Morgan Dixon
CS 573 Mini-Project

For this project, | implement a Naive Bayes classifier to classify spam email. |
implement my classifier within the Weka framework and compare my
implementation to few decision tree-based learning algorithms implemented in
Weka. There is already a Naive Bayes classifier within Weka, however [implement
my own to get a better understanding of the algorithm. Since the spam data that I
am using contains real valued attributes, values must be discretized for the classifier
to work well. Weka includes a few different methods for discretizing data for their
Naive Bayes classifier, and I use each of these discretizers within my algorithm to
compare and contrast their effectiveness. Please note that I did not implement the
discretizers, I use those provided in Weka. To evaluate my algorithm and to
compare it to other algorithms within Weka, I perform a 10-fold cross-validation on
my classifier and each classifier that I test. The training/test data that I use is from
http://archive.ics.uci.edu/ml/datasets/Spambase. A description of the attributes
and the training data is on the website. In the data, there are 4601 total instances,
39.4% of which is labeled as spam.

The write-up of my work is as follows. First I explain my implementation of the
Naive Bayes classifier, and the different discretization algorithms that are used. |
then compare the Naive Bayes classifier on with these different algorithms against
each other, and then [compare these to other existing algorithms within Weka and
explain the results.

I've included the Java code for my project - It requires the Weka package. I've also
included a jar file that can be executed at the command prompt. To run my code in
the command prompt, type:

java -jar MorgansNaiveBayes.jar -t spam_data.arff -D|-K|<Empty String>

Where -D discretizes the attributes by learning the binary split, -K uses the kernel
density estimator (I will explain how this works shortly) on the real valued
attributes, and if you do not enter an option, then by default the classifier will
assume a normal distribution of each attribute.

The three discretization methods work as follows. First, the default case rounds
each attribute to the nearest 1/100t and places a normal distribution over all of the
rounded data. This probability distribution is then used to predict the likelihood of a
given attribute value when classifying an instance. In the binary split case, the
attribute is converted into a single binary attribute. For example, for a real valued
attribute that ranges from 0 to 1, the binary split discretizer may lump all values as
below or above 0.3. The way this works is by computing the best threshold (the
threshold that divides the data into spam/not spam as best as possible). Finally,
Kernel density estimator is similar to the default method except that instead of
assuming the data falls within a normal distribution, the distribution is
approximated and smoothed given the sample data.

Below is a graph of the accuracy, precision, and recall of my Naive Bayes classifier,
and three decision tree algorithms (one is an ensemble using decision trees) used on
the spam data. I chose to look at the performance of decision trees just because I
was curious how a simple classifier such as Naive Bayes would compare to some of
the other common learning algorithms that are available within Weka.

Algorithm/Results | Accuracy Precision - | Precision- | Recall- Recall-

(correct/total) | Spam Not Spam Spam Not
Spam

ADTree 92.132 0.909 0.929 0.889 0.942

Bagging (Using 94.307 0.937 0.948 0.919 0.96

REPTree)

My Naive Bayes 89.15 0.901 0.897 0.835 0.94

Binary Split

My Naive Bayes 76.347 0.628 0.983 0.983 0.621

Kernel Density

Estimator

My Naive Bayes 79.28 0.666 0.956 0.951 0.69

Normal

Distribution

The first thing to notice in my data is that my Naive Bayes algorithm using the
Binary split discretizer performs better than the other two Naive Bayes classifiers.
This makes sense, as most of the attributes in the data are percentages of particular
words within an email. So we can imagine it to be common that certain words are
very frequent in spam and not frequent in normal email (or vice versa), implying
that it is often likely that there is a natural threshold in the occurrence of words
between spam and non-spam emails. Surprisingly, however, the Kernel Density
Estimator method had a worse accuracy than the Normal Distribution method. This
may be simply because the distribution of attribute values are better approximated
by a normal given our data set.

The decision tree algorithms that I tested work as follows. First, the ADTree is built
by iteratively creating decision and prediction nodes. Decision nodes discriminate
between positive and negative examples, and prediction nodes specify a value to
add to a tallying score as we move through the tree. When we reach a leaf, the total
score gives us the classification of the data. The bagging ensemble method, which
we discussed in class works by creating m training sets from a given set of training
data, sampling examples uniformly from each set with replacement, and then the m
models are combined. The REPTree is simply a decision tree that is pruned to
minimize errors (branches are pruned until harmful).

Both decision tree-based classifiers had higher accuracy (and typically better
precision and recall) than the Naive Bayes classifiers. This was expected, since the
Naive Bayes classifier assumes independence between all of the attributes, while in

decision trees, this is not necessarily true. On the other hand, given the simplicity of
a Naive Bayes classifier, the accuracy, precision, and recall are remarkably high. This
demonstrates the surprising power of Naive Bayes classifiers that assume each
attribute of a class is independent of every other attribute, which is rarely true in
real-life situations. The ensemble method performed the best out of all of the
algorithms. An interesting future test would be to evaluate the same ensemble
method where it instead uses my Naive Bayes classifier instead of the REP tree, and
see how it compares to the other algorithms. In summary, I would say that I am
most impressed with the strength of Naive Bayes classifiers given their simplicity.

