
Sound and Efficient Inference with Probabilistic and Deterministic Dependencies

Hoifung Poon Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{hoifung, pedrod}@cs.washington.edu

Abstract
Reasoning with both probabilistic and deterministic depen-
dencies is important for many real-world problems, and in
particular for the emerging field of statistical relational learn-
ing. However, probabilistic inference methods like MCMC
or belief propagation tend to give poor results when deter-
ministic or near-deterministic dependencies are present, and
logical ones like satisfiability testing are inapplicable to prob-
abilistic ones. In this paper we propose MC-SAT, an infer-
ence algorithm that combines ideas from MCMC and satis-
fiability. MC-SAT is based on Markov logic, which defines
Markov networks using weighted clauses in first-order logic.
From the point of view of MCMC, MC-SAT is a slice sampler
with an auxiliary variable per clause, and with a satisfiability-
based method for sampling the original variables given the
auxiliary ones. From the point of view of satisfiability, MC-
SAT wraps a procedure around the SampleSAT uniform sam-
pler that enables it to sample from highly non-uniform distri-
butions over satisfying assignments. Experiments on entity
resolution and collective classification problems show that
MC-SAT greatly outperforms Gibbs sampling and simulated
tempering over a broad range of problem sizes and degrees of
determinism.

Introduction
Many real-world problems require the use of both proba-
bilistic and deterministic information. For example, entity
resolution (the problem of determining which observations
correspond to the same object) involves both probabilis-
tic inferences (e.g., observations with similar properties are
more likely to be the same object) and deterministic ones
(e.g., transitive closure: if x = y and y = z, then x = z)
(McCallum & Wellner 2005). Unfortunately, while the state
of the art in pure probabilistic and pure deterministic infer-
ence is quite advanced, combining them has received much
less attention to date. At the boundary of the two, near-
deterministic dependencies are particularly intractable, and
responsible for the #P-completeness of probabilistic infer-
ence (Roth 1996). Problems of this type appear frequently
in the new field of statistical relational learning, which com-
bines statistical learning and inductive logic programming
(Dietterich et al. 2004).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Deterministic dependencies break the support of a proba-
bility distribution into disconnected regions, making it diffi-
cult to design ergodic Markov chains for MCMC inference
(Gilks et al. 1996). Gibbs sampling is trapped in a single
region, and never converges to the correct answers. Run-
ning multiple chains with random starting points does not
solve this problem, because it does not guarantee that dif-
ferent regions will be sampled with frequency proportional
to their probability, and there may be a very large number
of regions. Blocking is only viable for localized determinis-
tic dependencies, but very large-scale ones often occur (e.g.,
transitive closure). Simply finding a starting point within
the support of the distribution is an NP-hard problem. Near-
deterministic dependencies preserve ergodicity, but lead to
unacceptably long convergence times, even for methods like
simulated tempering (Marinari & Parisi 1992). In belief
propagation (Yedidia et al. 2001), deterministic or near-
deterministic dependencies can lead to incorrect answers or
failure to converge. A number of authors have taken advan-
tage of deterministic dependencies to speed up exact infer-
ence in graphical models (e.g., (Allen & Darwiche 2003;
Dechter & Mateescu 2004; Bartels & Bilmes 2004)), but
their algorithms are unlikely to scale to problems with a
large number of densely connected variables, like those
found in statistical relational learning, and do not help in
the case of near-deterministic dependencies.

Satisfying sets of interlocking deterministic constraints is
an NP-complete problem, but in practice it is often tack-
led efficiently by current satisfiability solvers. For example,
WalkSAT (Selman et al. 1996) can solve hard problems with
hundreds of thousands of variables in minutes. Recently,
it has been extended to sampling solutions near-uniformly
(Wei et al. 2004). In this paper, we take advantage of this ca-
pability by developing MC-SAT, an MCMC algorithm that
is able to handle deterministic and near-deterministic depen-
dencies by using Wei et al.’s SampleSAT as a subroutine to
efficiently jump between isolated or near-isolated regions
of non-zero probability, while preserving detailed balance.
MC-SAT accepts problems defined in Markov logic, a very
general language that has both Markov networks and finite
first-order logic as special cases (Richardson & Domingos
2006).

We begin by briefly reviewing the necessary background
in MCMC, satisfiability and Markov logic. We then describe



MC-SAT and its application to entity resolution and collec-
tive classification problems, illustrating its ability to improve
on algorithms like Gibbs sampling and simulated tempering.

Probabilistic Inference

Graphical models compactly represent the joint distribution
of a set of variables (or nodes) X = (X1, X2, . . . , Xn) ∈
X as a product of non-negative potential functions (Pearl
1988): P (X = x) = 1

Z

∏
k φk(x{k}), where each poten-

tial φk is over a subset of the variables x{k}, and Z is
a normalization constant. Under appropriate restrictions,
the model is a Bayesian network and Z = 1. A Markov
network or Markov random field can have arbitrary poten-
tials. As long as P (X = x) > 0 for all x, the distribu-
tion can be equivalently represented as a log-linear model:
P (X =x) = 1

Z exp (
∑

i wifi(x)), where the fi(x) are arbi-
trary feature functions. In this paper, we will be concerned
exclusively with Boolean variables and features. Roughly
speaking, larger weights wj correspond to stronger depen-
dencies. Deterministic dependencies can be viewed as the
limit wi →∞ (and P (X =x)→ 0 for some x).

The fundamental inference problem in graphical models
is computing conditional probabilities. Perhaps the most
widely used method for this is Markov chain Monte Carlo
(MCMC) (Gilks et al. 1996), and in particular Gibbs sam-
pling, which proceeds by sampling each variable in turn
given its Markov blanket (the variables it appears in some
potential with). To generate samples from the correct dis-
tribution, it suffices that the Markov chain satisfy ergodicity
and detailed balance. In essence, all states must be aperi-
odically reachable from each other, and for any two states
x, y P (x)Q(x → y) = P (y)Q(y → x), where Q is the
chain’s transition probability. When strong dependencies are
present, changes to the state of a variable given its neigh-
bors become very unlikely, and convergence of the proba-
bility estimates to the true values becomes very slow. In
the limit of deterministic dependencies, ergodicity breaks
down. One way to speed up Gibbs sampling is by sim-
ulated tempering (Marinari & Parisi 1992), where chains
with reduced weights are run in parallel with the original
one, and we periodically attempt to swap the states of two
chains. However, when weights are very large swaps be-
come very unlikely, and infinite weights still break ergodic-
ity. Another widely used approach relies on auxiliary vari-
ables to capture the dependencies. For example, we can de-
fine P (X =x, U =u) = (1/Z)

∏
k I[0,φk(x{k})](uk), where

φk is the kth potential function, uk is the kth auxiliary vari-
able, I[a,b](uk) = 1 if a ≤ uk ≤ b, and I[a,b](uk) = 0
otherwise. The marginal distribution of X under this joint
is P (X = x), so to sample from the original distribution
it suffices to sample from P (x, u) and ignore the u values.
P (uk|x) is uniform in [0, φk(x{k})], and thus easy to sam-
ple from. P (x|u) is uniform in the “slice” of X that satis-
fies φk(x{k}) ≥ uk for all k. Identifying this region is the
main difficulty in this technique, known as slice sampling
(Damien et al. 1999).

Satisfiability
A knowledge base (KB) in propositional logic is a set of
formulas over Boolean variables. Every KB can be con-
verted to conjunctive normal form (CNF): a conjunction of
clauses, each clause being a disjunction of literals, each lit-
eral being a variable or its negation. Satisfiability is the prob-
lem of finding an assignment of truth values to the variables
that satisfies all the clauses (i.e., makes them true) or deter-
mining that none exists. It is the prototypical NP-complete
problem. The last decade and a half has seen tremendous
progress in the development of highly efficient satisfiability
solvers. One of the most efficient approaches is stochastic
local search, exemplified by the WalkSAT solver (Selman
et al. 1996). Starting from a random initial state, Walk-
SAT repeatedly flips (changes the truth value of) a variable
in a random unsatisfied clause. With probability q, Walk-
SAT chooses the variable that maximizes the number of sat-
isfied clauses, and with probability 1−q it chooses a random
variable. WalkSAT keeps going even if it finds a local maxi-
mum, and after n flips restarts from a new random state. The
whole procedure is repeated m times. WalkSAT can solve
random problems with hundreds of thousands of variables in
a fraction of a second, and hard ones in minutes.

The MaxWalkSAT algorithm (Kautz et al. 1997) extends
WalkSAT to the weighted satisfiability problem, where each
clause has a weight and the goal is to maximize the sum of
the weights of satisfied clauses. Park (2002) showed how
the problem of finding the most likely state of a Bayesian
network given some evidence can be efficiently solved by
reduction to weighted satisfiability. The same encoding can
be used to compute probabilities in Bayesian networks using
our MC-SAT algorithm.

Most recently, Wei et al.(2004) extended WalkSAT to
sample satisfying solutions near-uniformly by combining it
with simulated annealing. At near-zero temperature, simu-
lated annealing samples solutions uniformly, but will gen-
erally take too long to find them. WalkSAT finds solu-
tions very fast, but samples them highly non-uniformly.
Wei et al.’s SampleSAT algorithm samples solutions near-
uniformly and highly efficiently by, at each iteration, per-
forming a WalkSAT step with probability p and a simulated
annealing step with probability 1 − p. The parameter p is
used to trade off uniformity and computational cost.

Markov Logic
Many domains contain complex relational structure, and
first-order logic allows us to compactly represent it. For ex-
ample, in a domain with n objects, representing the transitiv-
ity of a binary relation requires n3 formulas in propositional
logic, but only one in first-order logic: ∀x∀y∀z R(x, y) ∧
R(y, z)⇒ R(x, z). Just as Markov networks can be viewed
as a probabilistic extension of propositional logic, Markov
logic is a probabilistic extension of finite first-order logic
(Richardson & Domingos 2006). A Markov logic network
(MLN) is a set of weighted first-order clauses. Together with
a set of constants, it defines a Markov network with one node
per ground atom and one feature per ground clause. The
weight of a feature is the weight of the first-order clause that



originated it. The probability of a state x in such a network
is given by P (x) = (1/Z) exp (

∑
i wifi(x)), where Z is a

normalization constant, wi is the weight of the ith clause,
fi = 1 if the ith clause is true, and fi = 0 otherwise.

Markov logic makes it possible to compactly specify
probability distributions over complex relational domains.
Deterministic dependencies are represented by formulas
with infinite weight. In this paper we will focus on MLNs
whose formulas are function-free clauses and assume do-
main closure, ensuring that the Markov networks generated
are finite (Richardson & Domingos 2006). Given the con-
stants in the domain, inference in Markov logic reduces to
inference over the resulting Markov network. Richardson
and Domingos (2006) used Gibbs sampling for this purpose,
but it is too slow for near-deterministic dependencies, and
unsound for deterministic ones. MC-SAT addresses these
problems.

Inference is often a subroutine when learning statistical
models of relational domains (Dietterich et al. 2004). These
models often contain hundreds of thousands of variables or
more, making efficient inference crucial to their learnabil-
ity. Many representations used in this field can be com-
pactly translated into Markov logic (Richardson & Domin-
gos 2006), and thus MC-SAT is also applicable to them.

The MC-SAT Algorithm
MC-SAT applies slice sampling to Markov logic, using
SampleSAT to sample a new state given the auxiliary vari-
ables. In the Markov network obtained by applying an MLN
to a set of constants, each ground clause ck corresponds to
the potential function φk(x) = exp(wkfk(x)), which has
value ewk if ck is satisfied, and 1 otherwise. We introduce
an auxiliary variable uk for each ck. Assume for the mo-
ment that all weights are non-negative. On the ith iteration
of MC-SAT, if ck is not satisfied by the current state x(i),
uk is drawn uniformly from [0, 1]; therefore uk ≤ 1 and
uk ≤ ewi , and there is no requirement that it be satisfied in
the next state. If ck is satisfied, uk is drawn uniformly from
[0, ewi ], and with probability 1−e−wi it will be greater than
1, in which case the next state must satisfy ck. Thus, sam-
pling all the auxiliary variables determines a random subset
M of the currently satisfied clauses that must also be satis-
fied in the next state. We then take as the next state a uniform
sample from the set of states SAT (M) that satisfy M . (No-
tice that SAT (M) is never empty, because it always con-
tains at least the current state.) The initial state is found by
applying a satisfiability solver to the set of all hard clauses
in the network (i.e., all clauses with infinite weight). If this
set is unsatisfiable, the output of MC-SAT is undefined.

Algorithm 1 gives pseudo-code for MC-SAT. US is the
uniform distribution over set S. At each step, all hard
clauses are selected with probability 1, and thus all sampled
states satisfy them. For brevity, the code ignores the case of
negative weights. These are handled by noting that a clause
with weight w < 0 is equivalent to its negation with weight
−w, and a clause’s negation is the conjunction of the nega-
tions of all of its literals. Thus, instead of checking whether
the clause is satisfied, we check whether its negation is sat-

Algorithm 1 MC-SAT(clauses, weights, num samples)
x(0) ← Satisfy(hard clauses)
for i← 1 to num samples do

M ← ∅
for all ck ∈ clauses satisfied by x(i−1) do

With probability 1− e−wk add ck to M
end for
Sample x(i) ∼ USAT (M)

end for

isfied; if it is, with probability 1 − ew we select all of its
negated literals, and with probability ew we select none.
Theorem 1 The Markov chain generated by MC-SAT satis-
fies ergodicity and detailed balance.
Proof. All states in the support of the true distribution P (x)
must satisfy all the hard clauses. At any step, there is non-
zero probability that M will contain only the hard clauses,
and therefore that the new state will be an arbitrary one in the
support of P (x). Thus all states in the support of P (x) are
reachable from each other in an arbitrary number of steps,
and the Markov chain is ergodic. Let Q(x

M
→ y) be the

probability of an MC-SAT step transitioning from state x
to state y via clause set M . We show that MC-SAT sat-
isfies detailed balance by proving the stronger claim that
P (x)Q(x

M
→ y) = P (y)Q(y

M
→ x). Given the assign-

ment x, the probability of M being the selected clause set is∏
i: fi(x)=1 ∧ ci /∈M e−wi ·

∏
j: cj∈M (1 − e−wj ). If ci ∈ M ,

ci is satisfied by both x and y. Given a uniform sampler, x
and y have the same probability of being generated from M :
QM (x) = QM (y). Therefore

P (x)Q(x
M
→ y)

= 1
Z exp (

∑
i wifi(x)) ·

∏
i: fi(x)=1 ∧ ci /∈M e−wi

·
∏

ci∈M (1− e−wi) ·QM (y)

= 1
Z

∏
fi(x)=1 ewi ·

∏
i: fi(x)=1 ∧ ci /∈M e−wi

·
∏

ci∈M (1− e−wi) ·QM (y)

= 1
Z

∏
ci∈M ewi ·

∏
ci∈M (1− e−wi) ·QM (y)

= 1
Z

∏
ci∈M ewi ·

∏
ci∈M (1− e−wi) ·QM (x)

= P (y)Q(y
M
→ x). 2

Theorem 1 illustrates a fundamental difference between
MC-SAT and other MCMC methods like Gibbs sampling
and simulated tempering: MC-SAT is guaranteed to be
sound, even in the presence of deterministic dependencies,
while these other methods are not. In practice, perfectly uni-
form samples are too costly to obtain, and MC-SAT uses
SampleSAT to obtain nearly uniform ones. SampleSAT’s p
parameter allows us to easily trade off speed and uniformity.
We further speed it up by performing unit propagation dur-
ing and after clause selection, and by using WalkSAT’s tabu
heuristic. SampleSAT is also imperfect in that it may fail to
find a satisfying solution, when in fact there is always one
(the current state). When this happens, we assume the cur-
rent state is indeed the only solution, and use it as the next
sample.



MC-SAT may at first appear to be impractical, because it
requires a complete run of a SAT solver at each step. How-
ever, it is well known that most SAT runs are extremely
short, and it is unlikely that the clause set generated at any
particular step will be in the critical “hard” region. Indeed,
in our experiments we found that SampleSAT ran on average
in a fraction of a second, and this time was in fact dominated
by the time required to generate M . It is also possible to
mix SampleSAT steps with ordinary Gibbs steps, on the ba-
sis that SampleSAT is needed for jumping between modes,
but not for exploring a mode.

An alternate way of arriving at MC-SAT is to start from
SampleSAT and ask: how can we use it for probabilistic
inference? How can we turn a uniform sampler into a sam-
pler for highly non-uniform distributions? Slice sampling
accomplishes exactly this, and hence its use in MC-SAT.

Experiments
Domains
Entity resolution is the problem of determining which obser-
vations correspond to the same entity. For example, when
merging databases we need to determine which records are
duplicates. This problem is of crucial importance to many
large scientific projects, businesses, and government agen-
cies, and has received increasing attention in the AI commu-
nity in recent years. We carried out experiments using the
BibServ.org database of bibliographic records, which com-
bines CiteSeer, DBLP, and user-donated databases. The goal
is to compute, for every pair of citations (x, y), the marginal
probability that x = y, and similarly for pairs of fields (au-
thors, titles and venues). We used a Markov logic network
similar to that of Singla and Domingos (2005), containing
formulas like: if two fields have high TF-IDF similarity,
they are likely to be the same; if two fields are the same,
their records are likely to be the same; if two records are
the same, their fields are the same; etc. This last rule is
deterministic, while the previous ones are not. Crucially, we
added the transitivity rule: ∀x, y, z x = y∧y = z ⇒ x = z.
This rule is used in an ad hoc way in most entity resolution
systems, and greatly complicates inference. We also added
the near-deterministic rule “If the titles and venues are both
the same, the papers are the same,” which captures the non-
linear effect of these two pieces of evidence. We used the
CiteSeer and user-donated subset of BibServ (88,035 cita-
tions), applied the canopy method (McCallum et al. 2000) to
extract subclusters of plausible matches, and used the largest
canopies to form data sets of varying size. For evaluation,
we hand-labeled the data.

Collective classification is the problem of simultaneously
classifying a set of related objects, and has many impor-
tant instances: Web page classification, image segmenta-
tion, social network analysis, word-of-mouth marketing,
spin glasses, hidden Markov models, etc. We manually cre-
ated an MLN that captures the essential aspects of many dif-
ferent collective classification problems. Its two key rules
are: ∀x, y, u C(x, u) ∧ R(x, y) ⇒ C(y, u) (if an object x
is of class u and is linked to object y, y is likely to also
be of class u) and ∀x, y, u C(x, u) ∧ C(y, u) ⇒ R(x, y)

(objects of the same class are likely to be linked). De-
pending on the domain, the degree of hardness of these
rules can vary widely. We also included rules of the form
∀x, v, uA(x, v) ∧E(v, u)⇒ C(x, u) to represent the more
traditional predictive relation between an object’s attributes
and its class. (E(v, u) means that value v is evidence of
class u. In our experiments, some values were indicative
of a single class, and some were indicative of more than
one class.) Finally, we added unit clauses to capture the
default frequencies of classes and relations. We randomly
generated data sets with varying numbers of objects and cat-
egories. The goal is to compute the marginal probabilities of
the groundings of C(x, u) given the groundings of R(x, y),
A(x, v) and E(v, u) as evidence.

Systems
We implemented MC-SAT and simulated tempering as ex-
tensions of the Alchemy system (Kok et al. 2005), and
used Alchemy’s implementation of Gibbs sampling, with
ten chains. We found the performance of MC-SAT to be
fairly insensitive to the SampleSAT settings. We report the
results for p = 0.5, a temperature of 0.5, and continuing
the run for 10 steps after reaching a solution. For simu-
lated tempering, we averaged the probabilities of m runs
of n swapping chains each, and tried various combinations
of m and n. The best results were obtained with three
runs of ten swapping chains each, and this is what we re-
port. We used evenly spaced weights for the chains (e.g.,
for ten chains: w, 0.9w, 0.8w, . . . , 0.1w, where w is the true
weight). However, in experiments with very large weights
even 0.1w was too large to allow any mode jumping, and
we also tried w, w/k, w/k2, . . . , w/(kn−1), with k equal
to the (n − 1)th root of the largest weight. This ensured
that the highest-temperature chain had all weights of 1.0 or
less. However, it did not noticeably improve the results, and
with either scheme there was very little chain swapping for
the largest weights, making simulated tempering not much
better than Gibbs (since the samples from all but the true
chain are discarded). All chains of all algorithms were ini-
tialized with random solutions to all the hard clauses. (By
default, Alchemy initializes MCMC with a mode found us-
ing MaxWalkSAT, but some of our data sets were too large
for MaxWalkSAT.) We used add-one smoothing on all prob-
abilities.

Methodology
We assigned a weight of 1000 to deterministic clauses.
(A state that violates a clause with this weight becomes
2×10434 times less probable, and effectively never occurs in
runs of MCMC.) To observe the behavior of the algorithms
with varying degreees of determinism, we also varied the
weights of the hard clauses logarithmically from 1 to 32. To
evaluate scalability, we varied the number of objects from 50
to 150. In the BibServ domain, 100 objects yielded 14,450
query atoms and 1.25 million ground clauses; in the collec-
tive classification domain, 2,000 and 105,140, respectively.

For BibServ, we trained the MLN using our hand-labeled
data and the algorithm of Singla and Domingos (2005), as
implemented in Alchemy. The algorithm cannot learn hard



clauses, so we learned only the weights of the soft ones.
Since the data matches the hard clauses perfectly, adding
them does not affect the fit. For inference, we modified
Alchemy to minimize the time and memory required to cre-
ate the relevant ground network given the evidence. This
network was then passed to all three algorithms.

Generating data from an MLN is a difficult problem (in-
deed, the problem MC-SAT addresses). Thus, for the collec-
tive classification domain, we instead followed the approach
of first generating the data using a heuristic procedure, and
then learning the MLN weights from this data. While this
does not guarantee that the data is a perfect sample from the
network, it is unlikely to bias results in favor of one infer-
ence algorithm.

A natural way to evaluate the algorithms would be to let
them run until convergence and compare the running times.
However, this is not feasible because some of the algorithms
may never converge, and diagnosing convergence is ex-
tremely difficult, particularly in near-deterministic domains.
Instead, we gave all algorithms the same running time and
compared their accuracy, which more closely parallels the
way MCMC is used in practice. A standard measure of ac-
curacy is the K-L divergence of the actual and computed
distributions. Since computing it exactly is infeasible for
realistic-sized domains, we used the negative log-likelihood
of the data according to the inference algorithms as a proxy.
This is appropriate because the negative log-likelihood is a
sampling approximation of the K-L divergence to the data-
generating distribution, shifted by its entropy, which is inde-
pedent of the inference algorithm.

Results
The results are shown in Figures 1 and 2, and are averages
of ten runs. For the time graph, we used 1000 as the hard
clause weight, 100 objects, and no burn-in. We begin the
plots at the end of the first complete iteration for each al-
gorithm. MC-SAT converges very rapidly, and dominates
the other two algorithms by a large margin. Each Gibbs
chain never escapes the mode it started in. Simulated tem-
pering improves very slowly over time as swapping takes
effect (note the log scale). For the weight graph, we used
100 objects, 10 minutes of burn-in, and 100 minutes for the
entire inference. In both domains, MC-SAT dominates for
weights beyond 4, by a wide margin. Most remarkably, the
performance of MC-SAT is nearly constant throughout the
entire weight range. For the object number graph, we used
a weight of 32 for the hard clauses, and allowed 10 minutes
for burn-in and 100 minutes for the entire inference. In both
domains, MC-SAT dominates throughout the entire range,
by a wide margin. We also conducted experiments on the
more difficult task of simultaneous collective classification
and link prediction (i.e., predicting both C(x, u) and R(x, y)
given A(x, v) and E(v, u)), and MC-SAT outperformed the
other algorithms by an even wider margin.

In summary, MC-SAT greatly outperforms Gibbs sam-
pling and simulated tempering, particularly when determin-
istic dependencies are present. This is attributable to its abil-
ity to rapidly jump between modes while maintaining de-
tailed balance.

 2600

 1950

 1300

 650

 0
1000100101

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

Time (mins)

MC-SAT
SimTemp

Gibbs

 2200

 1650

 1100

 550

 0
100032168421

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

Weight

MC-SAT
SimTemp

Gibbs

 6000

 4500

 3000

 1500

 0
 150 125 100 75 50

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

Number of Objects

MC-SAT
SimTemp

Gibbs

Figure 1: Experimental results for entity resolution: nega-
tive log-likelihood as a function of time (top graph), hard
clause weight (middle), and number of objects (bottom).

Conclusion
Many real-world applications require reasoning with a com-
bination of probabilistic and deterministic dependencies.
The MC-SAT algorithm accomplishes this by combining
slice sampling with satisfiability testing. Experiments on en-
tity resolution and collective classification problems show



 3800

 2850

 1900

 950

 0
1000100101

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

Time (mins)

MC-SAT
SimTemp

Gibbs

 1600

 1200

 800

 400

 0
100032168421

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

Weight

MC-SAT
SimTemp

Gibbs

 1600

 1200

 800

 400

 0
 150 125 100 75 50

N
eg

at
iv

e 
Lo

g-
Li

ke
lih

oo
d

Number of Objects

MC-SAT
SimTemp

Gibbs

Figure 2: Results for collective classification: negative log-
likelihood as a function of time (top graph), hard clause
weight (middle), and number of objects (bottom).

that it greatly outperforms Gibbs sampling and simulated
tempering. Directions for future work include using MC-
SAT for learning, reducing its memory requirements in rela-
tional domains by exploiting sparseness, and applying it to
other domains.

Acknowledgements
We are grateful to Bart Selman for helpful discussions, and
to Parag Singla for help with the BibServ dataset. This
research was partly supported by DARPA grant FA8750-
05-2-0283 (managed by AFRL), DARPA contract NBCH-
D030010, NSF grant IIS-0534881, and ONR grant N00014-
05-1-0313. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as necessarily representing the official policies, either
expressed or implied, of DARPA, NSF, ONR, or the United
States Government.

References
Allen, D. & Darwiche, A. 2003. New advances in inference by
recursive conditioning. In UAI-03.
Bartels, C. & Bilmes, J. 2004. Elimination is not enough: Non-
minimal triangulations for graphical models. Technical report
UWEETR-2004-00010, Univ. of Washington.
Damien, P.; Wakefield, J.; Walker, S. 1999. Gibbs sampling
for Bayesian non-conjugate and hierarchical models by auxiliary
variables. Journal of the Royal Statistical Society B, 61:2.
Dechter, R. & Mateescu, R. 2004. Mixtures of deterministic-
probabilistic nets and their search space. In UAI-04.
Dietterich, T.; Getoor, L.; Murphy, K., eds. 2004. Proc. ICML-
2004 Workshop on Statistical Relational Learning and its Con-
nections to Other Fields. IMLS.
Gilks, W. R.; Richardson, S.; Spiegelhalter, D. J., eds. 1996.
Markov Chain Monte Carlo in Practice. Chapman and Hall.
Kautz, H.; Selman, B.; Jiang, Y. 1997. A general stochastic
approach to solving problems with hard and soft constraints. In
The Satisfiability Problem: Theory and Applications. AMS.
Kok, S.; Singla, P.; Richardson, M.; Domingos, P.
2005. The Alchemy system for statistical relational AI.
http://www.cs.washington.edu/ai/alchemy/.
Marinari, E., and Parisi, G. 1992. Simulated tempering: A new
Monte Carlo scheme. Europhysics Letters, 19, 451-458.
McCallum, A.; Nigam, K.; Ungar, L. 2000. Efficient cluster-
ing of high-dimensional data sets with application to reference
matching. In KDD-00.
McCallum, A. & Wellner, B. 2005. Conditional models of iden-
tity uncertainty with application to noun coreference. In NIPS-04.
Park, J. 2002. Using weighted MAX-SAT engines to solve MPE.
In AAAI-02.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Richardson, M. & Domingos, P. 2006. Markov logic networks.
Machine Learning 62:107–136.
Roth, D. 1996. On the hardness of approximate reasoning. Arti-
ficial Intelligence 82:273–302.
Selman, B.; Kautz, H.; Cohen, B. 1996. Local search strategies
for satisfiability testing. In Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. AMS.
Singla, P. & Domingos, P. 2005. Discriminative training of
Markov logic networks. In AAAI-05.
Yedidia, J. S.; Freeman, W. T.; Weiss, Y. 2001. Generalized belief
propagation. In NIPS-01.
Wei, W.; Erenrich, J.; Selman, B. 2004. Towards efficient sam-
pling: Exploiting random walk strategies. In AAAI-04.


