converges

Policy Iteration

= Policy evaluation: with fixed current policy 7, find values with
simplified Bellman updates:
 lterate until values converge

Vi1 (s) = YT (o, mi(),) [RCsmas),) 4 V(")

Policy improvement: with fixed utilities, find the best action
according to one-step look-ahead

Tr+1(s) = argmax ¥ T(s,a,s") [R(s,a,s") + 7} "'-"(..-’)|
a —

]

Policy iteration wowareso)
e assign an arbitrary assignment of 1, to each state.

* repeat
——costly: O(n’)

* compute m,,,(s): argmax, . Ap(s,(?!ml(s,a)
e untilw,,, ==
T o approximate
ltl().dlﬁed — by value iteration
Advantage Policy Iteration using fixed policy
« searching in a finite (policy) space as opposed to
uncountably infinite (value) space = convergence faster.

« all other properties follow!

10/12/2012

Modified Policy iteration
 assign an arbitrary assignment of 7, to each state.

¢ repeat
¢ Policy Evaluation: compute V,,, the approx. evaluation of w,
¢ Policy Improvement: for all states s
* compute m,,,(s): argmaX,s ao(sQnea(s,a)

e untilw,,, =m,

Advantage

« probably the most competitive synchronous dynamic
programming algorithm.

Policy Iteration Complexity

= Problem size:
e |A] actions and |S| states

= Each Iteration
e Computation: O(|S|3+ |A]-|S]?)
® Space: O(|S])

= Num of iterations
e Unknown, but can be faster in practice
e Convergence is guaranteed

Comparison

= |nvalue iteration:

o Every pass (or “backup”) updates both utilities (explicitly, based on current
utilities) and policy (possibly implicitly, based on current policy)

= In policy iteration:
¢ Several passes to update utilities with frozen policy
¢ Occasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):
¢ Any sequences of partial updates to either policy entries or utilities will
converge if every state is visited infinitely often

Recap: MDPs

= Markov decision processes:
e StatesS
e Actions A
e Transitions P(s’|s,a) (or T(s,a,s’))
e Rewards R(s,a,s’) (and discount ©)
e Start state s,

‘,./"’é,a,s
= Quantities: As
e Returns = sum of discounted rewards
¢ Values = expected future returns from a state (optimal, or for a
fixed policy)
e Q-Values = expected future returns from a g-state (optimal, or
for a fixed policy)

10

