Counterfeit Coin — Al miniproject, Fall 2008

Hao Du (Dec.8, 2008)

Introduction

The "Counterfeit Coin Measurement’ is a very interesting, well-defined problem. I wrote a
program to solve for the Solution-Tree. The program consider partially constructed
Solution-Trees as states and use Depth-First-Search. The program accepts the following
three arguments as input,

CoinN : a variable number of coins
MeasureN : a variable number of maximum measurements
Heuristic: using the heuristic strategy?

- The “coinsolver.cpp’ was done with Visual Studio 2008. There are no additional
dependences required, compile and run it will be fine.
- The ‘results’ folder contains sample Solution-Trees stored in human-readable TXT files.

A Strategy for Reducing the Branching factor

The program applies the following strategy to reduce the branching factor. Given a node in
the solution-tree, instead of considering all possible compositions of coins to measure, it
first classify the coins into four categories according to the belief information at that node,
(1) normal coin; (2) only possible lighter coin; (3) only possible heavier coin; (4) possible
both lighter and heavier coin. Coins in the same category are treated equally.

This greatly reduces the branching factor. To give an example, for CoinN=12 at the root
node, there are initially C(12,6)*C(6,6)+C(12,5)*C(7,5)+C(12,4)*C(8,4)+C(12,3)*C(9,3)+
C(12,2)*C(10,2)+C(12,1)*C(11*1) which is thousands of possible measurements. But since
all coins there belong to category (4), there are only 6 possible measurements that are
inherently different with each other, (1vs1),(12vs34),(123vs456),(1234vs567
8),(12345vs678910)and (123456vs789101112).

RESULTS

The following table lists runtime results (Number of solution-trees explored, Time-cost)
given different inputs under ‘non-heuristic’ and “heuristic’ cases. The software and
hardware environment is "Vmware virtual WindowsXP, MacBook with CPU of 2.4GHz Intel
Core 2 Duo’.

_ Solution Run Time Results
CoinN | MeasureN Found? Non Heuristic Heuristic
2 2 NO 3 trees, 0.0 secs 3 trees, 0.0 secs
3 2 YES 15 trees, 0.0 secs 13 trees, 0.0 secs
4 2 NO 35 trees, 0.0 secs 35 trees, 0.0 secs
4 3 YES 44 trees, 0.0 secs 40 trees, 0.0 secs
6 3 YES 111 trees, 0.0 secs 40 trees, 0.0 secs
8 3 YES 2058 trees, 0.0 secs 40 trees, 0.0 secs
10 3 YES 31125 trees, 0.4 secs 40 trees, 0.0 secs
11 3 YES 89469 trees, 1.1 secs 40 trees, 0.0 secs
12 3 YES 146228 trees, 2.7 secs 40 trees, 0.0 secs
13 3 NO 268530 trees, 5.7 secs 268530 trees, 11.6 secs
13 4 YES 203288 trees, 3.6 secs 121 trees, 0.0 secs
14 4 YES 323461 trees, 8.3 secs 121 trees, 0.0 secs
15 4 YES 708305 trees, 19.2 secs 121 trees, 0.0 secs
16 4 YES 12934160 trees, 487secs | 121 trees, 0.0 secs
20 4 YES too big 121 trees, 0.1 secs
30 4 YES too big 121 trees, 0.2 secs
39 4 YES too big 121 trees, 0.4 secs
40 5 YES too big 364 trees, 0.5 secs
50 5 YES too big 364 trees, 1.6 secs
55 6 YES too big 1093 trees, 2 secs

Here is the Solution-Tree to the {CoinN=12, MeasureN=3} Problem. What is interesting
here is that, we can have an arbitrary counterfeit coin in mind, and quickly go through the
following solution-tree(text) to see if the the tree can figure it out.

NodeO (1234.vs.5678)
Goto [1 | 14 | 27] for [left_heavy | equal | right_heavy]
(5612.vs.910117)
Goto [2 | 6 | 10] for [left_heavy | equal | right_heavy]
(71.vs.34)
Goto [3 | 4 | 5] for [left_heavy | equal | right_heavy]
Ans =1 heavy
Ans = 2 heavy
Ans =7 light
(83.vs.12)
Goto [7 | 8 | 9] for [left_heavy | equal | right_heavy]
Ans = 3 heavy
Ans = 4 heavy

Node 1

Node 2

Node 3
Node 4
Node 5
Node 6

Node 7
Node 8

Node 9 Ans = 8light

Node 10 (5.vs.1)
Goto [11 | 12| 13] for [left_heavy | equal | right_heavy]
Node 11 Impossible
Node 12 Ans = 6 light
Node 13 Ans =5 light
Node 14 (91011 .vs.123)
Goto [15 | 19 | 23] for [left_heavy | equal | right_heavy]
Node 15 (9.vs.10)
Goto [16| 17 | 18] for [left_heavy | equal | right_heavy]
Node 16 Ans =9 heavy
Node 17 Ans = 11 heavy
Node 18 Ans =10 heavy
Node 19 (12.vs.1)
Goto [20 | 21 | 22] for [left_heavy | equal | right_heavy]
Node 20 Ans = 12 heavy
Node 21 Impossible
Node 22 Ans =12 light
Node 23 (9.vs.10)
Goto [24 | 25 | 26] for [left_heavy | equal | right_heavy]
Node 24 Ans =10 light
Node 25 Ans =11 light
Node 26 Ans =9 light
Node 27 (1256.vs.910113)
Goto [28 | 32 | 36] for [left_heavy | equal | right_heavy]
Node 28 (35.ws.12)
Goto [29 | 30 | 31] for [left_heavy | equal | right_heavy]
Node 29 Ans =5 heavy
Node 30 Ans = 6 heavy
Node 31 Ans = 3 light
Node 32 (47.vs.12)
Goto [33 | 34 | 35] for [left_heavy | equal | right_heavy]
Node 33 Ans = 7 heavy
Node 34 Ans = 8 heavy
Node 35 Ans = 4 light
Node 36 (1.vs.3)
Goto [37 | 38| 39] for [left_heavy | equal | right_heavy]
Node 37 Impossible
Node 38 Ans = 2 light
Node 39 Ans =1 light

For more Solution-Trees like {CoinN=55,MeasureN=5}, etc, please see in the ‘results’ folder.

