
10/4/2012

1

CSE 573: Artificial Intelligence
Autumn2012

Heuristics & Pattern
Databases for Search

With many slides from
Dan Klein, Richard Korf, Stuart Russell, Andrew Moore, & UW Faculty

Dan Weld

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of (state, action, cost)

triplestriples

 Start state
 Goal test

General Graph Search Paradigm

function tree-search(root-node)
fringe  successors(root-node)
explored  empty
while (notempty(fringe))

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)

l d  l d { d }

3

explored explored  {node}
fringe  fringe  (successors(node) - explored)

}
return failure

end tree-search

Fringe = priority queue, ranked by heuristic
Often: f(x) = g(x) + h(x)

Which Algorithm?

Uniform cost search

4

Which Algorithm?

A* using Manhattan

Which Algorithm?

Best-first search using Manhattan

10/4/2012

2

Heuristics
It’s what makes search actually work

Admissable Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

8© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem
 For transportation planning, relax requirement that car has

to stay on road  Euclidean dist

 For blocks world distance = # move operations heuristic = For blocks world, distance = # move operations heuristic =
number of misplaced blocks

 What is relaxed problem?

9

out of place = 2, true distance to goal = 3

• Cost of optimal soln to relaxed problem  cost of
optimal soln for real problem

What’s being relaxed?

Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped
Goal: Pancakes in size order

Example: Pancake Problem

10/4/2012

3

Example: Pancake Problem

3
2

4

State space graph with costs as weights

2

2

4

3

3

2

2

3
4

3

4 3

Example: Heuristic Function

Heuristic: h(x) = the largest pancake that is still out of place
What is being relaxed?

4

3

0

2

3

3

3

4

4

3

4

4

4

Counterfeit Coin Problem

 Twelve coins

 One is counterfeit: maybe heavier, maybe light

 Objective:
 Which is phony & is it heavier or lighter?Which is phony & is it heavier or lighter?

 Max three weighings

15

Coins

 State = coin possibilities

 Action = weighing two subsets of coins

 Heuristic?
 What is being relaxed?What is being relaxed?

16

Traveling Salesman Problem
What can be relaxed?

Path =
1) Graph
2) Degree 2 (except ends, degree 1)
3) Connected

17

Kruskal’s Algo:
(Greedily add cheapest useful edges)

Traveling Salesman Problem
What can be relaxed?

Relax degree constraint
Assume can teleport to past nodes on path


Minimum spanning tree

18

Kruskal’s Algorithm:
O(n2)

(Greedily add cheapest useful edges)

10/4/2012

4

Traveling Salesman Problem
What can be relaxed?

Relax connected constraint


Cheapest degree 2 graph

19

Optimal assignment
O(n3)

Automated Generation of
Relaxed Problems

 Need to reason about search problems

 Represent search problems in formal language

20

Planning

I have a plan - a plan that cannot possibly fail.

- Inspector Clousseau

Classical Planning
 Given

 a logical description of the initial situation,

 a logical description of the goal conditions, and

 a logical description of a set of possible actions,

 Find
 a sequence of actions (a plan of actions) that brings

us from the initial situation to a situation in which the
goal conditions hold.

© D. Weld, D. Fox

Example: BlocksWorld

C
A

© Daniel S. Weld 23

A
C

B C
B

Planning Input:
State Variables/Propositions

• Types: block --- a, b, c

• (on-table a) (on-table b) (on-table c)

• (clear a) (clear b) (clear c)

• (arm-empty)

• (holding a) (holding b) (holding c)(holding a) (holding b) (holding c)

• (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

© D. Weld, D. Fox 24

No. of state variables =16
No. of states = 216

No. of reachable states = ?

10/4/2012

5

Planning Input: Actions

 pickup a b, pickup a c, …

 place a b, place a c, …

 pickup-table a, pickup-table b, …pickup table a, pickup table b, …

 place-table a, place-table b, …

© D. Weld, D. Fox 25

Total: 6 + 6 + 3 + 3 = 18 “ground” actions
Total: 4 action schemata

Planning Input: Actions (contd)

 :action pickup ?b1 ?b2

:precondition

(on ?b1 ?b2)

(clear ?b1)

• :action pickup-table ?b
:precondition

(on-table ?b)
(clear ?b)
(arm-empty)

(arm-empty)

:effect

(holding ?b1)

(not (on ?b1 ?b2))

(clear ?b2)

(not (arm-empty))
© D. Weld, D. Fox 26

(arm empty)
:effect

(holding ?b)
(not (on-table ?b))
(not (arm-empty))

Planning Input: Initial State

• (on-table a) (on-table b)

• (arm-empty)

A
C

B

• (clear c) (clear b)

• (on c a)

• All other propositions false
 not mentioned  assumed false

 “Closed world assumption”

© D. Weld, D. Fox 27

Planning Input: Goal

• (on-table c) AND (on b c) AND (on a b)

C
B
A

D

• Is this a state?

• In planning a goal is a set of states
• Like the goal test in problem solving search

• But specified declaratively (in logic) rather than with code

© D. Weld, D. Fox 28

Specifying a Planning Problem

 Description of initial state of world
 Set of propositions

 Description of goal:
 E.g., Logical conjunction

 Any world satisfying conjunction is a goal

 Description of available actions

© D. Weld, D. Fox 29

Forward State-Space Search

 Initial state: set of positive ground literals
 CWA: literals not appearing are false

 Actions:
 applicable if preconditions satisfied

 add positive effect literals

 remove negative effect literals

 Goal test: does state logically satisfy goal?

 Step cost: typically 1

© D. Weld, D. Fox 30

10/4/2012

6

Heuristics for State-Space Search
• Count number of false goal propositions in current

state
Admissible?

NO

• Subgoal independence assumption:• Subgoal independence assumption:
– Cost of solving conjunction is sum of cost of solving each

subgoal independently
– Optimistic: ignores negative interactions
– Pessimistic: ignores redundancy

– Admissible? No
– Can you make this admissible?

© D. Weld, D. Fox 31

Heuristics for State Space Search
(contd)

 Delete all preconditions from actions, solve
easy relaxed problem, use length

Admissible?

YES

CSE 573

32

• :action pickup-table ?b
:precondition (and (on-table ?b)

(clear ?b)
(arm-empty))

:effect (and (holding ?b)
(not (on-table ?b))
(not (arm-empty)))

Heuristics for eight puzzle
7 2 3

8 3

5 1 6
1 2 3

7 8

4 5 6

start goal



What can we relax?

33

Importance of Heuristics
h1 = number of tiles in wrong place

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7 2 3

8 5

4 1 6

34

6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Importance of Heuristics
h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7 2 3

8 5

4 1 6

35

6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

Combining Admissible
Heuristics

 Can always take max

 Could add several heuristic valuesCould add several heuristic values
 Doesn’t preserve admissibility in general

36

10/4/2012

7

Performance of IDA* on 15
Puzzle

 Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

 Optimal solution lengths average 53 moves.p g g

 400 million nodes generated on average.

 Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan
Distance

 Solving a 24-Puzzle instance,
 IDA* with Manhattan distance …

 65,000 years on average.

 Assumes that each tile moves independently

 In fact, tiles interfere with each other.

 Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

10/4/2012

8

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2
additional moves.

Linear Conflict Heuristic

 Hansson, Mayer, and Yung, 1991

 Given two tiles in their goal row,
 but reversed in position,

 additional vertical moves can be added to
Manhattan distance.

 Still not accurate enough to solve 24-Puzzle

 We can generalize this idea further.

Pattern Database Heuristics

 Culberson and Schaeffer, 1996

 A pattern database is a complete set of such
positions, with associated number of moves.

 e.g. a 7-tile pattern database for the Fifteene.g. a 7 tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

10/4/2012

9

Precomputing Pattern
Databases

 Entire database is computed with one
backward breadth-first search from goal.

 All non-pattern tiles are indistinguishable,
 But all tile moves are counted.

 The first time each state is encountered, the
total number of moves made so far is stored.

 Once computed, the same table is used for all
problems with the same goal state.

Combining Multiple Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add valuesWould like to be able to add values

51
© Daniel S. Weld Adapted from Richard Korf presentation

Additive Pattern Databases

 Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.
 In contrast, we could count only moves of the

pattern tiles, ignoring non-pattern moves.

 If no tile belongs to more than one pattern, then
we can add their heuristic values.

 Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 74 5 6 7

8 9 10 11

12 13 15 14
The 7-tile database contains 58 million entries.

The 8-tile database contains 519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

10/4/2012

10

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

55
© Daniel S. Weld Adapted from Richard Korf presentation

