Anna Burago

Project Report. CSE 573. Fall 2008.

For my project, | have decided to implement optiona counterfeit coin problem.

I mplementation details:

My search space is implemented as a tree of JEtssSpaceSate). My search algorithm
performs a depth-first search with backtrackiSgateSate: : SearchDepthFirstBacktrack method)
starting from a root nod&gaceSate :: CreateRootSate) till a goal state is found

(State:: TestFor Goal Sate).

My individual search states are wrapper objeasiad partually constructed branching plans.
Wrapper objects are implemented through ciate. Partially constructed branching plans are
implemented through cla¥8eightsTree. Sate class is responsible for selecting a next node in
serach tree of states. So possible optimizatiodshauristics should be implemented within this
class.

Partially constructed branching plans (objectspétVeightsTree) are implemented as follows:
each partial branching plan corresponds to a feiesbranching plan tree. On this full-sized tree
nodes that correspond to current partial branchlag are specially marked. A full branching tree
is a tree of depth 4, with branching level 3 atheaertice (correspond to left cup heavier, cupsaéqu
and right cup heavier states). The branching sepiimized for depth-first traversal since the
sooner we reach to a failed leaf node the fasteramereject a current partial branching plan. $o th
actual nodes of the branching tree are storedeiattay with the natural order corresponding to
depth-first traversal. A few helper arrays withie YWeightsTree class (n_parentldxMap,
m_leafNodeFlags, m ScaleObservation)ease navigating through the tree.

The full branching tree has total bf 3+ 9+27=40 nodes. Each node on a branching tree is of type
BranchTreeNode. An object of this type stores a few pieces @frimation.
WeightTreeNode::m_heavyFakes andWeightTreeNode::m_lightFakes arrays define a fake coin
believe state that corresponds to this node. kahiy an elemeift] with the value 1 indicates a
potential fake (light or heavy) coin a+th place. A successfull node has only one elenmetwto

arrays equal td. This array is trimmed after each observation asneee down the branching tree
(function WeightTreeNode: : UpdateFromNode). WeightTreeNode::m_weightDistrldx containt the
information on which coins will be weighted at tiisde at current iteration. This field is important
for non-leaf nodes only.

I choose the order in which coins are placed ofesags and store the information about it in
individual Branch Tree nodes through the weighssritiution table (VeightDistr Table class). This
is a BIG table that contains all possible placemeitcoins on left and right cups (sae humber of

coins on each). Each coin placement on an indiVibizanch tree node is just an index to a row in
this array. This array has total©@bmb(12,1)* Comb(11,1)+ Comb(12,2)* Comb(10,2)+

Comb(12,3)* Comb(9,3) + Comb(12,4)* Comb(8,4) + Comb(12,5)* Comb(7,5)+

Comb(12,6)* Comb(6,6) rows. | generate this array once in the courseajnam execution though
base-3 addition of integer numbeYggghtDistr Table: : GenerateDistributions() function). | should
have made this array twice smaller by eliminatipignsietric coin placements like ((coinl on left,
coin7 on right) and (coin7 on left, coinl on rightut | didn’t have time to do it. The size oifgth
array corresponds to a branching factor of a states which is really big.

Space complexity of my program:

Since | do depth-first search with backtracking aimte the depth of a solution on the global states
tree is not more then 41 (initial state plus notimthen 40 consecutive expanding partial branching
plans), then the space complexity of my progranmoistoo high. A space state at each individual
moment has memory requirements of the orddiddséizeof(full branching tree plan). And sizeof

(full branching tree plan) has the order af0* sizeof (individual branch node)= 40* 25* sizeof(int).

My Weights Distributions array consumes a lot ofmoey (see above), but still it is a reasonable
amount of memory.

Time complexity of my program:

My program is very time-complex since, in fact, apace graph in a graph of depths 41 with a
HUGE branching factor at each node. | do have sgptienizations in place (example: adding nodes
to partial weights state in depth-first order aldotw drop unsecessull branching plans as soon as
first failed leaf node is reached), but still tlisan uninformed search.

Possible improvements.
| should have added some heuristics to my pantaidhing plans selection.

One possible option might have been: use 4 coireach cup for first weighting, 2 or 3 coins for
second weighting, 2 or 1 coins fdf Sreighting.

Current state of my program.

Currently | can not claim that my program is woikes well as | can not claim that it is not
working. | have started it with 12 coins 90 minuée®, and it is still executing. My step-through
with the smaller number of coins (modifiable inlude.h) indicates that that depth-first with

backstrackingstate search algorithm is working erigp It also indicated that partially constructed
branching trees correctly update believe statéssafodes, and are properly rejected if they ae n
working. But | have had this step-through earlyhie mornign today — and | never had enough time
to properly run the program with 12 coins. | skdduave, probably, implemented Bayesisan junk
filter — it would have been easier.

