
CSE 573 Problem Set 2 Answers due 10/28/08 8am

Preferably, turn in by email to both daipeng@cs & weld@cs

Please work on this problem set individually. If any problem doesn’t contain enough information

for you to answer it, feel free to make any assumptions necessary to find the answer, but state the
assumptions clearly. You will be graded on your choice of assumptions as well as the clarity of your
written answers.

We'll accept late problem sets under the following conditions:
Up to 1 hour late - no penalty
Up to one day late - 25% penalty
Up to two day late - 50% penalty
More than 2 days - no credit (please plan ahead!)

1. (15 points) R&N problem 7.4 parts, a, b and c.
2. (15 points) R&N problem 7.8 parts a, b, c and e.
3. (5 points) R&N problem 7.16
4. (5 points) R&N problem 8.2
5. (5 points) R&N problem 8.7 using Nationality(p, c) to say that p is from country c and the constant

G to denote Germany.
6. (5 points) R&N problem 8.8
7. (5 points) R&N problem 8.13
8. (5 points) R&N problem 9.4
9. (30 points) Using the programming language of your choice, implement a function which

performs unification. You may accept input in any convenient manner and use any syntax for
variables and formulae. Hand in the code for your algorithm and examples showing its
correctness, including the ones presented in class (slides of 10/14) as an explanation of the
function, plus at least two others.

10. In this problem, you are asked to execute SatPlan (a modern planning algorithm, developed by
Henry Kautz and colleagues, which compiles problems to SAT) on a past International Planning
Competition (IPC) domain.

a) First, download the executable of SatPlan from
http://www.cs.washington.edu/education/courses/cse573/08au/problems/ps2/SatPlan2
006_LinuxBin.tgz Before you run SatPlan, make sure you read the readme file carefully
(available at
http://www.cs.washington.edu/education/courses/cse573/08au/problems/ps2/README.
txt). Please ignore the installation and "how to get started" section, since you've already
got the executables.

b) Next, download the "Storage" domain file and problem files from
http://www.cs.washington.edu/education/courses/cse573/08au/problems/ps2/storage.ta
r . You might want to read the description of this domain from the IPC5 website
http://zeus.ing.unibs.it/ipc-5/domain-descriptions/storage.txt

c) The domains are implemented in PDDL (http://zeus.ing.unibs.it/ipc-5/pddl.html), a
“industrial grade” version of the STRIPS language with which we defined actions in

class – you know, preconditions and postconditions, etc. You may wish to review the
PDDL language now, in order to understand the domain encoding. You will definitely
want to read about PDDL before trying the next problem.

d) Use the default parameters to solve the first problem (FYI, if you have put the untared
storage folder exactly inside the untared SatPlan2006_LinuxBin, then the exact
command input should be "./satplan -domain storage/domain.pddl -problem
storage/p01.pddl"). This should produce a lot of detailed output, but don't get
frightened - just ignore most of it for the moment. What you really care about is whether
the problem is solved. If the problem is solved optimally, there should be a line says
"***SAT!***". Layer tells you how many time steps are used to solve problem (multiple
compatible actions may be scheduled for each level). Right below that line should be
some timing information.

e) Now you should be able to solve the small problems (up to 9) instantly. If you want to
see how SatPlan performs on some larger problems in this domain, try running problem
10. You might also notice that SatPlan fails to solve the large problems (e.g. 20).

f) (10 points) Run problem 2. In how many time steps this problem can be solved? (check
the MakeSpan info in the solution file) Write down (in English) which actions are
executed in each time step. (To do this, you need to comprehend the domain file and the
problem file first, and join them with the solution file)

g) (5 points) Could one switch the actions in time 0 and time 1, (i.e., the order of the first
two actions in the solution) and still have a working plan? If not, what pre-condition(s)
is/are violated if you perform the second action first?

11. (25 points) Use the PDDL language to encode a domain and problem of your choice (mobile
robots, getting a PhD, getting lunch, traveling to another city for a conference, dating,
whatever) so a planner can solve it. Then use SatPlan to find a solution plan. Turn in your
PDDL definitions of your domain, and at least one problem, the solution file for the first
problem, and a qualitative description of the resulting plan (e.g., length number of actions,
etc). Your grade will depend on the complexity of the domain and problem specifications with
extra credit available. Advice: Start simply and test for solution plans frequently. Add actions
incrementally. And likewise increase the complexity of preconditions and effects with frequent
testing, since syntax errors may be hard to spot.

