CSE 573 Mini-Project: Co-Training and Naive Bayes

Anthony Fader
December 11, 2008

1 Introduction

Co-training [1] is a popular semi-supervised machine learning algorithm that leverages mul-
tiple “views” of a dataset to reduce the classification error. In order to apply the co-training
algorithm, the views must satisfy these conditions:

C1 Each view alone must be sufficient to learn the class.

C2 The views of an instance must be conditionally independent given the class label of
the instance.

For example, in [1] Blum and Mitchell apply co-training to the task of web page classifica-
tion. Each web page P has one view composed of words on P and another view composed of
words in hyperlinks to P. Despite the fact that these two views are probably not condition-
ally independent, co-training achieves half the error rate of a standard supervised learning
algorithm.

Unfortunately, the possible applications of co-training are limited to cases where there are
multiple views of a dataset, and even in those cases, the dataset still must satisfy conditions
C1 and C2. In this report, I investigate whether co-training can be extended to cases where
the data does not have a natural feature division and when condition C2 is not met.

Specifically, consider the the Naive Bayes assumption, where instances X are represented
by n features © = (z1,...,z,) and each feature is conditionally independent given the class
of . This assumption is much stronger than condition C2 above in that any two sets of
features V and V are conditionally independent “views” of the data. So if the Naive Bayes
assumption is made, and assuming that there is some amount of redundancy in the features
(so C1 is satisfied), a simple co-training algorithm is:

1. Randomly split the feature set into two roughly equal groups, V and V.

2. Apply the co-training algorithm on the views V and V using Naive Bayes classifiers.

Why would this work? One argument might be that although the Naive Bayes assumption

is unrealistic, Naive Bayes classifiers tend to work well in practice. Since the Naive Bayes

assumption is stronger than the co-training condtions, co-training might also be successful.
The rest of this report roughly recreates the results from [2].

1



2 Co-training and Self-training Algorithms

There are many different co-training algorithms to choose from, each with slight variations.
In the experiments, I used the following co-training algorithm:

e Input: labeled data L, unlabeled data U, parameters k and m
e Iterate k times:

1. Train a Naive Bayes classifier C'; on the first view of L
2. Label U using C

3. For both positive and negative labels, choose m instances from U that were most
confidently labeled by €} and move them from U to L

4. Train a Naive Bayes classifier C5 on the second view of L
5. Label U using Cy

6. For both positive and negative labels, choose m instances from U that were most
confidently labeled by 3 and move them from U to L

e Combine C] and Cs into a classifier C'
e Return C

The measure of confidence used was the log likelihood ratio between the two classes. The
two classifiers C'; and C5 are combined into C' by returning the label that maximizes the
product of the likelihoods given by C; and Cj.

The self-training algorithm I used is very similar to the co-training algorithm above, only
it uses a single view and a single classifier.

3 Experimental Setup

As a test, I compared an implementation of the above algorithm to a supervised Naive
Bayes classifier. Also, since the random feature split algorithm might be more accurate
than a supervised Naive Bayes classifier simply because it is taking unlabeled into account,
I compared it to a self-trained Naive Bayes classifier.

The data I used were two categories from the 20 Newsgroup dataset (comp.graphics and
alt.atheism). There were a total of 1,772 posts, with roughly equal proportions from each
category. I split the data into 25% training data and 75% test data. Within the training
data, I split it into 50 posts to act as labeled data and 393 posts to act as unlabeled data.
The documents were pre-processed by removing stop words, punctuation, and words that
occurred in less than 5 documents.

The supervised Naive Bayes classifier was trained on the 50 labeled training posts and
then tested on the test data.



’ Algorithm \ # labeled \ # unlabeled \ accuracy ‘

Naive Bayes 50 - 76%

Self-training 50 393 51%

Co-training (random split) 50 393 80%
Naive Bayes (all) 443 - 96%

Table 1: The results of the experiments. The accuracy is the average accuracy for 5 random
splits of the data.

The semi-supervised algorithms were given the 50 labeled examples as seeds (the L argu-
ment to the algorithm) as well as the remaining 393 unlabeled examples (the U argument).
Each algorithm was allowed to label m = 8 unlabeled data points at each iteration for
k = 10 iterations. The supervised Naive Bayes classifier was also tested on the full 25% of
the training data for comparison. Each algorithm was tested 5 times for random splits of
the data.

4 Results

Table 1 shows the results of the experiments. Surprisingly, the self-training algorithm per-
formed much worse than the Naive Bayes algorithm. I suspect that the self-training algorithm
suffered from overfitting the initial seed labeled data. (On many iterations, it labeled almost
all data as a single class, which is why it is performing at near-baseline accuracy). For a
fixed amount of labeled data, the co-training algorithm outperforms both the Naive Bayes
algorithm and self-training algorithm.

5 Discussion

This experiment gives preliminary evidence that when the Naive Bayes assumption is used,
accuracy can be improved by applying co-training with a random split of the data. Some
next steps might be to investigate ways to identify “latent” splits in the data by looking for
conditionally independent features. At the end of [2], the authors outline an algorithm for
finding a good split in the data that attempts to minimize the conditional mutual information
between the two feature sets. I implemented a version this algorithm in my code that uses
a spectral graph cut technique, but I did not have time to run it on the data.

On a more technical side, my implementations of these algorithms could be improved.
(The poor performance of the self-training algorithm is suspicious, there might be a bug in
my code, but I couldn’t find it in the limited amount of time for this project.)



6 Implementation Notes

I implemented all of the algorithms described in this paper. I used some basic text processing
software from Python’s NLTK library for pre-processing the documents.

References

[1] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training.
In In Proceedings of COLT, pages 92-100, 1998.

[2] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of co-
training. In CIKM, pages 86-93, 2000.



