CSE 573: Artificial Intelligence
Autumn2012

Heuristics & Pattern
Databases for Search

Dan Weld

With many slides from
Dan Klein, Richard Korf, Stuart Russell, Andrew Moore, & UW Faculty

10/4/2012

Recap: Search Problem

= States
= configurations of the world
= Successor function:

= function from states to lists of (state, action, cost)
triples

= Start state
= Goal test

General Graph Search Paradigm

function tree-search(root-node)
fringe € successors(root-node)
explored < empty
while (notempty(fringe))
{node & remove-first(fringe)
state € state(node)
if goal-test(state) return solution(node)
explored €explored U {node}
fringe € fringe U (successors(node) - explored)
}
return failure
end tree-search

Fringe = priority queue, ranked by heuristic
Often: f(x) = g(x) + h(x)

Which Algorithm?

Uniform cost search

Which Algorithm?

A* using Manhattan

Which Algorithm?

Best-first search using Manhattan

10/4/2012

Admissable Heuristics

= f(x) = g(x) + h(x)
= g: cost so far

H e u ri Sti CS = h: underestimate of remaining costs

Where do heuristics come from?

It's what makes search actually work

© Daniel S. Weld 8

Relaxed Problems What's being relaxed?

= Derive admissible heuristic from exact cost of

Straight-line distance

a solution to a relaxed version of problem At
Bucharest 0

= For transportation planning, relax requirement that car has Craiona 1o
to stay on road - Euclidean dist g okl ol

-) o E R — ogoras i

= For blocks world, distance = # move operations heuristic = 114 a gnﬂ' 151
number of misplaced blocks o b

) Mehadia a1

= What is relaxed problem? Neamt B
— — e Quinovs bkt 1o

. SR.':.'"K"VM 193

i | HE _I_ Timisoars A

out of place = 2, true distance to goal = 3 h Urziceni)

Erore Vashii 199

Zerind 74

+ Cost of optimal soln to relaxed problem < cost of
optimal soln for real problem

Example: Pancake Problem Example: Pancake Problem

Action: Flip over the BOUNDS FOR SORTING BY PREFIX REVERSAL

top n pancakes — william H. GATES

Microsoft, Albuquerque, New Mexico

— Christos H. PAPADIMITRIOU*T
Depariment of Electrical Engineering, University of California, Herkeley, CA 94720, US.A.

Received 18 January 1978
p— Revised 28 August 1978

For a permutation o of the integers from 1 to n, let flor) be the smallest number af prefix
reversals that will transform o to the identity permutation, and let fin) be the largest such fio)
for all o in (the symmetric group) 5. We show that fin)={3n + 53, and that fin)e= 17n/16 for
n a multiple of 16 If, furthermare, each integer is required o participate in an even number of
reversed prefixes, the corresponding function gin) is shown 10 obey 3n2-1=gin)=2n+3,

Cost: Number of pancakes flipped
Goal: Pancakes in size order

10/4/2012

Example: Heuristic Function

Example: Pancake Problem

Heuristic: h(x) = the largest pancake that is still out of place
What is being relaxed?

State space graph with costs as weights

4 _— — -
A~ \E— ‘ \2 - 4\: \
— N — 4 4= ~ 3 =
o == R ! = T
=l__ = = =

Counterfeit Coin Problem Coins

= State = coin possibilities
= Action = weighing two subsets of coins

= Heuristic?
= What is being relaxed?

= Twelve coins
= One is counterfeit: maybe heavier, maybe light

= Obijective:
= Which is phony & is it heavier or lighter?

= Max three weighings _
= = ‘L

Traveling Salesman Problem

What can be relaxed?

Traveling Salesman Problem

What can be relaxed?
Relax degree constraint

Path =
1) Graph Assume can teleport to past nodes on path
2) Degree 2 (except ends, degree 1) >
Minimum spanning tree

3) Connected

Kruskal's Algorithm:
0o(n?)
(Greedily add cheapest useful edges) s

Kruskal's Algo:
(Greedily add cheapest useful edges) 1

Traveling Salesman Problem

What can be relaxed?

Relax connected constraint
9

Cheapest degree 2 graph

Optimal assignment
O(nd)

Planning

I have a plan - a plan that cannot possibly fail.

- Inspector Clousseau

10/4/2012

Automated Generation of
Relaxed Problems

= Need to reason about search problems
= Represent search problems in formal language

Classical Planning

= Given
= alogical description of the initial situation,
= a logical description of the goal conditions, and
= a logical description of a set of possible actions,

* Find
= asequence of actions (a plan of actions) that brings

us from the initial situation to a situation in which the
goal conditions hold.

Example: BlocksWorld

>
(@
(mﬁm

© Daniel S. Weld 23

©D. Weld, D. Fox

Planning Input:
State Variables/Propositions

« Types: block We@
« (on-table a) (“table c) o

* (clear a) (clear b) (clear c)

¢ (arm-empty)

¢ (holding a) (holding b) (holding c)

e (onab)(onac)(onba)(onbc)(onca)(onchb)

No. of state variables =16
No. of states = 216
No. of reachable states = ?

© D. Weld, D. Fox 24

Planning Input: Actions
= pickup ab, pickupac, ...
= placeab, placeac, ...
= pickup-table a, pickup-table b, ...

= place-table a, place-table b, ...

Total: 6 + 6 + 3+ 3 =18 “ground” actions
Total: 4 action schemata

© D. Weld, D. Fox 25

Planning Input: Initial State

[>[0]

&2
» (on-table a) (on-table b)

e (arm-empty)

» (clear c) (clear b)

» (onca)

All other propositions false
= not mentioned - assumed false
= “Closed world assumption”

© D. Weld, D. Fox 27

10/4/2012

Planning Input: Actions (contd)

= :action pickup ?bl ?b2
:precondition

« :action pickup-table ?b
:precondition

(on ?b1 ?b2) EZ&:?EE)%)
(clear ?b1) (arm-empty)
(arm-empty) -effect

:effect (holding ?b)
(holding ?b1) (not (on-table ?b))
(not (on ?b1 ?b2)) (not (arm-empty))
(clear ?b2)
(not (arm-empty))

© D. Weld, D. Fox 26

Planning Input: Goal

‘n@m

» (on-table c) AND (on b ¢c) AND (on ab)
* Isthis a state?

» In planning a goal is a set of states
« Like the goal test in problem solving search
« But specified declaratively (in logic) rather than with code

© D. Weld, D. Fox 28

Specifying a Planning Problem

= Description of initial state of world
= Set of propositions

= Description of goal:
= E.g., Logical conjunction

= Any world satisfying conjunction is a goal

= Description of available actions

© D. Weld, D. Fox 29

Forward State-Space Search

Initial state: set of positive ground literals
= CWA: literals not appearing are false
= Actions:
= applicable if preconditions satisfied
= add positive effect literals
» remove negative effect literals
= Goal test: does state logically satisfy goal?
Step cost: typically 1

© D. Weld, D. Fox 30

Heuristics for State-Space Search

e Count number of false goal propositions in current
state
Admissible?
NO

» Subgoal independence assumption:

— Cost of solving conjunction is sum of cost of solving each
subgoal independently

— Optimistic: ignores negative interactions
— Pessimistic: ignores redundancy

— Admissible? No
— Can you make this admissible?

© D. Weld, D. Fox 31

10/4/2012

Heuristics for State Space Search
(contd)

= Delete all preconditions from actions, solve
easy relaxed problem, use length
Admissible?
YES

« :action pickup-table ?b
:precondition (ard-(en-table—2b)-
(ctear2by
tarmeempty))
:effect (and (holding ?b)
(not (on-table ?b))
(not (arm-empty)))

32

Heuristics for eight puzzle

712 (3 1123
5[T 16 N 4156
H rH
start goal

What can we relax?

~
~

oo
o
.CDw

Importance of Heuristics

h1 = number of tiles in wrong place

D DS A*(h1)
2 10 6
4 112 13
6 680 20
8 6384 39
10 47127 93
12 364404 227
14 3473941 539
18 3056
24 39135

34

Importance of Heuristics

h1l = number of tiles in wrong place
h2 = X distances of tiles from correct loc

ol = N

.mW

0|

D DS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 13
18 3056 363
24 39135 1641

Decrease effective branching factor

Combining Admissible
Heuristics

= Can always take max

= Could add several heuristic values
= Doesn't preserve admissibility in general

36

10/4/2012

Performance of IDA* on 15 Limitation of Manhattan
Puzzle Distance

= Random 15 puzzle instances were first solved = Solving a 24-Puzzle instance,

optimally using IDA* with Manhattan distance = IDA* with Manhattan distance ...

heuristic (Korf, 1985). » 65,000 years on average.
= Optimal solution lengths average 53 moves.
= 400 million nodes generated on average. = Assumes that each tile moves independently
= Average solution time is about 50 seconds on = |n fact, tiles interfere with each other.

current machines. = Accounting for these interactions is the key to

more accurate heuristic functions.

Example: Linear Conflict . .
P Example: Linear Conflict

H B N N 3] 1 3

— —
Manhattan distance is 2+2=4 moves Manhattan distance is 2+2=4 moves
Example: Linear Conflict Example: Linear Conflict
.; — E —
Manhattan distance is 2+2=4 moves Manhattan distance is 2+2=4 moves

10/4/2012

Example: Linear Conflict Example: Linear Conflict

;I]] i § A

Manhattan distance is 2+2=4 moves Manhattan distance is 2+2=4 moves

Linear Conflict Heuristic
Example: Linear Conflict

= Hansson, Mayer, and Yung, 1991
= Given two tiles in their goal row,
:-:- :-:- = but reversed in position,
= additional vertical moves can be added to
Manhattan distance.

= Still not accurate enough to solve 24-Puzzle
= We can generalize this idea further.

—

Manhattan distance is 2+2=4 moves, but linear conflict adds 2
additional moves.

Pattern Database Heuristics

Heuristics from Pattern Databases
= Culberson and Schaeffer, 1996

= A pattern database is a complete set of such
positions, with associated number of moves.

= e.g. a 7-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

Precomputing Pattern
Databases

= Entire database is computed with one
backward breadth-first search from goal.

= All non-pattern tiles are indistinguishable,
= But all tile moves are counted.

= The first time each state is encountered, the
total number of moves made so far is stored.

= Once computed, the same table is used for all
problems with the same goal state.

10/4/2012

Combining Multiple Databases

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Overall heuristic is maximum of 31 moves

Drawbacks of Standard Pattern DBs

= Since we can only take max
= Diminishing returns on additional DBs

= Would like to be able to add values

© Daniel S. Weld Adapted from Richard Korf presentation

Additive Pattern Databases

= Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.
= In contrast, we could count only moves of the
pattern tiles, ignoring non-pattern moves.
= If no tile belongs to more than one pattern, then
we can add their heuristic values.
= Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

The 7-tile database contains 58 million entries.

The 8-tile database contains 519 million entries.

Computing the Heuristic

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Overall heuristic is sum, or 20+25=45 moves

Performance

= 15 Puzzle: 2000x speedup vs Manhattan dist

= IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

= 24 Puzzle: 12 million x speedup vs Manhattan
= IDA* can solve random instances in 2 days.
= Requires 4 DBs as shown

= Each DB has 128 million entries
= Without PDBs: 65,000 years

© Daniel S. Weld

Adapted from Richard Korf presentation 55

10/4/2012

10

