
10/5/2012

1

CSE 573: Artificial Intelligence
Autumn 2012

Ad i l S hAdversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Andrew Moore and Luke Zettlemoyer
1

Logistics 1

 Dan in Boston (UIST) on Wed 10/10

 Guest lecture by Mausam

Logistics 2

 PS 1 due Tues 10/9 Thurs 10/11

 PS 2 due Tues 10/16

 PS 3 due Tues 10/23

Outline
 Adversarial Search
 Minimax search

 α-β search

 Evaluation functions

 Expectimax

Types of Games

stratego

Number of Players? 1, 2, …?

Deterministic Games

 Many possible formalizations, one is:
 States: S (start at s0)

 Players: P={1...N} (usually take turns)

 Actions: A (may depend on player / state) Actions: A (may depend on player / state)

 Transition Function: S x A  S

 Terminal Test: S  {t,f}

 Terminal Utilities: S x P R

 Solution for a player is a policy: S  A

10/5/2012

2

Deterministic Two-Player

 E.g. tic-tac-toe, chess, checkers
 Zero-sum games
 One player maximizes result
 The other minimizes result

max

min

8 2 5 6

min

 Minimax search
 A state-space search tree
 Players alternate
 Choose move to position with highest minimax value

= best achievable utility against best play

Tic-tac-toe Game Tree

Minimax Example

max

min

Minimax Example

max

3min

Minimax Example

max

3 2min

Minimax Example

max

3 2 2min

10/5/2012

3

Minimax Example

3max

3 2 2min

Minimax Search

Minimax Properties

 Time complexity?
max

min

 O(bm)

 Optimal?

 Yes, against perfect player. Otherwise?

 Space complexity?

10 10 9 100

min

 O(bm)

 For chess, b  35, m  100
 Exact solution is completely infeasible
 But, do we need to explore the whole tree?

Do We Need to Evaluate Every Node?

- Pruning Example

3

3 2 ?

Progress of search…

- Pruning

  is the best value that MAX
can get at any choice point
along the current path

If n becomes orse than

Player

Opponent a

 If n becomes worse than ,
MAX will avoid it, so can stop
considering nʼs other children

 Define  similarly for MIN

Player

Opponent n

n

10/5/2012

4

Alpha-Beta Pseudocode

function MAX-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)

inputs: state, current game state
α, value of best alternative for MAX on path to state
β, value of best alternative for MIN on path to state

returns: a utility value

function MIN-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s,α,β))
if v ≥ β then return v
α ← MAX(α,v)

return v

return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s,α,β))
if v ≤ α then return v
β ← MIN(β,v)

return v

At max node:
Prune if v;
Update 

At min node:
Prune if v;
Update 

Alpha-Beta Pruning Example

α is MAXʼs best alternative here or above
β is MINʼs best alternative here or above

2 3 5 9
5 62 17 40

Alpha-Beta Pruning Properties

 This pruning has no effect on final result at the root

 Values of intermediate nodes might be wrong!
 but, they are bounds

 Good child ordering improves effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth!
 Full search of, e.g. chess, is still hopeless…

Resource Limits

 Cannot search to leaves

 Depth-limited search
 Instead, search a limited depth of tree

 Replace terminal utilities with heuristic
eval function for non-terminal positions

-1 -2 4 9

4
min min

max

-2 4

p

 Guarantee of optimal play is gone

 Example:
 Suppose we have 100 seconds, can

explore 10K nodes / sec

 So can check 1M nodes per move

  reaches about depth 8
decent chess program

? ? ? ?

Heuristic Evaluation Function
 Function which scores non-terminals

 Ideal function: returns the utility of the position
 In practice: typically weighted linear sum of features:
 e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

What features would be good for Pacman?

10/5/2012

5

Which algorithm?

α-β, depth 4, simple eval fun

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Why Pacman Starves

 He knows his score will go
up by eating the dot now

 He knows his score will go
up just as much by eating
the dot later onthe dot later on

 There are no point-scoring
opportunities after eating
the dot

 Therefore, waiting seems
just as good as eating

Which algorithm?

α-β, depth 4, better eval fun

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?

Minimax: no point in trying

QuickTime™ and a
GIF decompressor

are needed to see this picture.

3 ply look ahead, ghosts move randomly

Which Algorithm?

Expectimax: wins some of the time

QuickTime™ and a
GIF decompressor

are needed to see this picture.

3 ply look ahead, ghosts move randomly

Stochastic Single-Player
 What if we donʼt know what the

result of an action will be? E.g.,
 In solitaire, shuffle is unknown
 In minesweeper, mine

locations

max

average

10 4 5 7

g
 Can do expectimax search
 Chance nodes, like actions

except the environment controls
the action chosen

 Max nodes as before
 Chance nodes take average

(expectation) of value of children

Soon, weʼll generalize this problem to a Markov Decision Process

10/5/2012

6

Maximum Expected Utility

 Why should we average utilities? Why not minimax?

 Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge
 General principle for decision making
 Often taken as the definition of rationality
 Weʼll see this idea over and over in this course!

 Letʼs decompress this definition…

Reminder: Probabilities

 A random variable models an event with unknown outcome
 A probability distribution assigns weights to outcomes

 Example: traffic on freeway?
 Random variable: T = whether thereʼs traffic
 Outcomes: T in {none, light, heavy}
 Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

 Some laws of probability (read ch 13):
 Probabilities are always non-negative
 Probabilities over all possible outcomes sum to one

 As we get more evidence, probabilities may change:
 P(T=heavy) = 0.20, P(T=heavy | Hour=5pm) = 0.60
 Weʼll talk about methods for reasoning and updating probabilities later

What are Probabilities?

 Averages over repeated experiments
 E.g. empirically estimating P(rain) from historical observation
 E.g. pacmanʼs estimate of what the ghost will do, given what it

has done in the past
 Assertion about how future experiments will go (in the limit)

 Objectivist / frequentist answer:

p g ()
 Makes one think of inherently random events, like rolling dice

 Degrees of belief about unobserved variables
 E.g. an agentʼs belief that itʼs raining, given the temperature
 E.g. pacmanʼs belief that the ghost will turn left, given the state

 Often learn probabilities from past experiences (more later)
 New evidence updates beliefs (more later)

 Subjectivist / Bayesian answer:

Uncertainty Everywhere

 Not just for games of chance!
 Iʼm sick: will I sneeze this minute?
 Email contains “FREE!”: is it spam?
 Tummy hurts: have appendicitis?
 Robot rotated wheel three times: how far did it advance?

 Sources of uncertainty in random variables:
 Inherently random process (dice, opponent, etc)
 Insufficient or weak evidence
 Ignorance of underlying processes
 Unmodeled variables
 The worldʼs just noisy – it doesnʼt behave according to plan!

Review: Expectations

 Real valued functions of random variables:

 Expectation of a function of a random variable

 Example: Expected value of a fair die roll

X P f

1 1/6 1

2 1/6 2

3 1/6 3

4 1/6 4

5 1/6 5

6 1/6 6

Utilities

 Utilities are functions from outcomes (states of the
world) to real numbers that describe an agentʼs
preferences

 Where do utilities come from?
 In a game may be simple (+1/ 1) In a game, may be simple (+1/-1)
 Utilities summarize the agentʼs goals
 Theorem: any set of preferences between outcomes can be

summarized as a utility function (provided the preferences meet
certain conditions)

 In general, we hard-wire utilities and let actions emerge
(why donʼt we let agents decide their own utilities?)

 More on utilities soon…

10/5/2012

7

Expectimax Search

 In expectimax search, we have a
probabilistic model of how the opponent
(or environment) will behave in any state
 Model could be a simple uniform

distribution (roll a die)

 Model could be sophisticated and require
t d l f t tia great deal of computation

 We have a node for every outcome out of
our control: opponent or environment

 The model might say that adversarial
actions are likely!

 For now, assume for any state we magically have a distribution to
assign probabilities to opponent actions / environment outcomes

Expectimax Pseudocode

def value(s)

if s is a max node return maxValue(s)

if s is an exp node return expValue(s)

if s is a terminal node return evaluation(s)

def maxValue(s)
values = [value(sʼ) for sʼ in successors(s)]

return max(values)

def expValue(s)
values = [value(sʼ) for sʼ in successors(s)]

weights = [probability(s, sʼ) for sʼ in successors(s)]

return expectation(values, weights)

8 4 5 6

Expectimax Evaluation

 Evaluation functions quickly return an estimate for a
nodeʼs true value (which value, expectimax or minimax?)

 For minimax, evaluation function scale doesnʼt matter

 We just want better states to have higher evaluations
(ie get the ordering right)(ie, get the ordering right)

 We call this insensitivity to monotonic transformations

 For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Expectimax Pruning?

 Not easy
 exact: need bounds on possible values

 approximate: sample high-probability branches

Expectimax for Pacman

Minimizing
Ghost

Random
Ghost

Minimax

Results from playing 5 games

Won 5/5 Won 5/5
Minimax
Pacman

Expectimax
Pacman

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Avg. Score:

493

Avg. Score:

483

Won 5/5

Avg. Score:

503

Won 1/5

Avg. Score:

-303

Expectimax for Pacman

 Notice that we’ve gotten away from thinking that the
ghosts are trying to minimize pacman’s score

 Instead, they are now a part of the environment

 Pacman has a belief (distribution) over how they will act

 Quiz: Can we see minimax as a special case of
expectimax?

 Quiz: what would pacman’s computation look like if we
assumed that the ghosts were doing 1-ply minimax and
taking the result 80% of the time, otherwise moving
randomly?

10/5/2012

8

Stochastic Two-Player

 E.g. backgammon

 Expectiminimax (!)
 Environment is an extra

player that moves after
each agenteach agent

 Chance nodes take
expectations, otherwise
like minimax

Stochastic Two-Player

 Dice rolls increase b: 21 possible rolls with 2 dice
 Backgammon: 20 legal moves
 Depth 4 = 20 x (21 x 20)3 = 1.2 x 109

 As depth increases, probability of
reaching a given node shrinksreaching a given node shrinks
 So value of lookahead is diminished
 So limiting depth is less damaging
 But pruning is less possible…

 TDGammon uses depth-2 search + very good eval function
+ reinforcement learning: world-champion level play

Multi-player Non-Zero-Sum Games

 Similar to minimax:
 Utilities are now tuples
 Each player maximizes their

own entry at each node
 Propagate (aka “back up”)

nodes from childrennodes from children

 Can give rise to cooperation
and competition dynamically…

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

