Mini-Project: Solving the
12 Coins Problem Using Search

Emily Wang

CSE 573
December 11, 2008

1 Introduction

The 12 Coins Problem is stated in a more general form as follows. Given
¢ = (3" — 3)/2 coins for some n > 1, and the fact that ¢ — 1 of them are
identical and the single counterfeit coin can be told apart by its differing
weight, formulate a plan for identifying the counterfeit coin and whether it is
heavier or lighter, by making only n measurements using a balancing scale.

2 Implementation

A search algorithm for solving this puzzle for an arbitrary number of coins
was implemented in Common Lisp. The program takes a list of named coins
(e.g., > (coin01 coin02 ... coinl2)) asinput and searches for a set of no
more than [log; (2¢ + 3)] measurements for an input list of length ¢, which
is guaranteed to find the identity (a coin name) and the characteristic (either
heavier or lighter) of the counterfeit coin.

CLOS (the Common Lisp Object System) was used to define a compact
representation of the planning aspect and the search aspect of the solution,
as well as for overloading names of functions that specialize on particular
heuristics.

http://www.iwriteiam.nl/Hal2coins.html

2 IMPLEMENTATION 2

2.1 Plan Representation

The planned set of balance measurements is represented in the form of a deci-
sion tree with a uniform branching factor of 3. Each non-leaf node represents
a measurement, with three children that correspond to the three possible out-
comes: coins on the left-side weigh more, the scale balances, or coins on the
right-side weigh more.

Each node contains a belief-state object, which has two slots: heavy
is a list of coins that could be overweight, and light is a list of coins that
could be underweight. Both slots are initialized to the full input list of named
coins. In the method reduce-beliefs, coins are removed from heavy when
their side of the scale weighed less, and vice-versa for 1ight. When the scale
balances, coins that participated in the measurement on either side of the
scale are eliminated from both heavy and 1ight.

A plan that satisfies the goal has 2¢ leaves where only one coin remains
in each belief-state, and each coin appears in heavy of some belief, and
light of some belief, both exactly once. Any other leaf nodes have an empty
belief-state, which indicates the path to that leaf involves a set of incon-
gruent (impossible) measurement observations.

2.2 Search Representation

Since plans are only valid if they perform n or less measurements, we only
want to search within the space of decision trees of depth up to n + 1, when
counting the root node. Thus, depth-limited search is a natural choice for
an uninformed search strategy.

The search algorithm also only considers measurements that place (ap-
proximately) one-third of the coins on each side of the balance, leaving the
remaining third out. (This is approximate in the case of ¢ that is not per-
fectly divisible by three.) This assumption cannot reduce the information
gained by the measurement, because we are assured that one and only one
coin is counterfeit, and so adding an equal number of genuine coins to either
side of the balance does not change the outcome of the measurement.

Therefore, each measurement is encoded as a set of three disjoint subsets
of the coins, of size |¢/3|: groupO for the left-hand pan of the scale, group1
for the right-hand pan of the scale, and group2 that does not take part di-
rectly in the measurement (although information about it can be inferred).
To enumerate all possible combinations of disjoint subsets, utility functions

2 IMPLEMENTATION 3

were taken from third-party code in L-99: Ninety-Nine Lisp Problems.? For
¢ = 12 there are 675 such combinations, which is the effective branching fac-
tor for the uninformed search. (Permutations within subsets are not counted,
but the same three disjoint subsets in a different order do count as separate
combinations.)

The heuristic search version of the algorithm estimates the number of
additional measurements needed given the belief-state of a node by log,
of the size of the belief, and then conducts a greedy search, preferentially
expanding nodes with a small belief-state. If the cardinality of a belief is
so great that it would require more than n— the current depth more mea-
surements to resolve the puzzle, the search node is not pushed back onto the
list of candidates for expansion. Since the total path cost of the solution is
known and known to be achievable, A* search is no more appropriate for this
domain then greedy search.

Heuristics are specified using subclasses (e.g., h2-search-node), which
also inherit slots from the search-node superclass. The heuristics themselves
are encoded in the behavior of methods (like functions) that specialize on
particular subclasses of search-node.

Time permitting, a navigate-plan function could be implemented to
take a completely specified measurement plan, and output a path from the
root to a leaf node according to user-specified measurement outcomes. How-
ever the same functionality can be achieved using the Inspector, if running
Lisp in Emacs with Slime.

2.3 Example Usage

The following REPL inputs will run the demonstration examples.?

CL-USER> (load "search.lisp")
; Loading /Users/wang/Desktop/coins/search.lisp
; Loading /Users/wang/Desktop/coins/p27.1lisp

2http://www.ic.unicamp.br/ meidanis/courses/mc336/2006s2/funcional/
L-99_Ninety-Nine_Lisp_Problems.html

3“File not found” errors can usually be fixed by changing Lisp’s current working di-
rectory. In the REPL, this is done by typing, “cd [dir].” In an Emacs buffer while
using SLIME, the command “C-c ~” changes the working directory to the directory of the
buffer’s file.

3 EXPERIMENT 4

; Loading /Users/wang/Desktop/coins/p07.1lisp

; Loading /Users/wang/Desktop/coins/p26.1lisp

; Loading /Users/wang/Desktop/coins/pl7.1lisp

; Loading /Users/wang/Desktop/coins/coins.lisp

; Loading /Users/wang/Desktop/coins/h2-coins.lisp

CL-USER> (do-search *uninformed-12coinsx*)
#<PLAN-TREE @ #x106ce4f2> ; right-click to view in Inspector

CL-USER> (do-search *heuristic-12coins*)
#<PLAN-TREE @ #x133c190a> ; right-click to view in Inspector

3 Experiment

Direct run time comparisons were not possible, because the size of the unin-
formed search exceeded the memory allocated by the free version of Allegro
CL.% This occurred after running the program for about 2m.

By comparison, the heuristic greedy search for ¢ = 12 executed in about
1m20s.

4 Conclusion

As a logic puzzle, the difficulty of the 12 Coins Problem stems from the large
number of possible measurements. Heuristics can be used to eliminate mea-
surements that are legal but uninformative, and also to provide a preference
ordering based on the expected information gain of the remaining possible
measurements. Such heuristic methods greatly decrease the time and space
required to search for a completely specified measurement plan that covers
all the possible cases of counterfeit coins.

4Hopefully this isn’t a cause for taking points away(!) — it just goes to show that the
heuristic search is manageable, whereas the uninformed search is very inefficient. The
error message was, “An explicit gc call caused tenuring and a need for 262144 more bytes
of heap. This request cannot be satisfied because you have hit the Allegro CL Free Express
heap limit.”

