
 1 

A Comparison of Exploration/Exploitation Techniques for a Q-Learning 
Agent in the Wumpus World 

 
A. Friesen 

Department of Computer Science 
afriesen@cs.washington.edu  

 
Abstract 

 
The Q-Learning algorithm, suggested by Watkins 

[1], has become one of the most popular reinforcement 
learning algorithms due to its relatively simple 
implementation and the complexity reduction gained 
by the use of a model-free method. However, Q-
Learning does not specify how to trade off exploration 
of the world for exploitation of the developed policy. 
Multiple such tradeoffs are possible and preference of 
one over the other should depend mainly on whether a 
fast, but less accurate convergence to a policy is 
desired or whether a slower convergence to a more 
accurate policy is better. This paper will present the 
results of several exploration vs. exploitation (EE) 
methods within the contrived environment of the 
Wumpus World [2]. 
 
1. Wumpus World 
 

The Wumpus World is a simple grid-world 
environment that can contain multiple hazards (in the 
form of pits and the wumpus itself) and a goal. The 
hazard and goal reward values are fairly arbitrary, but 
the values chosen were -100 and 100, respectively. 
Some experimentation was done with unbalanced 
hazard and goal rewards (i.e. -10000 for a hazard and 
+100 for a goal) but this did not significantly affect the 
results. In the actual Wumpus World, the agent can 
move in any of the four directions (North, South, East, 
and West) and can shoot a single arrow in one of these 
directions to attempt to eliminate the wumpus. The 
arrow action was removed from the version used in 
these tests as it added too much complexity. Thus the 
wumpus functions like a pit, in that if the agent moves 
onto the wumpus square then the agent is killed. 

However, to add some complexity to the world, the 
agent’s actions were altered to be non-deterministic. 
Thus, if the agent attempts to move East, there is a 
certain probability that it will actually move South 
instead. Some experimentation was done with the 
different possible combinations of transition 
probabilities. More random transitions lowered the 
agent’s average score, while more deterministic 
transitions had the opposite effect. Furthermore, more 
random transitions caused the agent to play more 
cautiously by moving as far away from hazards as 

possible so as to lessen the probability that it would 
accidentally be killed. 
 
2. Q-Learning Algorithm 
 

The Q-Learning algorithm used was taken from 
Russell and Norvig ([2]) and just uses the standard Q-
update function 

𝑄𝑄(𝑎𝑎, 𝑠𝑠) ← 𝑄𝑄(𝑎𝑎, 𝑠𝑠) + 𝛼𝛼(𝑅𝑅(𝑠𝑠)
+ 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎′
𝑄𝑄(𝑎𝑎′ , 𝑠𝑠′) − 𝑄𝑄(𝑎𝑎, 𝑠𝑠)) 

Where Q(a, s) is the Q-value for the current state and 
action, R(s) is the reward of the current state, α is the 
learning rate (determines to what extent newly 
acquired information overrides old information), and γ 
is the discount factor (determines the importance of 
future rewards).  

One benefit of Q-Learning is that the transition 
function 𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) does not have to be learned; 
instead, all that the agent is required to compute is a 
single value for every state, action pair. Thus, the 
required memory is only 𝑂𝑂(|𝑆𝑆| × |𝐴𝐴|) instead of 
𝑂𝑂(|𝑆𝑆|2 × |𝐴𝐴|). A second benefit is that learning is 
performed online. Thus, the agent is constantly 
updating its Q-values as it explores the environment 
and can immediately begin using these estimates to 
determine which actions to take (the agent can explore 
by performing actions that have been executed fewer 
times in order to obtain more accurate Q-values, or it 
can exploit by choosing the highest Q-value actions to 
safely traverse the environment as soon as possible). 
The four exploration/exploitation strategies that were 
investigated each use different methods of separating 
exploration and exploitation. 

In addition to the Q-learning equation and the 
exploration/exploitation strategies, the remainder of the 
code is merely bookkeeping and world and state 
manipulation. A wumpus world is created that contains 
one wumpus, multiple pits, and the goal. The starting 
position is always at (0, 0) in the grid and the goal is 
always (num_rows – 1, num_cols – 1). The constant 
start and goal states were chosen because this is the 
maximum distance that is required to be traversed by 
the agent to get to the goal, and thus the most learning 
is required. A random start state would not add insight 
into the learner, but would instead only add difficulty 

mailto:afriesen@cs.washington.edu


 2 

in comparing and evaluating the different learning 
methods. Additionally, many problems have a static 
start state and thus a random start state does not make 
sense in that context. However, the implementation 
could be very easily altered to use a random start state. 
For similar reasons, a fixed world was used for all of 
the tests performed (see results section below). 
 
2.1. Random Exploration 
 

The first exploration/exploitation (EE) technique 
that was investigated was also the simplest; purely 
random exploration. For random exploration, whenever 
the agent needs to move, an action is chosen 
completely arbitrarily, with no consideration of the 
current Q-values. The benefits of this approach are that 
the action-choosing algorithm is extremely fast and 
simple and the state-space gets explored more fairly 
than by the other EE methods.  Unfortunately, the 
agent dies during most trials as the probability of 
running into a hazard is much higher than that of 
reaching the goal. This could be very costly for a real-
world robot. Additionally, because the state space is 
investigated evenly, areas that the agent would never 
enter (i.e. the hazards) are explored equally as much as 
high-reward areas. This is highly inefficient as once the 
agent knows an area is bad it should instead focus its 
resources on more promising areas. Random 
exploration essentially completely separates the 
exploration from the exploitation and no exploitation is 
ever done while the agent is exploring. 
 
2.2. Global temperature 
 

To attempt to alleviate some of the problems that 
are associated with fully random exploration, a 
technique was developed that uses a global 
“temperature” to determine how much randomness the 
agent should use in its decision making (very similar to 
simulated annealing in local search algorithms). The 
temperature starts high, making the exploration very 
random at the beginning, and slowly drops as the 
number of iterations increases, allowing the agent to 
converge on a specific policy. The chosen 
implementation relates the temperature to the total 
number of actions that the agent has performed. 

This EE technique allows the designer to determine 
how quickly the agent converges to a policy. The 
tradeoff here, however, is that the faster an agent 
converges to a policy, the less likely it is to be the 
optimal policy (especially in a non-deterministic 
environment). Thus, a careful selection of the 
parameters that dictate the temperature, its rate of 
change, and its effect on the randomness of the actions 
is required and can seem somewhat arbitrary. 

While a global temperature allows the agent to 
avoid the hazards after fewer iterations than pure 
random exploration, it can leave rewarding portions of 

the state space relatively unexplored. As the 
temperature drops, the randomness in the exploration 
decreases, and thus any sections of the state space that 
have not already been explored are less likely to be 
explored as the temperature drops further. This is 
especially noticeable for paths that are far away from 
the start state. The probability of reaching these is 
lower and thus they will not be explored as fully. The 
next section presents a technique designed with this in 
mind. 

 
2.3. Local Temperature 

 
By adding some statistics to the algorithm, it is 

possible to keep track of the number of times each 
action has been performed in each state. From these 
statistics, those actions that have been performed the 
fewest number of times can be prioritized. The 
simplest way to achieve this is to choose an “explore 
count” constant and choose those actions that have not 
been explored this many times [2]. Once all the actions 
in a state have been fully explored, the highest Q-value 
action can be chosen every time, or the Q-values can 
be used to determine the probability of choosing an 
action. Only the first of these techniques was 
implemented and tested but the second might provide a 
better solution. Once again, this EE technique requires 
the implementer to experiment with various parameters 
to achieve the best possible results. 

 
2.4. Boltzmann Exploration 

 
The final EE technique that was investigated was 

Boltzmann Exploration (BE) [3]. In BE, the probability 
of picking an action is given by: 

𝑒𝑒𝑄𝑄(𝑎𝑎 ,𝑠𝑠)/𝜏𝜏

∑ 𝑒𝑒𝑄𝑄(𝑎𝑎 ,𝑠𝑠)/𝜏𝜏
𝑎𝑎

 

Where Q(a,s) is the Q-value of the action in the 
state, and τ is the temperature. When τ is large, all 
actions have approximately the same probability; when 
τ is small, actions will be chosen proportionally 
according to their estimated value. Once again, the 
exploration/exploitation balance can be controlled by 
altering the temperature. Thus, the initial temperature 
and the rate of change of the temperature are the two 
important parameters. 

This is the most complicated technique but, 
depending on how the temperature is regulated, it 
should provide a good tradeoff between exploration 
and exploitation: initially starting quite random and 
quickly biasing the probabilities to further explore only 
those areas of the state space that seem promising. 

 
3. Results 

 
3.1. World Setup 

 



 3 

To test the exploration/exploitation techniques and 
the Q-Learning algorithm, the following methodology 
was used. For each parameter variation of each EE 
technique, 10 complete runs were performed. Each run 
involved placing the agent in the start state 1000 times 
and allowing it to traverse the world based on its EE 
policy until it encountered a hazard or the goal, 
updating Q-values after each action. Every 25 
iterations (per run) a policy was generated from the 
current Q-values and that policy was run 1000 times 
within the world state and the average reward per run 
was returned. These values, averaged over the 10 runs, 
are what are plotted in the following figures. 

The world that was used for the majority of testing 
had 5 rows, 5 columns, 2 pits, and the single wumpus. 
The start state was at (0, 0), the goal was at (4, 4), the 
pits were at (2, 0) and (2, 2), and the wumpus was 
placed at (3, 2). 

 
Start     
     
P  P   
  W   
    Goal 

Figure 1: The main Wumpus World state 
 
The transition probabilities that were used for 

testing had P(action works) = 0.70, P(action goes left) 
= 0.15, and P(action goes right) = 0.15. The option of 
having a probability of reversing the action (i.e. going 
North when trying to go South) was tested but it only 
served to lower the average earned reward and did not 
significantly alter the derived policies unless the 
probability became unreasonably high. This is most 
likely because, in this case, no matter what action the 
agent chooses it can end up going in any direction and 
thus it must choose the action that will hopefully work. 

 
3.2. Algorithm Parameters 

 
For the Q-Learning algorithm, a value of 0.85 was 

chosen for gamma (the discount factor). This value was 
chosen because it gave the highest average reward 
compared to higher and lower gamma choices. This is 
understandable because it is a good balance between 
preferring longer-term reward (gamma close to 1) and 
short-term reward (gamma close to 0). 

The global temperature EE policy was designed to 
only require a single parameter: the amount of 
randomness that is removed from future choices after 
each action. This was called num_action_scaler as it 
scales the number of actions which are set as the direct 
inverse of the temperature. Three different values were 
tested (see Figure 2): 100, 1, and 0.01. Higher values 
slow the temperature decrease rate. Not very 
surprisingly, the technique that decreased the 
temperature fastest also converged fastest, but the 
policies that it converged to were not as accurate as 
those generated with a slower decreasing temperature. 

 
Figure 2: Average reward for the Global Temperature EE 

Policy over 1000 iterations (averaged over 10 runs) 
 
The local temperature EE policy has two 

parameters, only one of which gets altered. The 
parameter that is kept constant is the optimistically 
estimated reward that any state can achieve at the 
current time. This is set to 200 (the maximum possible 
reward is 100). This ensures that all state, action pairs 
that have not been explored enough times will be 
prioritized above everything else. The second 
parameter is the number of times that a state, action 
pair must be explored. Three different values were 
tested: 5, 25, 70. Surprisingly, the value that caused the 
most random exploration (N_e = 70) resulted in the 
least accurate policies, and yet converged almost as 
quickly as the other two. 

 

 
Figure 3: Average reward for the Local Temperature EE 

Policy over 1000 iterations (averaged over 10 runs) 
 
The Boltzmann Exploration policy also has two 

parameters, only one of which gets altered. The two 
parameters in BE are the initial temperature and the 
temperature decrease rate. Together, these also 
determine how long the agent explores before starting 
to exploit its knowledge of the environment. Adjusting 
each parameter has similar effects, so only the 
temperature decrease rate was adjusted. Again, three 
different values were used: 0.01, 0.25, and 1.0. This 
value is subtracted from the current temperature (to a 
minimum temperature of 1.0) after each of the 1000 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 200 400 600 800 1000

Global temp - scale = 100

Global temp - scale = 1

Global temp - scale = 0.01

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 200 400 600 800 1000
Local temp - N_e = 5

Local temp - N_e = 25

Local temp - N_e = 70



 4 

iterations used to learn a policy. The Boltzmann EE 
plots are as expected. For a slower temperature 
decrease rate, the policy converges slower. This can be 
attributed to the increased randomness and the lack of 
early exploitation. An interesting note is that all three 
variations converge to the same accurate policy and 
there does not seem to be any benefit for lowering the 
temperature slower. It would be interesting to test 
further with a faster temperature decrease rate. 
 

 
Figure 4: Average reward for the Boltzmann EE Policy over 

1000 iterations (averaged over 10 runs) 
 

Finally, the four EE policies are compared in 
Figure 5. As expected, random EE takes the longest to 
converge but eventually becomes quite accurate. BE 
converges to the most accurate policy but does not 
converge as quickly as the local and global temperature 
policies. This most likely occurs because BE causes the 
agent to equally likely pick from similar Q-value 
actions and thus explore them more thoroughly to 
determine which is more rewarding, whereas global 
temperature EE just picks randomly if the temperature 
is high enough and local temperature EE just explores 
each action a fixed number of times and then takes the 
ideal policy.  

Not very surprisingly, local temperature 
outperforms the global temperature policy. Somewhat 
surprisingly though, it also outperforms Boltzmann 
Exploration for convergence. It would be interesting to 
see if BE outperforms local temperature if BE were to 
use a faster temperature drop rate. 

To ensure that these results were valid, the same 
tests were run on a second world which was the first 
world with an extra pit in the top right corner (square 
(0, 4)). This had the expected effects of slowing 
convergence and lowering the overall accuracy of all 
of the algorithms (Figure 6). Otherwise, the results 
were consistent with Figure 5. 

 
7. Conclusion and Future Work 
 

Four distinct exploration/exploitation methods were 
presented and compared in this paper. It was shown 
that, for the limited subset of parameter combinations 
tested, the local temperature policy performs the best 

on average, considering both convergence time and 
policy accuracy. However, Boltzmann exploration 
looks promising with different parameters. The global 
temperature policy looks like it is dominated by the 
local temperature policy; however, more statistics are 
required for the local temperature policy so global 
temperature will perform sufficiently if there are other 
limitations. 

An interesting next step would be to compare Q-
learning to a model-based reinforcement learning 
algorithm and then to add Dyna (planning capabilities) 
to both the Q-learner and the model-based learner. 
Finally, developing a POMDP solution that uses the 
stench and breeze percepts would be extremely 
instructive. 
 

 
Figure 5: Average reward for the different EE policies over 
1000 iterations (averaged over 10 runs) for the first world 

 
 

 
Figure 6: Average reward for the different EE policies over 
1000 iterations (averaged over 10 runs) for the second world 
 
8. References 
 
[1] C. Watkins, P. Dayan, Machine Learning 8, Kluwer 
Academic Publishers, Boston, 1992. 
[2] S. Russell, P. Norvig., Artificial Intelligence: A Modern 
Approach, Pearson Education, Inc., New Jersey, 2003. 
[3] R. S. Sutton, “Integrated architectures for learning, 
planning, and reacting based on approximating dynamic 
programming”, in Proceedings of the Seventh International 
Conference on Machine Learning, Morgan Kaufman: San 
Mateo, CA, pp. 216-224, 1990. 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 200 400 600 800 1000
Boltzmann - temp rate = 0.01

Boltzmann - temp rate = 0.25

Boltzmann - temp rate = 1.0

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 200 400 600 800 1000

Local temp - N_e = 5
Random
Global temp - scale = 1
Boltzmann - temp rate = 1.0

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 200 400 600 800 1000

Local temp - N_e = 5
Random
Global temp - scale = 1
Boltzmann - temp rate = 1.0


	1. Wumpus World
	2. Q-Learning Algorithm
	2.1. Random Exploration
	2.2. Global temperature
	2.3. Local Temperature
	2.4. Boltzmann Exploration

	3. Results
	3.1. World Setup
	3.2. Algorithm Parameters

	7. Conclusion and Future Work
	8. References

