
N-COIN PROBLEM

PRASANG UPADHYAYA

1. Solution

The problem solved is a general n coins problem. One of the coins is a counterfeit coin.
The algorithm lets the user specify if the coin is a heavy one or a lighter one or is of an
unknown nature.

1.1. Basic algorithm. A dynamic programming based approach has been used to com-
pute the optimal strategies. The optimal solution at any stage makes use of the optimal
solutions to its descendent subproblems.

A state (which is the input to the DP algorithm) is defined as a 4-tuple of (l, h, u, k).
Here,

l: Suspected lighter coins.
h: Suspected heavier coins.
u: Coins which contain the counterfeit coins.
k: Coins which are known to be normal.

Note that, either u = 0 or l+h > 0. This is because there is only one counterfeit coin. If
we have non-zero values for l and/or h, the remaining coins have to be normal. Thus, the
actual set of legal states is smaller than n4, where n is the number of coins given. Also, the
sum of all the coin set has to be less than or equal to n. This further reduces the number
of legal states.

Given a state S, we make two piles of equal sizes: L = (l1, h1, u1, k1) and R = (l2, h2, u2, k2).
All variables are non-negative integers. These piles satisfy the following constraints:

l2 + h2 + u2 + k2 = l1 + h1 + u1 + k1

l1 + l2 ≤ l

h1 + h2 ≤ h

u1 + u2 ≤ u

k1 + k2 ≤ k

min{k1, k2} = 0

The first condition above ensures that each weighing has an equal number of coins on both
sides. Unequal weighing is not likely to give any information and hence is won’t reduce
the belief space.

1



2 PRASANG UPADHYAYA

All possible piles are enumerated and the optimal plan sizes for those enumerations are
computed. The size of the plan for present state is 1+max(size of optimal plans for children).

Significant overlap among the descendants of different plans lets the algorithm avoid
repeated computations.

The subproblem for a given pile selection is defined in as follows:

1.1.1. u = 0. This case covers those situations where we know that the counterfeit coin is
in either the lighter coin set (l) or in the heavier one (h). Note that u1 = 0 and u2 = 0
Given a pile division, there are three possible outcomes:

Left < Right: Counterfeit coin is light and in l1 or is heavy and in h2. All other
coins are normal.

Equal: Counterfeit coin is light and in l− l1 − l2 or is heavy and in h− h1 − h2. All
other coins are normal.

Left > Right: Counterfeit coin is light and in l2 or heavy and in h1. All other coins
are normal.

The optimal solutions for all the three subproblems is computed recursively using memo-
ization.

1.1.2. u > 0. This case covers those situations where we haven’t yet figured out the lighter
coin set (l) and the heavier coin set (h). Note that l1 = l2 = h1 = h2 = 0. Given a pile
division, there are three possible outcomes:

Left < Right: Counterfeit coin is light and in u1 or is heavy and in u2. All other
coins are normal.

Equal: u1 and u2 are also normal coins. Counterfeit coin is in u− u1− u2 and could
be either heavy or light.

Left > Right: Counterfeit coin is light and in u2 or heavy and in u1. All other coins
are normal.

The optimal solutions for all the three subproblems is computed recursively using memo-
ization.

1.2. Optimizations. The following two techniques were implemented to improve running
time.

• For a given state S = (l, h, u, k) the optimal plan might use atmost ko coins from
k. Thus, the obtained optimal plan for state S would also be the same for all states
Si = (l, h, u, i) where ko ≤ i ≤ k.
• Symmetrical states with respect to l and h have symmetrical solutions. Thus, if

for a state D = (l, h, u, k), the optimal piles are given as Lo = (l1, h1, u1, k1) and
Ro = (l2, h2, u2, k2), the the optimal pile for state Ssym = (h, l, u, k) is given by
Lsym = (h1, l1, u1, k1) and Rsym = (h2, l2, u2, k2)

1.3. Heuristic. Given a state S = (l, h, u, k), a lower bound on the size of the plan can be
specified as dlog3 (l + h + 2u)e. The factor of 2 arises because the coins in set represented
by u can be either lighter or heavier than normal.



N-COIN PROBLEM 3

This heuristic can be used to prune out states which won’t improve the current best
solution.

1.4. Observations. The performance of the algorithms was evaluated by computing the
total number of pile-splits that were enumerated and explored. Using the optimizations
and the pruning heuristic, the actual number of splits that were explored got reduced.

The table 1 lists the total number of splits that different algorithms explored. Table
2 lists the number of sub-problems for which optimal plans were known, in the optimal
solution to the original problem. Usually, the values in the second table are smaller than
the values in the first table. This is because many different enumerations lead to the
same subproblems eventually, and also because many different enumerations don’t lead to
optimal solution, but are checked nevertheless.

In the tables, the convention followed is as follows. coins represent the number of coins.
There is a single counterfeit coin which can be heavier or lighter than normal. The binary
string b1b2b3 represents the algorithm: b1 = 0 implies that the pruning heuristic wasn’t
used, and b1 = 1 implies that the pruning heuristic is used; b2 represents the symmetrical
state optimization and b3 represents the other optimization (referred to as min-k from now
on).

The min-k optimization doesn’t lead to any improvement as far as the number of splits
evaluated is concerned. A possible explanation for this can be that the actual imple-
mentation of the algorithm implicitly chooses the minimum k for the subproblems. This
is because, while invoking the function of a subproblem the value of k is taken to be
min{l + h, u,N − l − h− u}, where N is the total number of coins in the problem.

The symmetric optimization reduces the number of splits explored by any algorithm by
a factor of about a third. This is because, in many cases, the symmetric states optimal
solutions are required to be computed later, but the optimization pre-computes the value
without actually enumerating all splits.

The pruning heuristic substantially reduces the number of splits considered. The reduc-
tion seems to depend on the size of the optimal plan. A distinct jump in the values occurs
near those coin sizes where the plan size increases by one.

For the case where we know if the coin is heavier or lighter, the symmetry optimizations
don’t lead to any improvement because the symmetrical states are not-reachable if the
coin’s bias is known beforehand. Thus, the normal algorithm automatically avoids the
symmetrical states.

1.5. Executing the program. Compile the c++ program coins.cpp. Run and follow
the instructions.



4 PRASANG UPADHYAYA

Table 1. Enumerations of states for different algorithms.

coins 000 001 010 011 100 101 110 111 Plan-size
3 7 7 7 7 3 3 3 3 2
4 30 30 25 25 7 7 7 7 3
5 79 79 59 59 12 12 11 11 3
6 183 183 129 129 26 26 23 23 3
7 323 323 222 222 44 44 36 36 3
8 643 643 419 419 97 97 76 76 3
9 960 960 623 623 133 133 100 100 3
10 1751 1751 1086 1086 258 258 157 157 3
11 2385 2385 1484 1484 272 272 192 192 3
12 4078 4078 2444 2444 390 390 252 252 3
13 5235 5235 3156 3156 1441 1441 1328 1328 4
14 8501 8501 4968 4968 2783 2783 2630 2630 4
15 10481 10481 6167 6167 3648 3648 3455 3455 4
16 16307 16307 9350 9350 8074 8074 5482 5482 4
17 19520 19520 11268 11268 10842 10842 7098 7098 4
18 29293 29293 16547 16547 16952 16952 10128 10128 4
19 34295 34295 19497 19497 20313 20313 12071 12071 4
20 49898 49898 27851 27851 28613 28613 16086 16086 4

Table 2. Number of states explored in the optimal plan for different algorithms.

coins 000 001 010 011 100 101 110 111 Plan-size
3 5 7 5 7 5 7 5 7 2
4 9 18 9 18 8 13 9 15 3
5 12 28 12 28 11 17 12 18 3
6 18 49 18 49 16 33 18 41 3
7 21 63 21 63 21 46 21 48 3
8 29 99 29 99 28 70 29 76 3
9 32 118 32 118 32 82 32 84 3
10 42 171 42 171 41 118 41 120 3
11 45 196 45 196 42 128 42 136 3
12 57 269 57 269 49 167 49 179 3
13 60 301 60 301 56 198 60 225 4
14 74 397 74 397 66 260 74 307 4
15 77 436 77 436 69 289 77 342 4
16 93 558 93 558 85 397 91 460 4
17 96 607 96 607 90 450 96 517 4
18 114 758 114 758 106 579 112 662 4
19 117 817 117 817 111 648 117 733 4
20 137 1000 137 1000 130 817 135 902 4


