10/5/2012

CSE 573: Artificial Intelligence Logistics 1

Autumn 2012 = Dan in Boston (UIST) on Wed 10/10

= Guest lecture by Mausam

Adversarial Search Planning with Markov
Dan Weld An Al Perspective i

M
Nacdrey Kabobor

Based on slides from

Dan Klein, Stuart Russell, Andrew Moore and Luke Zettlemoyer

Logistics 2 Outline

= Adversarial Search
= Minimax search
= a-f search
= Evaluation functions
= Expectimax

= PS 1 due Fues46/9 Thurs 10/11
= PS 2 due Tues 10/16
= PS 3 due Tues 10/23

Types of Games Deterministic Games

deterministic chance = Many possible formalizations, one is:
= States: S (start at s)
= Players: P={1...N} (usually take turns)
= Actions: A (may depend on player / state)
= Transition Function: S x A > S
bridge, poker, . Terminal Te.s.t.: S > {t.f}
stratego scrabble, nuclear = Terminal Utilities: S x P> R

perfect chess, checkers, | backgammon,
information go, othello monopoly

imperfect

information
war

= Solution for a player is a policy: S > A
Number of Players? 1,2, ...?

Deterministic Two-Player

10/5/2012

= E.g. tic-tac-toe, chess, checkers
= Zero-sum games

= One player maximizes result

= The other minimizes result

= Minimax search
= A state-space search tree [e]
= Players alternate

= Choose move to position with highest minimax value
= best achievable utility against best play

Tic-tac-toe Game Tree

Minimax Example

max

min

A (x) 1
AT o 3 -
e H - - - 1
L1] i .
x[o] | [x] o] [«
MAx) T 7l
xelx [xa 2]
um (o] T = =
~—
x[o[x| [xo[x] [x[o[x
TERMINAL | O/X ©0/X | |[X |
o xxjo [xjoo
ity - ® “
max

min

Minimax Example

max

min

Minimax Example

max

min

Minimax Example

10/5/2012

max

min

Minimax Search

function Max-VaLvg(state) returns a utility value
if TERMINAL-TEST(state) then return UTiLiry(state)
PE—
for a, sin Successors(state) do v— MAX(r, MIN-VALUE(S))
return

function Min-VarLve(state) returns a ufility value
if TERMINAL-TEST(sfate) then return UTILITY(stale)
P00
for a. sin Successons(sfate) do v— Min(r, MAX-VALUE(s))
return v

Minimax Properties

= Optimal?
= Yes, against perfect player. Otherwise?

= Time complexity?
[O(bm)

= Space complexity?
= O(bm)

= For chess, b ~35, m~ 100
= Exact solution is completely infeasible
= But, do we need to explore the whole tree?

Do We Need to Evaluate Every Node?

o-p Pruning Example

Progress of search...

a-f Pruning

= o is the best value that MAX
can get at any choice point

Player
along the current path
Opponent
= |If n becomes worse than «, H
MAX will avoid it, so can stop
considering n’s other children '
Player
= Define B similarly for MIN Opponent

10/5/2012

Alpha-Beta Pseudocode .
Alpha-Beta Pruning Example
inputs: state, current game state
a, value of best alternative for MAX on path to state
/, value of best alternative for MIN on path to state
returns: a utility value
function MAX-VALUE(state, a, f5) function MIN-VALUE(state, a, 5)
if TERMINAL-TEST(s7ate) then if TERMINAL-TEST(state) then
return UTILITY (state) return UTILITY (state)
V= —00 V<« +oo
for a, s in SUCCESSORS(state) do for a, s in SUCCESSORS(state) do
v «— MAX(v, MIN-VALUE(s,0,/%)) v — MIN(v, MAX-VALUE(s,0,5))
if v > f then return v if v < @ then return v
o — MAX(a,v) f — MIN(S,v)
return v return v
At max node: At min node:
Prune if v2p; Prune if a<v; ais MAX's best alternative here or above
Update a Update B is MIN's best alternative here or above
Alpha-Beta Pruning Properties Resource Limits
= This pruning has no effect on final result at the root = Cannot search to leaves
= Depth-limited search
= Values of intermediate nodes might be wrong! = Instead, search a limited depth of tree
= but, they are bounds = Replace terminal utilities with heuristic

eval function for non-terminal positions
= Good child ordering improves effectiveness of pruning * CGuarantee of optimal play is gone
= Example:

= Suppose we have 100 seconds, can
explore 10K nodes / sec

= So can check 1M nodes per move

= o-p reaches about depth 8
decent chess program

= With “perfect ordering”:
= Time complexity drops to O(b™?2)
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

Heuristic Evaluation Function Evaluation for Pacman

= Function which scores non-terminals

Black winming

= |deal function: returns the utility of the position
= |n practice: typically weighted linear sum of features:
» e.g. f1(s) = (num white queens — num black queens), etc. What features would be good for Pacman?

Eval(s) = w1 f1(s) + waf2(s) + - .. + wnfa(s) Eval(s) = w1 f1(s) +w2f2(s) + ...+ wnfn(s)

10/5/2012

Which algorithm?

a-f3, depth 4, simple eval fun

QuickTime™ and a
GIF decompressor
are needed to see this picture.

Why Pacman Starves

= He knows his score will go
up by eating the dot now

= He knows his score will go
up just as much by eating
the dot later on

= There are no point-scoring

opportunities after eating

the dot

Therefore, waiting seems

just as good as eating

Which algorithm?

a-B, depth 4, better eval fun

QuickTime™ and a
GIF decompressor
are needed to see this picture.

Which Algorithm?

Minimax: no point in trying

QuickTime™ and a
GIF decompressor
are needed to see this picture.

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

QuickTime™ and a
GIF decompressor
are needed to see this picture.

3 ply look ahead, ghosts move randomly

Stochastic Single-Player

= What if we don’t know what the
result of an action will be? E.g.,
= |n solitaire, shuffle is unknown N
= In minesweeper, mine
locations

= Can do expectimax search Q
= Chance nodes, like actions
except the environment controls
the action chosen
= Max nodes as before
= Chance nodes take average

(expectation) of value of children

max

. average

Soon, we'll generalize this problem to a Markov Decision Process

10/5/2012

Maximum Expected Utility

= Why should we average utilities? Why not minimax?

= Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge
= General principle for decision making
= Often taken as the definition of rationality
= We'll see this idea over and over in this course!

= Let's decompress this definition...

Reminder: Probabilities

A random variable models an event with unknown outcome
A probability distribution assigns weights to outcomes

Example: traffic on freeway?

= Random variable: T = whether there's traffic

= Outcomes: T in {none, light, heavy}

= Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

Some laws of probability (read ch 13):
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
= P(T=heavy) = 0.20, P(T=heavy | Hour=5pm) = 0.60
= We'll talk about methods for reasoning and updating probabilities later

What are Probabilities?

= Objectivist / frequentist answer:

Averages over repeated experiments

E.g. empirically estimating P(rain) from historical observation
E.g. pacman’s estimate of what the ghost will do, given what it
has done in the past

Assertion about how future experiments will go (in the limit)
Makes one think of inherently random events, like rolling dice

= Subjectivist / Bayesian answer:
= Degrees of belief about unobserved variables
= E.g. an agent'’s belief that it's raining, given the temperature
= E.g. pacman’s belief that the ghost will turn left, given the state
= Often learn probabilities from past experiences (more later)
= New evidence updates beliefs (more later)

Uncertainty Everywhere

= Not just for games of chance!
= I'msick: will | sneeze this minute?
= Email contains “FREE!": s it spam?
= Tummy hurts: have appendicitis?
= Robot rotated wheel three times: how far did it advance?

= Sources of uncertainty in random variables:
= Inherently random process (dice, opponent, etc)
Insufficient or weak evidence
Ignorance of underlying processes
Unmodeled variables
The world’s just noisy — it doesn’t behave according to plan!

Review: Expectations

= Real valued functions of random variables:
f:X—R
= Expectation of a function of a random variable

Epxlf(X)] =) f(z)P(x)

= Example: Expected value of a fair die roll

X P /

1 1/6 1 1 1 1 1 1 1
> s 3 lxg+2xg+3xg+4xg+5xg+6xg
3 1/6 3

4 1/6 4 =35

5 1/6 5

6 1/6 6

Utilities

= Utilities are functions from outcomes (states of the
world) to real numbers that describe an agent’s
preferences

= Where do utilities come from?
= Ina game, may be simple (+1/-1)
= Utilities summarize the agent’s goals

= Theorem: any set of preferences between outcomes can be
summarized as a utility function (provided the preferences meet
certain conditions)

= In general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

= More on utilities soon...

10/5/2012

Expectimax Search

Expectimax Pseudocode

= In expectimax search, we have a B
probabilistic model of how the opponent
(or environment) will behave in any state =

= Model could be a simple uniform

distribution (roll a die)

Model could be sophisticated and require

a great deal of computation O =
We have a node for every outcome out of

our control: opponent or environment

The model might say that adversarial

actions are likely!)

= For now, assume for any state we magically have a distribution to
assign probabilities to opponent actions / environment outcomes

def value(s)
if s is @ max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)

def maxValue(s)
values = [value(s’) for s” in successors(s)]

return max(values)

def expValue(s)
values = [value(s’) for s” in successors(s)]
weights = [probability(s, s’) for s” in successors(s)]
return expectation(values, weights)

Expectimax Evaluation

Expectimax Pruning?

= Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

= For minimax, evaluation function scale doesn’t matter

= We just want better states to have higher evaluations
(ie, get the ordering right)

= We call this insensitivity to monotonic transformations

= For expectimax, we need magnitudes to be meaningful

= Not easy
= exact: need bounds on possible values
= approximate: sample high-probability branches

Expectimax for Pacman

Expectimax for Pacman

Results from playing 5 games

Minimizing Random
Ghost Ghost

Won 5/5 Won 5/5

Minimax Avg. Score: Avg. Score:
Pacman
493 483
) Won 1/5 Won 5/5
Expectimax ayq Score: Avg. Score:
Pacman

-303 503 SCORE: 0

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Notice that we’ve gotten away from thinking that the
ghosts are trying to minimize pacman’s score

Instead, they are now a part of the environment
Pacman has a belief (distribution) over how they will act

Quiz: Can we see minimax as a special case of
expectimax?

Quiz: what would pacman’s computation look like if we
assumed that the ghosts were doing 1-ply minimax and
taking the result 80% of the time, otherwise moving
randomly?

10/5/2012

Stochastic Two-Player Stochastic Two-Player

* E.g. backgammon = Dice rolls increase b: 21 possible rolls with 2 dice

MAX
= Expectiminimax (1) = Backgammon: 20 legal moves ,
. . - = 3 = 9 R A A
= Environment is an extra . Depth 4 =20 x (21 x 20)3 = 1.2 x 10 T
player that moves after = As depth increases, probability of
each agent reaching a given node shrinks [
= Chance nodes take MIN . 20 ?{alf.:le ofdlootkhahelad isddimini§hed f
expectations, otherwise 0 fimiting depih Is less damaging
. i = But pruning is less possible...
like minimax o H
W OMDI I IEAT 618 1Y
if state is a Max nede then
return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(sfulr) = TDGammon uses depth-2 search + very good eval function
if state is a M node then + reinforcement learning: world-champion level play

return the lowest ExproriMiNmiax-VaLve of Successons(state)
if state is a chance node then
return average of EXPECTIAMINIMAX-VALUE of SUCCESSORS(statr)

Multi-player Non-Zero-Sum Games

= Similar to minimax:

Utilities are now tuples
Each player maximizes their
own entry at each node
Propagate (aka “back up”)
nodes from children

Can give rise to cooperation
and competition dynamically...

(128 Jfez Jprz Jrer J it sz J 7]

