
Mini-project report Martin Pettersson

Project: Construction of Bayesian Networks from data. It can be tested with a Python 3.0 interpreter.

Implementation:

I implemented a BayesNet class in Python with the following functionality:

It’s able to

 Randomize a valid structure given the number of variables and causal links.

 Randomize all the parameters of the structure.

 Generate data from the structure + the parameters.

 Calculate log(P(Data|BN)) given a data-set.

 Calculate the Bayesian Information Criterion (used as the utility function), given a data-set.

 Estimate the parameters given a data-set.

 Do a hill-climbing local search for the best structure given a data-set.

Generally, since I didn’t have any test data, I had to generate data from a given structure to have

something to test it with. This process looked like this:

 Create an instance of the BayesNet class, with a specified number of variables and causal links.

This will generate a random valid BN without cycles.

 Randomize the parameters.

 Generate some data from this structure (taking all the conditional probabilities into

consideration).

 Create a new BayesNet with the same number of variables and do a local search for the best

structure.

Specifics about the techniques I used:

 For representing the BN-graph I used two types of adjacency-lists in parallel, one for getting the

variables you have a causal link to, and one for getting your parents. This because I needed to

get the parents for calculating the parameters etc and the other one for searching etc.

 For storing the adjacency-lists and the parameters, I used the built in Dictionary in Python.

What I learned:

 When dealing with lots of data, I gained a huge speed-up by aggregating it, e.g. summing all

equal data points to one. This gives an upper bound for the slow-down by the amount of data

one has, if you aggregate it before searching.

 I was distressed at first when my local search didn’t find the same structure as the original one,

but I realized that when randomizing the parameters, many of them will be close to 0.5 and thus

not give any useful information to the network. When I looked at the actual utility of the new

structure, it was often higher than the original one.

 I had to deal with log(0) in some way. I chose to simply add/subtract a small number to the

probability when necessary.

 When it comes to searching, I used three different operations, add, remove or reverse a link.

 When searching, I came up with two different methods for choosing the best operation, either

an exhaustive search of all possibilities or randomly check a specified number of different

operations and choose the best one. When choosing randomly, I also had to add an “iteration

buffer” so that it doesn’t stop prematurely. 5 iterations seemed like a good number.

 I tried starting the search with either an empty network or one with randomized links, but the

difference seemed negligible.

Here is a performance experiment for the two methods of choosing an operation; I was using 3-15

variables and 500 data-points and measured the utility of the final structure produced by both

methods, together with the time it took to produce it. In the stochastic method I chose how many

random operations to choose from to be the same as the number of variables.

0

5

10

15

20

25

30

35

40

45

3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
 (

se
co

n
d

s)

Variables

Time

Stochastic

Exhaustive

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

3 4 5 6 7 8 9 10 11 12 13 14

U
ti

lit
y

Variables

Utility

Stochastic

Exhaustive

From the graphs we can see that searching with the exhaustive method may not pay off as you have

more variables. However, the parameters I chose for the BNs, the amount of data etc were a bit

arbitrary. Because of the data aggregation, the slow-down with more data-points levels off after a

while when the number of unique data-points goes towards 2 to the power of #Variables. The

aggregation itself of course takes time, but it’s not a part of the actual search, only a kind of

preprocessing.

