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Abstract. We propose a simple approach to combining first-order logic and probabilistic
graphical models in a single representation. A Markov logic network (MLN) is a first-order
knowledge base with a weight attached to each formula (or clause). Together with a set of
constants representing objects in the domain, it specifies a ground Markov network containing
one feature for each possible grounding of a first-order formula in the KB, with the corre-
sponding weight. Inference in MLNs is performed by MCMC over the minimal subset of
the ground network required for answering the query. Weights are efficiently learned from
relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, addi-
tional clauses are learned using inductive logic programming techniques. Experiments with a
real-world database and knowledge base in a university domain illustrate the promise of this
approach.
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1. Introduction

Combining probability and first-order logic in a single representation has
long been a goal of AI. Probabilistic graphical models enable us to efficiently
handle uncertainty. First-order logic enables us to compactly represent a wide
variety of knowledge. Many (if not most) applications require both. Interest
in this problem has grown in recent years due to its relevance to statistical
relational learning (Getoor & Jensen, 2000; Getoor & Jensen, 2003; Diet-
terich et al., 2003), also known as multi-relational data mining (Džeroski &
De Raedt, 2003; Džeroski et al., 2002; Džeroski et al., 2003; Džeroski &
Blockeel, 2004). Current proposals typically focus on combining probability
with restricted subsets of first-order logic, like Horn clauses (e.g., Wellman
et al. (1992); Poole (1993); Muggleton (1996); Ngo and Haddawy (1997);
Sato and Kameya (1997); Cussens (1999); Kersting and De Raedt (2001);
Santos Costa et al. (2003)), frame-based systems (e.g., Friedman et al. (1999);
Pasula and Russell (2001); Cumby and Roth (2003)), or database query lan-
guages (e.g., Taskar et al. (2002); Popescul and Ungar (2003)). They are often
quite complex. In this paper, we introduce Markov logic networks (MLNs), a
representation that is quite simple, yet combines probability and first-order
logic with no restrictions other than finiteness of the domain. We develop
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2 Richardson and Domingos

efficient algorithms for inference and learning in MLNs, and evaluate them
in a real-world domain.

A Markov logic network is a first-order knowledge base with a weight
attached to each formula, and can be viewed as a template for constructing
Markov networks. From the point of view of probability, MLNs provide a
compact language to specify very large Markov networks, and the ability
to flexibly and modularly incorporate a wide range of domain knowledge
into them. From the point of view of first-order logic, MLNs add the ability
to soundly handle uncertainty, tolerate imperfect and contradictory knowl-
edge, and reduce brittleness. Many important tasks in statistical relational
learning, like collective classification, link prediction, link-based clustering,
social network modeling, and object identification, are naturally formulated
as instances of MLN learning and inference.

Experiments with a real-world database and knowledge base illustrate
the benefits of using MLNs over purely logical and purely probabilistic ap-
proaches. We begin the paper by briefly reviewing the fundamentals of Markov
networks (Section 2) and first-order logic (Section 3). The core of the paper
introduces Markov logic networks and algorithms for inference and learning
in them (Sections 4–6). We then report our experimental results (Section 7).
Finally, we show how a variety of SRL tasks can be cast as MLNs (Sec-
tion 8), discuss how MLNs relate to previous approaches (Section 9) and list
directions for future work (Section 10).

2. Markov Networks

A Markov network (also known as Markov random field) is a model for
the joint distribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X
(Pearl, 1988). It is composed of an undirected graph G and a set of potential
functions φk. The graph has a node for each variable, and the model has a
potential function for each clique in the graph. A potential function is a non-
negative real-valued function of the state of the corresponding clique. The
joint distribution represented by a Markov network is given by

P (X =x) =
1

Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z , known as the partition function, is given by Z =
∑

x∈X

∏

k φk(x{k}). Markov networks are often conveniently represented as
log-linear models, with each clique potential replaced by an exponentiated
weighted sum of features of the state, leading to
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P (X =x) =
1

Z
exp





∑

j

wjfj(x)



 (2)

A feature may be any real-valued function of the state. This paper will focus
on binary features, fj(x) ∈ {0, 1}. In the most direct translation from the
potential-function form (Equation 1), there is one feature corresponding to
each possible state x{k} of each clique, with its weight being log φk(x{k}).
This representation is exponential in the size of the cliques. However, we are
free to specify a much smaller number of features (e.g., logical functions of
the state of the clique), allowing for a more compact representation than the
potential-function form, particularly when large cliques are present. MLNs
will take advantage of this.

Inference in Markov networks is #P-complete (Roth, 1996). The most
widely used method for approximate inference in Markov networks is Markov
chain Monte Carlo (MCMC) (Gilks et al., 1996), and in particular Gibbs
sampling, which proceeds by sampling each variable in turn given its Markov
blanket. (The Markov blanket of a node is the minimal set of nodes that
renders it independent of the remaining network; in a Markov network, this
is simply the node’s neighbors in the graph.) Marginal probabilities are com-
puted by counting over these samples; conditional probabilities are computed
by running the Gibbs sampler with the conditioning variables clamped to their
given values. Another popular method for inference in Markov networks is
belief propagation (Yedidia et al., 2001).

Maximum-likelihood or MAP estimates of Markov network weights can-
not be computed in closed form, but, because the log-likelihood is a concave
function of the weights, they can be found efficiently using standard gradient-
based or quasi-Newton optimization methods (Nocedal & Wright, 1999).
Another alternative is iterative scaling (Della Pietra et al., 1997). Features can
also be learned from data, for example by greedily constructing conjunctions
of atomic features (Della Pietra et al., 1997).

3. First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-
order logic (Genesereth & Nilsson, 1987). Formulas are constructed using
four types of symbols: constants, variables, functions, and predicates. Con-
stant symbols represent objects in the domain of interest (e.g., people: Anna,
Bob, Chris, etc.). Variable symbols range over the objects in the domain.
Function symbols (e.g., MotherOf) represent mappings from tuples of ob-
jects to objects. Predicate symbols represent relations among objects in the
domain (e.g., Friends) or attributes of objects (e.g., Smokes). An inter-
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pretation specifies which objects, functions and relations in the domain are
represented by which symbols. Variables and constants may be typed, in
which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For exam-
ple, the variable x might range over people (e.g., Anna, Bob, etc.), and the
constant C might represent a city (e.g., Seattle).

A term is any expression representing an object in the domain. It can be
a constant, a variable, or a function applied to a tuple of terms. For example,
Anna, x, and GreatestCommonDivisor(x, y) are terms. An atomic formula
or atom is a predicate symbol applied to a tuple of terms (e.g., Friends(x,
MotherOf(Anna))). Formulas are recursively constructed from atomic for-
mulas using logical connectives and quantifiers. If F1 and F2 are formulas,
the following are also formulas: ¬F1 (negation), which is true iff F1 is false;
F1 ∧ F2 (conjunction), which is true iff both F1 and F2 are true; F1 ∨ F2

(disjunction), which is true iff F1 or F2 is true; F1 ⇒ F2 (implication), which
is true iff F1 is false or F2 is true; F1 ⇔ F2 (equivalence), which is true iff
F1 and F2 have the same truth value; ∀x F1 (universal quantification), which
is true iff F1 is true for every object x in the domain; and ∃x F1 (existential
quantification), which is true iff F1 is true for at least one object x in the
domain. Parentheses may be used to enforce precedence. A positive literal
is an atomic formula; a negative literal is a negated atomic formula. The
formulas in a KB are implicitly conjoined, and thus a KB can be viewed
as a single large formula. A ground term is a term containing no variables. A
ground atom or ground predicate is an atomic formula all of whose arguments
are ground terms. A possible world or Herbrand interpretation assigns a truth
value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true.
The basic inference problem in first-order logic is to determine whether a
knowledge base KB entails a formula F , i.e., if F is true in all worlds where
KB is true (denoted by KB |= F ). This is often done by refutation: KB
entails F iff KB∪¬F is unsatisfiable. (Thus, if a KB contains a contradiction,
all formulas trivially follow from it, which makes painstaking knowledge
engineering a necessity.) For automated inference, it is often convenient to
convert formulas to a more regular form, typically clausal form (also known
as conjunctive normal form (CNF)). A KB in clausal form is a conjunction
of clauses, a clause being a disjunction of literals. Every KB in first-order
logic can be converted to clausal form using a mechanical sequence of steps.1

Clausal form is used in resolution, a sound and refutation-complete inference
procedure for first-order logic (Robinson, 1965).

1 This conversion includes the removal of existential quantifiers by Skolemization, which
is not sound in general. However, in finite domains an existentially quantified formula can
simply be replaced by a disjunction of its groundings.
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Inference in first-order logic is only semidecidable. Because of this, knowl-
edge bases are often constructed using a restricted subset of first-order logic
with more desirable properties. The most widely-used restriction is to Horn
clauses, which are clauses containing at most one positive literal. The Prolog
programming language is based on Horn clause logic (Lloyd, 1987). Prolog
programs can be learned from databases by searching for Horn clauses that
(approximately) hold in the data; this is studied in the field of inductive logic
programming (ILP) (Lavrač & Džeroski, 1994).

Table I shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not
always true. In most domains it is very difficult to come up with non-trivial
formulas that are always true, and such formulas capture only a fraction of the
relevant knowledge. Thus, despite its expressiveness, pure first-order logic
has limited applicability to practical AI problems. Many ad hoc extensions
to address this have been proposed. In the more limited case of propositional
logic, the problem is well solved by probabilistic graphical models. The next
section describes a way to generalize these models to the first-order case.

4. Markov Logic Networks

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The
basic idea in MLNs is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible. The fewer formulas
a world violates, the more probable it is. Each formula has an associated
weight that reflects how strong a constraint it is: the higher the weight, the
greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

DEFINITION 4.1. A Markov logic network L is a set of pairs (Fi, wi), where
Fi is a formula in first-order logic and wi is a real number. Together with a
finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network
ML,C (Equations 1 and 2) as follows:

1. ML,C contains one binary node for each possible grounding of each
predicate appearing in L. The value of the node is 1 if the ground atom
is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding of each formula
Fi in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.
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Table I. Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm() for Smokes(), and Ca()
for Cancer().

English First-Order Logic Clausal Form Weight

Friends of friends are friends. ∀x∀y∀z Fr(x, y) ∧ Fr(y, z)⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7
Friendless people smoke. ∀x (¬(∃y Fr(x, y))⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3
Smoking causes cancer. ∀x Sm(x)⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5
If two people are friends, either ∀x∀y Fr(x, y)⇒ (Sm(x)⇔ Sm(y)) ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1
both smoke or neither does. ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

mln.tex;
26/10/2005;

23:52;
p.6



Markov Logic Networks 7

The syntax of the formulas in an MLN is the standard syntax of first-order
logic (Genesereth & Nilsson, 1987). Free (unquantified) variables are treated
as universally quantified at the outermost level of the formula.

An MLN can be viewed as a template for constructing Markov networks.
Given different sets of constants, it will produce different networks, and these
may be of widely varying size, but all will have certain regularities in struc-
ture and parameters, given by the MLN (e.g., all groundings of the same
formula will have the same weight). We call each of these networks a ground
Markov network to distinguish it from the first-order MLN. From Defini-
tion 4.1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network ML,C is given by

P (X =x) =
1

Z
exp

(

∑

i

wini(x)

)

=
1

Z

∏

i

φi(x{i})
ni(x) (3)

where ni(x) is the number of true groundings of Fi in x, x{i} is the state
(truth values) of the atoms appearing in Fi, and φi(x{i}) = ewi . Notice
that, although we defined MLNs as loglinear models, they could equally well
be defined as products of potential functions, as the second equality above
shows. This will be the most convenient approach in domains with a mixture
of hard and soft constraints (i.e., where some formulas hold with certainty,
leading to zero probabilities for some worlds).

The graphical structure of ML,C follows from Definition 4.1: there is an
edge between two nodes of ML,C iff the corresponding ground atoms appear
together in at least one grounding of one formula in L. Thus, the atoms
in each ground formula form a (not necessarily maximal) clique in ML,C .
Figure 1 shows the graph of the ground Markov network defined by the last
two formulas in Table I and the constants Anna and Bob. Each node in this
graph is a ground atom (e.g., Friends(Anna, Bob)). The graph contains an
arc between each pair of atoms that appear together in some grounding of
one of the formulas. ML,C can now be used to infer the probability that Anna
and Bob are friends given their smoking habits, the probability that Bob has
cancer given his friendship with Anna and whether she has cancer, etc.

Each state of ML,C represents a possible world. A possible world is a set
of objects, a set of functions (mappings from tuples of objects to objects),
and a set of relations that hold between those objects; together with an inter-
pretation, they determine the truth value of each ground atom. The following
assumptions ensure that the set of possible worlds for (L,C) is finite, and that
ML,C represents a unique, well-defined probability distribution over those
worlds, irrespective of the interpretation and domain. These assumptions are
quite reasonable in most practical applications, and greatly simplify the use
of MLNs. For the remaining cases, we discuss below the extent to which each
one can be relaxed.
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Figure 1. Ground Markov network obtained by applying the last two formulas in Table I to
the constants Anna(A) and Bob(B).

ASSUMPTION 1. Unique names. Different constants refer to different ob-
jects (Genesereth & Nilsson, 1987).

ASSUMPTION 2. Domain closure. The only objects in the domain are
those representable using the constant and function symbols in (L,C) (Gene-
sereth & Nilsson, 1987).

ASSUMPTION 3. Known functions. For each function appearing in L, the
value of that function applied to every possible tuple of arguments is known,
and is an element of C .

This last assumption allows us to replace functions by their values when
grounding formulas. Thus the only ground atoms that need to be considered
are those having constants as arguments. The infinite number of terms con-
structible from all functions and constants in (L,C) (the “Herbrand universe”
of (L,C)) can be ignored, because each of those terms corresponds to a
known constant in C , and atoms involving them are already represented as
the atoms involving the corresponding constants. The possible groundings
of a predicate in Definition 4.1 are thus obtained simply by replacing each
variable in the predicate with each constant in C , and replacing each function
term in the predicate by the corresponding constant. Table II shows how
the groundings of a formula are obtained given Assumptions 1–3. If a for-
mula contains more than one clause, its weight is divided equally among the
clauses, and a clause’s weight is assigned to each of its groundings.

Assumption 1 (unique names) can be removed by introducing the equality
predicate (Equals(x, y), or x = y for short) and adding the necessary axioms
to the MLN: equality is reflexive, symmetric and transitive; for each unary
predicate P, ∀x∀y x = y ⇒ (P(x) ⇔ P(y)); and similarly for higher-order
predicates and functions (Genesereth & Nilsson, 1987). The resulting MLN
will have a node for each pair of constants, whose value is 1 if the constants
represent the same object and 0 otherwise; these nodes will be connected to
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Table II. Construction of all groundings of a first-order formula under Assumptions 1–3.

function Ground(F , C)
inputs: F , a formula in first-order logic

C, a set of constants
output: GF , a set of ground formulas
calls: CNF (F, C), which converts F to conjunctive normal form, replacing

existentially quantified formulas by disjunctions of their groundings over C

F ← CNF (F, C)
GF = ∅
for each clause Fj ∈ F

Gj = {Fj}
for each variable x in Fj

for each clause Fk(x) ∈ Gj

Gj ← (Gj \ Fk(x)) ∪ {Fk(c1), Fk(c2), . . . , Fk(c|C|)},
where Fk(ci) is Fk(x) with x replaced by ci ∈ C

GF ← GF ∪ Gj

for each ground clause Fj ∈ GF

repeat
for each function f(a1, a2, . . .) all of whose arguments are constants

Fj ← Fj with f(a1, a2, . . .) replaced by c, where c = f(a1, a2, . . .)
until Fj contains no functions

return GF

each other and to the rest of the network by arcs representing the axioms
above. Notice that this allows us to make probabilistic inferences about the
equality of two constants. We have successfully used this as the basis of an
approach to object identification (see Subsection 8.5).

If the number u of unknown objects is known, Assumption 2 (domain
closure) can be removed simply by introducing u arbitrary new constants. If
u is unknown but finite, Assumption 2 can be removed by introducing a distri-
bution over u, grounding the MLN with each number of unknown objects, and
computing the probability of a formula F as P (F ) =

∑umax
u=0 P (u)P (F |Mu

L,C ),
where Mu

L,C is the ground MLN with u unknown objects. An infinite u
requires extending MLNs to the case |C| = ∞.

Let HL,C be the set of all ground terms constructible from the function
symbols in L and the constants in L and C (the “Herbrand universe” of
(L,C)). Assumption 3 (known functions) can be removed by treating each
element of HL,C as an additional constant and applying the same procedure
used to remove the unique names assumption. For example, with a function
G(x) and constants A and B, the MLN will now contain nodes for G(A) = A,
G(A) = B, etc. This leads to an infinite number of new constants, requiring
the corresponding extension of MLNs. However, if we restrict the level of
nesting to some maximum, the resulting MLN is still finite.
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To summarize, Assumptions 1–3 can be removed as long the domain is
finite. We believe it is possible to extend MLNs to infinite domains (see Jaeger
(1998)), but this is an issue of chiefly theoretical interest, and we leave it for
future work. In the remainder of this paper we proceed under Assumptions 1–
3, except where noted.

A first-order KB can be transformed into an MLN simply by assigning a
weight to each formula. For example, the clauses and weights in the last two
columns of Table I constitute an MLN. According to this MLN, other things
being equal, a world where n friendless people are non-smokers is e(2.3)n

times less probable than a world where all friendless people smoke. Notice
that all the formulas in Table I are false in the real world as universally quan-
tified logical statements, but capture useful information on friendships and
smoking habits, when viewed as features of a Markov network. For example,
it is well known that teenage friends tend to have similar smoking habits
(Lloyd-Richardson et al., 2002). In fact, an MLN like the one in Table I
succinctly represents a type of model that is a staple of social network analysis
(Wasserman & Faust, 1994).

It is easy to see that MLNs subsume essentially all propositional proba-
bilistic models, as detailed below.

PROPOSITION 4.2. Every probability distribution over discrete or finite-
precision numeric variables can be represented as a Markov logic network.

Proof. Consider first the case of Boolean variables (X1, X2, . . . , Xn). Define
a predicate of zero arity Rh for each variable Xh, and include in the MLN
L a formula for each possible state of (X1, X2, . . . , Xn). This formula is a
conjunction of n literals, with the hth literal being Rh() if Xh is true in the
state, and ¬Rh() otherwise. The formula’s weight is log P (X1, X2, . . . , Xn).
(If some states have zero probability, use instead the product form (see Equa-
tion 3), with φi() equal to the probability of the ith state.) Since all predicates
in L have zero arity, L defines the same Markov network ML,C irrespective
of C , with one node for each variable Xh. For any state, the corresponding
formula is true and all others are false, and thus Equation 3 represents the
original distribution (notice that Z = 1). The generalization to arbitrary
discrete variables is straightforward, by defining a zero-arity predicate for
each value of each variable. Similarly for finite-precision numeric variables,
by noting that they can be represented as Boolean vectors. 2

Of course, compact factored models like Markov networks and Bayesian
networks can still be represented compactly by MLNs, by defining formulas
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for the corresponding factors (arbitrary features in Markov networks, and
states of a node and its parents in Bayesian networks).2

First-order logic (with Assumptions 1–3 above) is the special case of
MLNs obtained when all weights are equal and tend to infinity, as described
below.

PROPOSITION 4.3. Let KB be a satisfiable knowledge base, L be the MLN
obtained by assigning weight w to every formula in KB, C be the set of
constants appearing in KB, Pw(x) be the probability assigned to a (set of)
possible world(s) x by ML,C , XKB be the set of worlds that satisfy KB, and
F be an arbitrary formula in first-order logic. Then:

1. ∀x ∈ XKB limw→∞ Pw(x) = |XKB|
−1

∀x 6∈ XKB limw→∞ Pw(x) = 0

2. For all F , KB |= F iff limw→∞ Pw(F ) = 1.

Proof. Let k be the number of ground formulas in ML,C . By Equation 3, if
x ∈ XKB then Pw(x) = ekw/Z , and if x 6∈ XKB then Pw(x) ≤ e(k−1)w/Z .
Thus all x ∈ XKB are equiprobable and limw→∞ P (X \ XKB)/P (XKB) ≤
limw→∞(|X \XKB |/|XKB|)e

−w = 0, proving Part 1. By definition of entail-
ment, KB |= F iff every world that satisfies KB also satisfies F . Therefore,
letting XF be the set of worlds that satisfy F , if KB |= F then XKB ⊆ XF

and Pw(F ) =
∑

x∈XF
Pw(x) ≥ Pw(XKB). Since, from Part 1, limw→∞

Pw(XKB) = 1, this implies that if KB |= F then limw→∞ Pw(F ) = 1. The
inverse direction of Part 2 is proved by noting that if limw→∞ Pw(F ) = 1
then every world with non-zero probability in the limit must satisfy F , and
this includes every world in XKB. 2

In other words, in the limit of all equal infinite weights, the MLN rep-
resents a uniform distribution over the worlds that satisfy the KB, and all
entailment queries can be answered by computing the probability of the query
formula and checking whether it is 1. Even when weights are finite, first-order
logic is “embedded” in MLNs in the following sense. Assume without loss
of generality that all weights are non-negative. (A formula with a negative
weight w can be replaced by its negation with weight −w.) If the knowledge
base composed of the formulas in an MLN L (negated, if their weight is
negative) is satisfiable, then, for any C , the satisfying assignments are the
modes of the distribution represented by ML,C . This is because the modes are
the worlds x with maximum

∑

i wini(x) (see Equation 3), and this expression
is maximized when all groundings of all formulas are true (i.e., the KB is

2 While some conditional independence structures can be compactly represented with di-
rected graphs but not with undirected ones, they still lead to compact models in the form of
Equation 3 (i.e., as products of potential functions).
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satisfied). Unlike an ordinary first-order KB, however, an MLN can produce
useful results even when it contains contradictions. An MLN can also be
obtained by merging several KBs, even if they are partly incompatible. This
is potentially useful in areas like the Semantic Web (Berners-Lee et al., 2001)
and mass collaboration (Richardson & Domingos, 2003).

It is interesting to see a simple example of how MLNs generalize first-
order logic. Consider an MLN containing the single formula ∀x R(x) ⇒
S(x) with weight w, and C = {A}. This leads to four possible worlds:
{¬R(A),¬S(A)}, {¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From Equa-
tion 3 we obtain that P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability
of each of the other three worlds is ew/(3ew + 1). (The denominator is the
partition function Z; see Section 2.) Thus, if w > 0, the effect of the MLN is
to make the world that is inconsistent with ∀x R(x) ⇒ S(x) less likely than
the other three. From the probabilities above we obtain that P (S(A)|R(A)) =
1/(1 + e−w). When w → ∞, P (S(A)|R(A)) → 1, recovering the logical
entailment.

In practice, we have found it useful to add each predicate to the MLN as
a unit clause. In other words, for each predicate R(x1, x2, . . .) appearing in
the MLN, we add the formula ∀x1, x2, . . . R(x1, x2, . . .) with some weight
wR. The weight of a unit clause can (roughly speaking) capture the marginal
distribution of the corresponding predicate, leaving the weights of the non-
unit clauses free to model only dependencies between predicates.

When manually constructing an MLN or interpreting a learned one, it
is useful to have an intuitive understanding of the weights. The weight of
a formula F is simply the log odds between a world where F is true and
a world where F is false, other things being equal. However, if F shares
variables with other formulas, as will typically be the case, it may not be
possible to keep those formulas’s truth values unchanged while reversing
F ’s. In this case there is no longer a one-to-one correspondence between
weights and probabilities of formulas.3 Nevertheless, the probabilities of all
formulas collectively determine all weights, if we view them as constraints
on a maximum entropy distribution, or treat them as empirical probabilities
and learn the maximum likelihood weights (the two are equivalent) (Della
Pietra et al., 1997). Thus a good way to set the weights of an MLN is to write
down the probability with which each formula should hold, treat these as
empirical frequencies, and learn the weights from them using the algorithm
in Section 6. Conversely, the weights in a learned MLN can be viewed as
collectively encoding the empirical formula probabilities.

3 This is an unavoidable side-effect of the power and flexibility of Markov networks. In
Bayesian networks, parameters are probabilities, but at the cost of greatly restricting the ways
in which the distribution may be factored. In particular, potential functions must be conditional
probabilities, and the directed graph must have no cycles. The latter condition is particularly
troublesome to enforce in relational extensions (Taskar et al., 2002).
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Markov Logic Networks 13

The size of ground Markov networks can be vastly reduced by having
typed constants and variables, and only grounding variables to constants of
the same type. However, even in this case the size of the network may be
extremely large. Fortunately, many inferences do not require grounding the
entire network, as we see in the next section.

5. Inference

MLNs can answer arbitrary queries of the form “What is the probability that
formula F1 holds given that formula F2 does?” If F1 and F2 are two formulas
in first-order logic, C is a finite set of constants including any constants that
appear in F1 or F2, and L is an MLN, then

P (F1|F2, L, C) = P (F1|F2,ML,C)

=
P (F1 ∧ F2|ML,C)

P (F2|ML,C)

=

∑

x∈XF1
∩XF2

P (X =x|ML,C)
∑

x∈XF2

P (X =x|ML,C)
(4)

where XFi
is the set of worlds where Fi holds, and P (x|ML,C) is given by

Equation 3. Ordinary conditional queries in graphical models are the spe-
cial case of Equation 4 where all predicates in F1, F2 and L are zero-arity
and the formulas are conjunctions. The question of whether a knowledge
base KB entails a formula F in first-order logic is the question of whether
P (F |LKB, CKB,F ) = 1, where LKB is the MLN obtained by assigning
infinite weight to all the formulas in KB, and CKB,F is the set of all constants
appearing in KB or F . The question is answered by computing P (F |LKB ,
CKB,F ) by Equation 4, with F2 = True.

Computing Equation 4 directly will be intractable in all but the smallest
domains. Since MLN inference subsumes probabilistic inference, which is
#P-complete, and logical inference, which is NP-complete even in finite do-
mains, no better results can be expected. However, many of the large number
of techniques for efficient inference in either case are applicable to MLNs.
Because MLNs allow fine-grained encoding of knowledge, including context-
specific independences, inference in them may in some cases be more effi-
cient than inference in an ordinary graphical model for the same domain. On
the logic side, the probabilistic semantics of MLNs facilitates approximate
inference, with the corresponding potential gains in efficiency.

In principle, P (F1|F2, L, C) can be approximated using an MCMC algo-
rithm that rejects all moves to states where F2 does not hold, and counts the
number of samples in which F1 holds. However, even this is likely to be too
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14 Richardson and Domingos

Table III. Network construction for inference in MLNs.

function ConstructNetwork(F1, F2, L, C)
inputs: F1, a set of ground atoms with unknown truth values (the “query”)

F2, a set of ground atoms with known truth values (the “evidence”)
L, a Markov logic network
C, a set of constants

output: M , a ground Markov network
calls: MB(q), the Markov blanket of q in ML,C

G← F1

while F1 6= ∅
for all q ∈ F1

if q 6∈ F2

F1 ← F1 ∪ (MB(q) \ G)
G← G ∪MB(q)

F1 ← F1 \ {q}
return M , the ground Markov network composed of all nodes in G, all arcs between them

in ML,C , and the features and weights on the corresponding cliques

slow for arbitrary formulas. Instead, we provide an inference algorithm for the
case where F1 and F2 are conjunctions of ground literals. While less general
than Equation 4, this is the most frequent type of query in practice, and the
algorithm we provide answers it far more efficiently than a direct applica-
tion of Equation 4. Investigating lifted inference (where queries containing
variables are answered without grounding them) is an important direction
for future work (see Jaeger (2000) and Poole (2003) for initial results). The
algorithm proceeds in two phases, analogous to knowledge-based model con-
struction (Wellman et al., 1992). The first phase returns the minimal subset
M of the ground Markov network required to compute P (F1|F2, L, C). The
algorithm for this is shown in Table III. The size of the network returned
may be further reduced, and the algorithm sped up, by noticing that any
ground formula which is made true by the evidence can be ignored, and the
corresponding arcs removed from the network. In the worst case, the network
contains O(|C|a) nodes, where a is the largest predicate arity in the domain,
but in practice it may be much smaller.

The second phase performs inference on this network, with the nodes in
F2 set to their values in F2. Our implementation uses Gibbs sampling, but
any inference method may be employed. The basic Gibbs step consists of
sampling one ground atom given its Markov blanket. The Markov blanket
of a ground atom is the set of ground atoms that appear in some grounding
of a formula with it. The probability of a ground atom Xl when its Markov
blanket Bl is in state bl is
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Markov Logic Networks 15

P (Xl =xl|Bl =bl) (5)

=
exp(

∑

fi∈Fl
wifi(Xl =xl, Bl =bl))

exp(
∑

fi∈Fl
wifi(Xl =0, Bl =bl)) + exp(

∑

fi∈Fl
wifi(Xl =1, Bl =bl))

where Fl is the set of ground formulas that Xl appears in, and fi(Xl =
xl, Bl = bl) is the value (0 or 1) of the feature corresponding to the ith
ground formula when Xl = xl and Bl = bl. For sets of atoms of which
exactly one is true in any given world (e.g., the possible values of an attribute),
blocking can be used (i.e., one atom is set to true and the others to false in
one step, by sampling conditioned on their collective Markov blanket). The
estimated probability of a conjunction of ground literals is simply the fraction
of samples in which the ground literals are true, after the Markov chain has
converged. Because the distribution is likely to have many modes, we run the
Markov chain multiple times. When the MLN is in clausal form, we minimize
burn-in time by starting each run from a mode found using MaxWalkSat, a
local search algorithm for the weighted satisfiability problem (i.e., finding
a truth assignment that maximizes the sum of weights of satisfied clauses)
(Kautz et al., 1997). When there are hard constraints (clauses with infinite
weight), MaxWalkSat finds regions that satisfy them, and the Gibbs sampler
then samples from these regions to obtain probability estimates.

6. Learning

We learn MLN weights from one or more relational databases. (For brevity,
the treatment below is for one database, but the generalization to many is triv-
ial.) We make a closed world assumption (Genesereth & Nilsson, 1987): if a
ground atom is not in the database, it is assumed to be false. If there are n pos-
sible ground atoms, a database is effectively a vector x = (x1, . . . , xl, . . . , xn)
where xl is the truth value of the lth ground atom (xl = 1 if the atom appears
in the database, and xl = 0 otherwise). Given a database, MLN weights can
in principle be learned using standard methods, as follows. If the ith formula
has ni(x) true groundings in the data x, then by Equation 3 the derivative of
the log-likelihood with respect to its weight is

∂

∂wi

log Pw(X =x) = ni(x) −
∑

x′

Pw(X =x′) ni(x
′) (6)

where the sum is over all possible databases x′, and Pw(X =x′) is P (X =x′)
computed using the current weight vector w = (w1, . . . , wi, . . .). In other
words, the ith component of the gradient is simply the difference between the
number of true groundings of the ith formula in the data and its expectation
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16 Richardson and Domingos

according to the current model. Unfortunately, counting the number of true
groundings of a formula in a database is intractable, even when the formula
is a single clause, as stated in the following proposition (due to Dan Suciu).

PROPOSITION 6.1. Counting the number of true groundings of a first-order
clause in a database is #P-complete in the length of the clause.

Proof. Counting satisfying assignments of propositional monotone 2-CNF
is #P-complete (Roth, 1996). This problem can be reduced to counting the
number of true groundings of a first-order clause in a database as follows.
Consider a database composed of the ground atoms R(0, 1), R(1, 0) and
R(1, 1). Given a monotone 2-CNF formula, construct a formula Φ that is a
conjunction of predicates of the form R(xi, xj), one for each disjunct xi ∨xj

appearing in the CNF formula. (For example, (x1∨x2)∧(x3∨x4) would yield
R(x1, x2) ∧ R(x3, x4).) There is a one-to-one correspondence between the
satisfying assignments of the 2-CNF and the true groundings of Φ. The latter
are the false groundings of the clause formed by disjoining the negations
of all the R(xi, xj), and thus can be counted by counting the number of
true groundings of this clause and subtracting it from the total number of
groundings. 2

In large domains, the number of true groundings of a formula may be
counted approximately, by uniformly sampling groundings of the formula
and checking whether they are true in the data. In smaller domains, and in
our experiments below, we use an efficient recursive algorithm to find the
exact count.

A second problem with Equation 6 is that computing the expected number
of true groundings is also intractable, requiring inference over the model. Fur-
ther, efficient optimization methods also require computing the log-likelihood
itself (Equation 3), and thus the partition function Z . This can be done ap-
proximately using a Monte Carlo maximum likelihood estimator (MC-MLE)
(Geyer & Thompson, 1992). However, in our experiments the Gibbs sampling
used to compute the MC-MLEs and gradients did not converge in reasonable
time, and using the samples from the unconverged chains yielded poor results.

A more efficient alternative, widely used in areas like spatial statistics,
social network modeling and language processing, is to optimize instead the
pseudo-likelihood (Besag, 1975)

P ∗
w(X =x) =

n
∏

l=1

Pw(Xl =xl|MBx(Xl)) (7)

where MBx(Xl) is the state of the Markov blanket of Xl in the data. The
gradient of the pseudo-log-likelihood is
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Markov Logic Networks 17

∂

∂wi

log P ∗
w(X =x) =

n
∑

l=1

[ni(x) − Pw(Xl =0|MBx(Xl)) ni(x[Xl=0])

−Pw(Xl =1|MBx(Xl)) ni(x[Xl=1])] (8)

where ni(x[Xl=0]) is the number of true groundings of the ith formula when
we force Xl = 0 and leave the remaining data unchanged, and similarly
for ni(x[Xl=1]). Computing this expression (or Equation 7) does not require
inference over the model. We optimize the pseudo-log-likelihood using the
limited-memory BFGS algorithm (Liu & Nocedal, 1989). The computation
can be made more efficient in several ways:

− The sum in Equation 8 can be greatly sped up by ignoring predicates
that do not appear in the ith formula.

− The counts ni(x), ni(x[Xl=0]) and ni(x[Xl=1]) do not change with the
weights, and need only be computed once (as opposed to in every itera-
tion of BFGS).

− Ground formulas whose truth value is unaffected by changing the truth
value of any single literal may be ignored, since then ni(x) = ni(x[Xl=0])
= ni(x[Xl=1]). In particular, this holds for any clause which contains at
least two true literals. This can often be the great majority of ground
clauses.

To combat overfitting, we penalize the pseudo-likelihood with a Gaussian
prior on each weight.

Inductive logic programming (ILP) techniques can be used to learn addi-
tional clauses, refine the ones already in the MLN, or learn an MLN from
scratch. We use the CLAUDIEN system for this purpose (De Raedt & De-
haspe, 1997). Unlike most other ILP systems, which learn only Horn clauses,
CLAUDIEN is able to learn arbitrary first-order clauses, making it well suited
to MLNs. Also, by constructing a particular language bias, we are able to di-
rect CLAUDIEN to search for refinements of the MLN structure. In the future
we plan to more fully integrate structure learning into MLNs, by generalizing
techniques like Della Pietra et al.’s (1997) to the first-order realm, as done by
MACCENT for classification problems (Dehaspe, 1997).

7. Experiments

We tested MLNs using a database describing the Department of Computer
Science and Engineering at the University of Washington (UW-CSE). The
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18 Richardson and Domingos

domain consists of 12 predicates and 2707 constants divided into 10 types.
Types include: publication (342 constants), person (442), course (176), project
(153), academic quarter (20), etc. Predicates include: Professor(person),
Student(person), Area(x, area) (with x ranging over publications, per-
sons, courses and projects), AuthorOf(publication, person), AdvisedBy
(person, person), YearsInProgram(person, years), CourseLevel

(course, level), TaughtBy(course, person, quarter), TeachingAssi-
stant(course, person, quarter), etc. Additionally, there are 10 equality
predicates: SamePerson(person, person), SameCourse(course, course),
etc. which always have known, fixed values that are true iff the two arguments
are the same constant.

Using typed variables, the total number of possible ground atoms (n in
Section 6) was 4,106,841. The database contained a total of 3380 tuples (i.e.,
there were 3380 true ground atoms). We obtained this database by scrap-
ing pages in the department’s Web site (www.cs.washington.edu). Publica-
tions and AuthorOf relations were obtained by extracting from the Bib-
Serv database (www.bibserv.org) all records with author fields containing
the names of at least two department members (in the form “last name, first
name” or “last name, first initial”).

We obtained a knowledge base by asking four volunteers to each provide
a set of formulas in first-order logic describing the domain. (The volunteers
were not shown the database of tuples, but were members of the department
who thus had a general understanding about it.) Merging these yielded a KB
of 96 formulas. The complete KB, volunteer instructions, database, and algo-
rithm parameter settings are online at http://www.cs.washington.edu/ai/mln.
Formulas in the KB include statements like: students are not professors; each
student has at most one advisor; if a student is an author of a paper, so is
her advisor; advanced students only TA courses taught by their advisors; at
most one author of a given publication is a professor; students in Phase I of
the Ph.D. program have no advisor; etc. Notice that these statements are not
always true, but are typically true.

For training and testing purposes, we divided the database into five sub-
databases, one for each area: AI, graphics, programming languages, systems,
and theory. Professors and courses were manually assigned to areas, and other
constants were iteratively assigned to the most frequent area among other
constants they appeared in some tuple with. Each tuple was then assigned
to the area of the constants in it. Tuples involving constants of more than
one area were discarded, to avoid train-test contamination. The sub-databases
contained, on average, 521 true ground atoms out of a possible 58457.

We performed leave-one-out testing by area, testing on each area in turn
using the model trained from the remaining four. The test task was to predict
the AdvisedBy(x, y) predicate given (a) all others (All Info) and (b) all oth-
ers except Student(x) and Professor(x) (Partial Info). In both cases, we
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measured the average conditional log-likelihood of all possible groundings of
AdvisedBy(x, y) over all areas, drew precision/recall curves, and computed
the area under the curve. This task is an instance of link prediction, a problem
that has been the object of much interest in statistical relational learning (see
Section 8). All KBs were converted to clausal form. Timing results are on a
2.8Ghz Pentium 4 machine.

7.1. SYSTEMS

In order to evaluate MLNs, which use logic and probability for inference, we
wished to compare with methods that use only logic or only probability. We
were also interested in automatic induction of clauses using ILP techniques.
This subsection gives details of the comparison systems used.

7.1.1. Logic
One important question we aimed to answer with the experiments is whether
adding probability to a logical knowledge base improves its ability to model
the domain. Doing this requires observing the results of answering queries
using only logical inference, but this is complicated by the fact that computing
log-likelihood and the area under the precision/recall curve requires real-
valued probabilities, or at least some measure of “confidence” in the truth
of each ground atom being tested. We thus used the following approach. For
a given knowledge base KB and set of evidence atoms E, let XKB∪E be the
set of worlds that satisfy KB ∪ E. The probability of a query atom q is then
defined as P (q) =

|XKB∪E∪q |
|XKB∪E | , the fraction of XKB∪E in which q is true.

A more serious problem arises if the KB is inconsistent (which was indeed
the case with the KB we collected from volunteers). In this case the de-
nominator of P (q) is zero. (Also, recall that an inconsistent knowledge base
trivally entails any arbitrary formula). To address this, we redefine XKB∪E to
be the set of worlds which satisfies the maximum possible number of ground
clauses. We use Gibbs sampling to sample from this set, with each chain
initialized to a mode using WalkSat. At each Gibbs step, the step is taken
with probability: 1 if the new state satisfies more clauses than the current
one (since that means the current state should have 0 probability), 0.5 if the
new state satisfies the same number of clauses (since the new and old state
then have equal probability), and 0 if the new state satisfies fewer clauses.
We then use only the states with maximum number of satisfied clauses to
compute probabilities. Notice that this is equivalent to using an MLN built
from the KB and with all infinite equal weights.
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7.1.2. Probability
The other question we wanted to answer with these experiments is whether
existing (propositional) probabilistic models are already powerful enough to
be used in relational domains without the need for the additional represen-
tational power provided by MLNs. In order to use such models, the domain
must first be propositionalized by defining features that capture useful in-
formation about it. Creating good attributes for propositional learners in this
highly relational domain is a difficult problem. Nevertheless, as a tradeoff be-
tween incorporating as much potentially relevant information as possible and
avoiding extremely long feature vectors, we defined two sets of propositional
attributes: order-1 and order-2. The former involves characteristics of indi-
vidual constants in the query predicate, and the latter involves characteristics
of relations between the constants in the query predicate.

For the order-1 attributes, we defined one variable for each (a, b) pair,
where a is an argument of the query predicate and b is an argument of some
predicate with the same value as a. The variable is the fraction of true ground-
ings of this predicate in the data. Some examples of first-order attributes for
AdvisedBy(Matt, Pedro) are: whether Pedro is a student, the fraction of
publications that are published by Pedro, the fraction of courses for which
Matt was a teaching assistant, etc.

The order-2 attributes were defined as follows: for a given (ground) query
predicate Q(q1, q2, . . . , qk), consider all sets of k predicates and all assign-
ments of constants q1, q2, . . . , qk as arguments to the k predicates, with ex-
actly one constant per predicate (in any order). For instance, if Q is Advised-
By(Matt, Pedro) then one such possible set would be {TeachingAssistant
( , Matt, ), TaughtBy( , Pedro, )}. This forms 2k attributes of the example,
each corresponding to a particular truth assignment to the k predicates. The
value of an attribute is the number of times, in the training data, the set of
predicates have that particular truth assignment, when their unassigned argu-
ments are all filled with the same constants. For example, consider filling the
above empty arguments with “CSE546” and “Autumn 0304”. The resulting
set, {TeachingAssistant(CSE546, Matt, Autumn 0304), TaughtBy
(CSE546, Pedro, Autumn 0304)} has some truth assignment in the training
data (e.g., {True,True}, {True,False}, . . .). One attribute is the number of
such sets of constants that create the truth assignment {True,True}, another
for {True,False} and so on. Some examples of second-order attributes gener-
ated for the query AdvisedBy(Matt, Pedro) are: how often Matt is a teach-
ing assistant for a course that Pedro taught (as well as how often he is not),
how many publications Pedro and Matt have coauthored, etc.

The resulting 28 order-1 attributes and 120 order-2 attributes (for the All
Info case) were discretized into five equal-frequency bins (based on the train-
ing set). We used two propositional learners: Naive Bayes (Domingos & Paz-
zani, 1997) and Bayesian networks (Heckerman et al., 1995) with structure
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and parameters learned using the VFBN2 algorithm (Hulten & Domingos,
2002) with a maximum of four parents per node. The order-2 attributes helped
the naive Bayes classifier but hurt the performance of the Bayesian network
classifier, so below we report results using the order-1 and order-2 attributes
for naive Bayes, and only the order-1 attributes for Bayesian networks.

7.1.3. Inductive logic programming
Our original knowledge base was acquired from volunteers, but we were
also interested in whether it could have been developed automatically using
inductive logic programming methods. As mentioned earlier, we used CLAU-
DIEN to induce a knowledge base from data. CLAUDIEN was run with:
local scope; minimum accuracy of 0.1; minimum coverage of 1; maximum
complexity of 10; and breadth-first search. CLAUDIEN’s search space is
defined by its language bias. We constructed a language bias which allowed:
a maximum of 3 variables in a clause; unlimited predicates in a clause; up
to 2 non-negated appearances of a predicate in a clause, and 2 negated ones;
and use of knowledge of predicate argument types. To minimize search, the
equality predicates (e.g., SamePerson) were not used in CLAUDIEN, and
this improved its results.

Besides inducing clauses from the training data, we were also interested
in using data to automatically refine the knowledge base provided by our
volunteers. CLAUDIEN does not support this feature directly, but it can be
emulated by an appropriately constructed language bias. We did this by, for
each clause in the KB, allowing CLAUDIEN to (1) remove any number of
the literals, (2) add up to v new variables, and (3) add up to l new literals. We
ran CLAUDIEN for 24 hours on a Sun-Blade 1000 for each (v, l) in the set
{(1, 2), (2, 3), (3, 4)}. All three gave nearly identical results; we report the
results with v = 3 and l = 4.

7.1.4. MLNs
Our results compare the above systems to Markov logic networks. The MLNs
were trained using a Gaussian weight prior with zero mean and unit variance,
and with the weights initialized at the mode of the prior (zero). For optimiza-
tion, we used the Fortran implementation of L-BFGS from Zhu et al. (1997)
and Byrd et al. (1995), leaving all parameters at their default values, and with
a convergence criterion (ftol) of 10−5. Inference was performed using Gibbs
sampling as described in Section 5, with ten parallel Markov chains, each
initialized to a mode of the distribution using MaxWalkSat. The number of
Gibbs steps was determined using the criterion of DeGroot and Schervish
(2002, pp. 707 and 740-741). Sampling continued until we reached a confi-
dence of 95% that the probability estimate was within 1% of the true value
in at least 95% of the nodes (ignoring nodes which are always true or false).
A minimum of 1000 and maximum of 500,000 samples was used, with one
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sample per complete Gibbs pass through the variables. Typically, inference
converged within 5000 to 100,000 passes. The results were insensitive to
variation in the convergence thresholds.

7.2. RESULTS

7.2.1. Training with MC-MLE
Our initial system used MC-MLE to train MLNs, with ten Gibbs chains, and
each ground atom being initialized to true with the corresponding first-order
predicate’s probability of being true in the data. Gibbs steps may be taken
quite quickly by noting that few counts of satisfied clauses will change on
any given step. On the UW-CSE domain, our implementation took 4-5 ms per
step. We used the maximum across all predicates of the Gelman criterion R
(Gilks et al., 1996) to determine when the chains had reached their stationary
distribution. In order to speed convergence, our Gibbs sampler preferentially
samples atoms that were true in either the data or the initial state of the chain.
The intuition behind this is that most atoms are always false, and sampling
repeatedly from them is inefficient. This improved convergence by approxi-
mately an order of magnitude over uniform selection of atoms. Despite these
optimizations, the Gibbs sampler took a prohibitively long time to reach a
reasonable convergence threshold (e.g., R = 1.01). After running for 24
hours (approximately 2 million Gibbs steps per chain), the average R value
across training sets was 3.04, with no one training set having reached an
R value less than 2 (other than briefly dipping to 1.5 in the early stages of
the process). Considering this must be done iteratively as L-BFGS searches
for the minimum, we estimate it would take anywhere from 20 to 400 days
to complete the training, even with a weak convergence threshold such as
R = 2.0. Experiments confirmed the poor quality of the models that resulted
if we ignored the convergence threshold and limited the training process to
less than ten hours. With a better choice of initial state, approximate count-
ing, and improved MCMC techniques such as the Swendsen-Wang algorithm
(Edwards & Sokal, 1988), MC-MLE may become practical, but it is not a
viable option for training in the current version. (Notice that during learning
MCMC is performed over the full ground network, which is too large to apply
MaxWalkSat to.)

7.2.2. Training with pseudo-likelihood
In contrast to MC-MLE, pseudo-likelihood training was quite fast. As dis-
cussed in Section 6, each iteration of training may be done quite quickly
once the initial clause and ground atom satisfiability counts are complete. On
average (over the five test sets), finding these counts took 2.5 minutes. From
there, training took, on average, 255 iterations of L-BFGS, for a total of 16
minutes.
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7.2.3. Inference
Inference was also quite quick. Inferring the probability of all AdvisedBy(x, y)
atoms in the All Info case took 3.3 minutes in the AI test set (4624 atoms),
24.4 in graphics (3721), 1.8 in programming languages (784), 10.4 in systems
(5476), and 1.6 in theory (2704). The number of Gibbs passes ranged from
4270 to 500,000, and averaged 124,000. This amounts to 18 ms per Gibbs
pass and approximately 200,000–500,000 Gibbs steps per second. The aver-
age time to perform inference in the Partial Info case was 14.8 minutes (vs.
8.3 in the All Info case).

7.2.4. Comparison of systems
We compared twelve systems: the original KB (KB); CLAUDIEN (CL); CLAU-
DIEN with the original KB as language bias (CLB); the union of the original
KB and CLAUDIEN’s output in both cases (KB+CL and KB+CLB); an MLN
with each of the above KBs (MLN(KB), MLN(CL), MLN(KB+CL), and
MLN(KB+CLB)); naive Bayes (NB); and a Bayesian network learner (BN).
Add-one smoothing of probabilities was used in all cases.

Table IV summarizes the results. Figure 2 shows precision/recall curves
for all areas (i.e., averaged over all AdvisedBy(x, y) atoms), and Figures 3 to
7 show precision/recall curves for the five individual areas. MLNs are clearly
more accurate than the alternatives, showing the promise of this approach.
The purely logical and purely probabilistic methods often suffer when inter-
mediate predicates have to be inferred, while MLNs are largely unaffected.
Naive Bayes performs well in AUC in some test sets, but very poorly in oth-
ers; its CLLs are uniformly poor. CLAUDIEN performs poorly on its own,
and produces no improvement when added to the KB in the MLN. Using
CLAUDIEN to refine the KB typically performs worse in AUC but better
in CLL than using CLAUDIEN from scratch; overall, the best-performing
logical method is KB+CLB, but its results fall well short of the best MLNs’.
The general drop-off in precision around 50% recall is attributable to the fact
that the database is very incomplete, and only allows identifying a minority
of the AdvisedBy relations. Inspection reveals that the occasional smaller
drop-offs in precision at very low recalls are due to students who graduated
or changed advisors after co-authoring many publications with them.

8. Statistical Relational Learning Tasks

Many SRL tasks can be concisely formulated in the language of MLNs, al-
lowing the algorithms introduced in this paper to be directly applied to them.
In this section we exemplify this with five key tasks: collective classification,
link prediction, link-based clustering, social network modeling, and object
identification.
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Figure 2. Precision and recall for all areas: All Info (upper graph) and Partial Info (lower
graph).
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Figure 3. Precision and recall for the AI area: All Info (upper graph) and Partial Info (lower
graph).
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Figure 4. Precision and recall for the graphics area: All Info (upper graph) and Partial Info
(lower graph).
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Figure 5. Precision and recall for the programming languages area: All Info (upper graph)
and Partial Info (lower graph).
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Figure 6. Precision and recall for the systems area: All Info (upper graph) and Partial Info
(lower graph). The curves for naive Bayes are indistinguishable from the X axis.
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Figure 7. Precision and recall for the theory area: All Info (upper graph) and Partial Info
(lower graph).
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Table IV. Experimental results for predicting AdvisedBy(x, y) when all other predicates are
known (All Info) and when Student(x) and Professor(x) are unknown (Partial Info). CLL
is the average conditional log-likelihood, and AUC is the area under the precision-recall curve.
The results are averages over all atoms in the five test sets and their standard deviations. (See
http://www.cs.washington.edu/ai/mln for details on how the standard deviations of the AUCs
were computed.)

System All Info Partial Info
AUC CLL AUC CLL

MLN(KB) 0.215±0.0172 −0.052±0.004 0.224±0.0185 −0.048±0.004
MLN(KB+CL) 0.152±0.0165 −0.058±0.005 0.203±0.0196 −0.045±0.004
MLN(KB+CLB) 0.011±0.0003 −3.905±0.048 0.011±0.0003 −3.958±0.048
MLN(CL) 0.035±0.0008 −2.315±0.030 0.032±0.0009 −2.478±0.030
MLN(CLB) 0.003±0.0000 −0.052±0.005 0.023±0.0003 −0.338±0.002
KB 0.059±0.0081 −0.135±0.005 0.048±0.0058 −0.063±0.004
KB+CL 0.037±0.0012 −0.202±0.008 0.028±0.0012 −0.122±0.006
KB+CLB 0.084±0.0100 −0.056±0.004 0.044±0.0064 −0.051±0.005
CL 0.048±0.0009 −0.434±0.012 0.037±0.0001 −0.836±0.017
CLB 0.003±0.0000 −0.052±0.005 0.010±0.0001 −0.598±0.003
NB 0.054±0.0006 −1.214±0.036 0.044±0.0009 −1.140±0.031
BN 0.015±0.0006 −0.072±0.003 0.015±0.0007 −0.215±0.003

8.1. COLLECTIVE CLASSIFICATION

The goal of ordinary classification is to predict the class of an object given
its attributes. Collective classification also takes into account the classes of
related objects (e.g., Chakrabarti et al. (1998); Taskar et al. (2002); Neville
and Jensen (2003)). Attributes can be represented in MLNs as predicates of
the form A(x, v), where A is an attribute, x is an object, and v is the value of
A in x. The class is a designated attribute C, representable by C(x, v), where
v is x’s class. Classification is now simply the problem of inferring the truth
value of C(x, v) for all x and v of interest given all known A(x, v). Ordinary
classification is the special case where C(xi, v) and C(xj, v) are independent
for all xi and xj given the known A(x, v). In collective classification, the
Markov blanket of C(xi, v) includes other C(xj, v), even after conditioning on
the known A(x, v). Relations between objects are represented by predicates
of the form R(xi, xj). A number of interesting generalizations are readily
apparent, for example C(xi, v) and C(xj, v) may be indirectly dependent via
unknown predicates, possibly including the R(xi, xj) predicates themselves.
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8.2. LINK PREDICTION

The goal of link prediction is to determine whether a relation exists between
two objects of interest (e.g., whether Anna is Bob’s Ph.D. advisor) from the
properties of those objects and possibly other known relations (e.g., Popescul
and Ungar (2003)). The formulation of this problem in MLNs is identical to
that of collective classification, with the only difference that the goal is now
to infer the value of R(xi, xj) for all object pairs of interest, instead of C(x, v).
The task used in our experiments was an example of link prediction.

8.3. LINK-BASED CLUSTERING

The goal of clustering is to group together objects with similar attributes. In
model-based clustering, we assume a generative model P (X) =

∑

C P (C)
P (X|C), where X is an object, C ranges over clusters, and P (C|X) is X’s
degree of membership in cluster C . In link-based clustering, objects are clus-
tered according to their links (e.g., objects that are more closely related are
more likely to belong to the same cluster), and possibly according to their
attributes as well (e.g., Flake et al. (2000)). This problem can be formulated
in MLNs by postulating an unobserved predicate C(x, v) with the meaning “x
belongs to cluster v,” and having formulas in the MLN involving this predi-
cate and the observed ones (e.g., R(xi, xj) for links and A(x, v) for attributes).
Link-based clustering can now be performed by learning the parameters of the
MLN, and cluster memberships are given by the probabilities of the C(x, v)
atoms conditioned on the observed ones.

8.4. SOCIAL NETWORK MODELING

Social networks are graphs where nodes represent social actors (e.g., people)
and arcs represent relations between them (e.g., friendship). Social network
analysis (Wasserman & Faust, 1994) is concerned with building models re-
lating actors’ properties and their links. For example, the probability of two
actors forming a link may depend on the similarity of their attributes, and
conversely two linked actors may be more likely to have certain properties.
These models are typically Markov networks, and can be concisely repre-
sented by formulas like ∀x∀y∀v R(x, y) ⇒ (A(x, v) ⇔ A(y, v)), where x and
y are actors, R(x, y) is a relation between them, A(x, v) represents an attribute
of x, and the weight of the formula captures the strength of the correlation
between the relation and the attribute similarity. For example, a model stating
that friends tend to have similar smoking habits can be represented by the
formula ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (Table I). As
well as encompassing existing social network models, MLNs allow richer
ones to be easily stated (e.g., by writing formulas involving multiple types
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of relations and multiple attributes, as well as more complex dependencies
between them).

8.5. OBJECT IDENTIFICATION

Object identification (also known as record linkage, de-duplication, and oth-
ers) is the problem of determining which records in a database refer to the
same real-world entity (e.g., which entries in a bibliographic database rep-
resent the same publication) (Winkler, 1999). This problem is of crucial im-
portance to many companies, government agencies, and large-scale scien-
tific projects. One way to represent it in MLNs is by removing the unique
names assumption as described in Section 4, i.e., by defining a predicate
Equals(x, y) (or x = y for short) with the meaning “x represents the same
real-world entity as y.” This predicate is applied both to records and their
fields (e.g., “ICML” = “Intl. Conf. on Mach. Learn.”). The dependencies be-
tween record matches and field matches can then be represented by formulas
like ∀x∀y x = y ⇔ fi(x) = fi(y), where x and y are records and fi(x) is
a function returning the value of the ith field of record x. We have success-
fully applied this approach to de-duplicating the Cora database of computer
science papers (Parag & Domingos, 2004). Because it allows information to
propagate from one match decision (i.e., one grounding of x = y) to another
via fields that appear in both pairs of records, it effectively performs collec-
tive object identification, and in our experiments outperformed the traditional
method of making each match decision independently of all others. For ex-
ample, matching two references may allow us to determine that “ICML”
and “MLC” represent the same conference, which in turn may help us to
match another pair of references where one contains “ICML” and the other
“MLC.” MLNs also allow additional information to be incorporated into a de-
duplication system easily, modularly and uniformly. For example, transitive
closure is incorporated by adding the formula ∀x∀y∀z x = y ∧ y = z ⇒
x = z, with a weight that can be learned from data.

9. Related Work

There is a very large literature relating logic and probability; here we will
focus only on the approaches most relevant to statistical relational learning,
and discuss how they relate to MLNs.

9.1. EARLY WORK

Attempts to combine logic and probability in AI date back to at least Nilsson
(1986). Bacchus (1990), Halpern (1990) and coworkers (e.g., Bacchus et al.
(1996)) studied the problem in detail from a theoretical standpoint. They
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made a distinction between statistical statements (e.g., “65% of the students
in our department are undergraduate”) and statements about possible worlds
(e.g., “The probability that Anna is an undergraduate is 65%”), and provided
methods for computing the latter from the former. In their approach, a KB did
not specify a complete and unique distribution over possible worlds, requiring
additional assumptions to obtain one. Bacchus et al. considered a number of
alternatives, all of them quite restrictive (e.g., all worlds compatible with the
KB should be equally likely). In contrast, by viewing KBs as Markov network
templates, MLNs can represent arbitrary distributions over possible worlds.

Paskin (2002) extended the work of Bacchus et al. by associating a prob-
ability with each first-order formula, and taking the maximum entropy dis-
tribution compatible with those probabilities. This representation was still
quite brittle, with a world that violates a single grounding of a universally
quantified formula being considered as unlikely as a world that violates all of
them. In contrast, in MLNs a rule like ∀x Smokes(x) ⇒ Cancer(x) causes
the probability of a world to decrease gradually as the number of cancer-free
smokers in it increases.

9.2. KNOWLEDGE-BASED MODEL CONSTRUCTION

Knowledge-based model construction (KBMC) is a combination of logic pro-
gramming and Bayesian networks (Wellman et al., 1992; Ngo & Haddawy,
1997; Kersting & De Raedt, 2001). As in MLNs, nodes in KBMC represent
ground atoms. Given a Horn KB, KBMC answers a query by finding all
possible backward-chaining proofs of the query and evidence atoms from
each other, constructing a Bayesian network over all atoms in the proofs,
and performing inference over this network. The parents of an atom in the
network are deterministic AND nodes representing the bodies of the clauses
that have that node as head. The conditional probability of the node given
these is specified by a combination function (e.g., noisy OR, logistic regres-
sion, arbitrary CPT). MLNs have several advantages compared to KBMC:
they allow arbitrary formulas (not just Horn clauses) and inference in any
direction, they sidestep the thorny problem of avoiding cycles in the Bayesian
networks constructed by KBMC, and they do not require the introduction of
ad hoc combination functions for clauses with the same consequent.

A KBMC model can be translated into an MLN by writing down a set of
formulas for each first-order predicate Pk(...) in the domain. Each formula is
a conjunction containing Pk(...) and one literal per parent of Pk(...) (i.e.,
per first-order predicate appearing in a Horn clause having Pk(...) as the
consequent). A subset of these literals are negated; there is one formula for
each possible combination of positive and negative literals. The weight of
the formula is w = log[p/(1 − p)], where p is the conditional probability of
the child predicate when the corresponding conjunction of parent literals is
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true, according to the combination function used. If the combination function
is logistic regression, it can be represented using only a linear number of
formulas, taking advantage of the fact that a logistic regression model is a
(conditional) Markov network with a binary clique between each predictor
and the response. Noisy OR can similarly be represented with a linear number
of parents.

9.3. OTHER LOGIC PROGRAMMING APPROACHES

Stochastic logic programs (SLPs) (Muggleton, 1996; Cussens, 1999) are a
combination of logic programming and log-linear models. Puech and Mug-
gleton (2003) showed that SLPs are a special case of KBMC, and thus they
can be converted into MLNs in the same way. Like MLNs, SLPs have one
coefficient per clause, but they represent distributions over Prolog proof trees
rather than over predicates; the latter have to be obtained by marginalization.
Similar remarks apply to a number of other representations that are essentially
equivalent to SLPs, like independent choice logic (Poole, 1993) and PRISM
(Sato & Kameya, 1997).

MACCENT (Dehaspe, 1997) is a system that learns log-linear models
with first-order features; each feature is a conjunction of a class and a Pro-
log query (clause with empty head). A key difference between MACCENT
and MLNs is that MACCENT is a classification system (i.e., it predicts the
conditional distribution of an object’s class given its properties), while an
MLN represents the full joint distribution of a set of predicates. Like any
probability estimation approach, MLNs can be used for classification simply
by issuing the appropriate conditional queries.4 In particular, a MACCENT
model can be converted into an MLN simply by defining a class predicate
(as in Subsection 8.1), adding the corresponding features and their weights to
the MLN, and adding a formula with infinite weight stating that each object
must have exactly one class. (This fails to model the marginal distribution
of the non-class predicates, which is not a problem if only classification
queries will be issued.) MACCENT can make use of deterministic back-
ground knowledge in the form of Prolog clauses; these can be added to the
MLN as formulas with infinite weight. In addition, MLNs allow uncertain
background knowledge (via formulas with finite weights). As described in
Subsection 8.1, MLNs can be used for collective classification, where the
classes of different objects can depend on each other; MACCENT, which
requires that each object be represented in a separate Prolog knowledge base,
does not have this capability.

Constraint logic programming (CLP) is an extension of logic program-
ming where variables are constrained instead of being bound to specific val-

4 Conversely, joint distributions can be built up from classifiers (e.g., (Heckerman et al.,
2000)), but this would be a significant extension of MACCENT.
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ues during inference (Laffar & Lassez, 1987). Probabilistic CLP generalizes
SLPs to CLP (Riezler, 1998), and CLP(BN ) combines CLP with Bayesian
networks (Santos Costa et al., 2003). Unlike in MLNs, constraints in CLP(BN )
are hard (i.e., they cannot be violated; rather, they define the form of the
probability distribution).

9.4. PROBABILISTIC RELATIONAL MODELS

Probabilistic relational models (PRMs) (Friedman et al., 1999) are a combina-
tion of frame-based systems and Bayesian networks. PRMs can be converted
into MLNs by defining a predicate S(x, v) for each (propositional or rela-
tional) attribute of each class, where S(x, v) means “The value of attribute S

in object x is v.” A PRM is then translated into an MLN by writing down a
formula for each line of each (class-level) conditional probability table (CPT)
and value of the child attribute. The formula is a conjunction of literals stating
the parent values and a literal stating the child value, and its weight is the loga-
rithm of P (x|Parents(x)), the corresponding entry in the CPT. In addition,
the MLN contains formulas with infinite weight stating that each attribute
must take exactly one value. This approach handles all types of uncertainty
in PRMs (attribute, reference and existence uncertainty).

As Taskar et al. (2002) point out, the need to avoid cycles in PRMs causes
significant representational and computational difficulties. Inference in PRMs
is done by creating the complete ground network, which limits their scalabil-
ity. PRMs require specifying a complete conditional model for each attribute
of each class, which in large complex domains can be quite burdensome. In
contrast, MLNs create a complete joint distribution from whatever number of
first-order features the user chooses to specify.

9.5. RELATIONAL MARKOV NETWORKS

Relational Markov networks (RMNs) use database queries as clique tem-
plates, and have a feature for each state of a clique (Taskar et al., 2002).
MLNs generalize RMNs by providing a more powerful language for con-
structing features (first-order logic instead of conjunctive queries), and by
allowing uncertainty over arbitrary relations (not just attributes of individual
objects). RMNs are exponential in clique size, while MLNs allow the user
(or learner) to determine the number of features, making it possible to scale
to much larger clique sizes. RMNs are trained discriminatively, and do not
specify a complete joint distribution for the variables in the model. Discrimi-
native training of MLNs is straightforward (in fact, easier than the generative
training used in this paper), and we have carried out successful preliminary
experiments using a voted perceptron algorithm (Collins, 2002). RMNs use
MAP estimation with belief propagation for inference, which makes learn-
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ing quite slow, despite the simplified discriminative setting; maximizing the
pseudo-likelihood of the query variables may be a more effective alternative.

9.6. STRUCTURAL LOGISTIC REGRESSION

In structural logistic regression (SLR) (Popescul & Ungar, 2003), the predic-
tors are the output of SQL queries over the input data. Just as a logistic re-
gression model is a discriminatively-trained Markov network, an SLR model
is a discriminatively-trained MLN.5

9.7. RELATIONAL DEPENDENCY NETWORKS

In a relational dependency network (RDN), each node’s probability condi-
tioned on its Markov blanket is given by a decision tree (Neville & Jensen,
2003). Every RDN has a corresponding MLN in the same way that every
dependency network has a corresponding Markov network, given by the sta-
tionary distribution of a Gibbs sampler operating on it (Heckerman et al.,
2000).

9.8. PLATES AND PROBABILISTIC ER MODELS

Large graphical models with repeated structure are often compactly repre-
sented using plates (Buntine, 1994). MLNs subsume plates as a representation
language. In addition, they allow individuals and their relations to be explic-
itly represented (see Cussens (2003)), and context-specific independencies
to be compactly written down, instead of left implicit in the node models.
More recently, Heckerman et al. (2004) have proposed a language based on
entity-relationship models that combines the features of plates and PRMs;
this language is a special case of MLNs in the same way that ER models are
a special case of logic. Probabilistic ER models allow logical expressions as
constraints on how ground networks are constructed, but the truth values of
these expressions have to be known in advance; MLNs allow uncertainty over
all logical expressions.

9.9. BLOG

Milch et al. (2004) have proposed a language, called BLOG, designed to
avoid making the unique names and domain closure assumptions. A BLOG
program specifies procedurally how to generate a possible world, and does
not allow arbitrary first-order knowledge to be easily incorporated. Also, it
only specifies the structure of the model, leaving the parameters to be spec-
ified by external calls. BLOG models are directed graphs and need to avoid

5 Use of SQL aggregates requires that their definitions be imported into the MLN.
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cycles, which substantially complicates their design. We saw in Section 4
how to remove the unique names and domain closure assumptions in MLNs.
(When there are unknown objects of multiple types, a random variable for
the number of each type is introduced.) Inference about an object’s attributes,
rather than those of its observations, can be done simply by having variables
for objects as well as for their observations (e.g., for books as well as cita-
tions to them). To our knowledge, BLOG has not yet been implemented and
evaluated.

9.10. OTHER WORK

There are many more approaches to statistical relational learning than we can
possibly cover here. This section briefly considers some additional works that
are potentially relevant to MLNs.

Pasula and Russell (2001), Poole (2003) and Sanghai et al. (2003) have
studied efficient inference in first-order probabilistic models. While they fo-
cus on directed graphical models, some of the ideas (e.g., different MCMC
steps for different types of predicates, combining unification with variable
elimination, abstraction hierarchies) may be applicable to MLNs.

MLNs have some interesting similarities with the KBANN system, which
converts a propositional Horn KB into a neural network and uses backpropa-
gation to learn the network’s weights (Towell & Shavlik, 1994). More gener-
ally, MLNs can be viewed as an extension to probability estimation of a long
line of work on knowledge-intensive learning (e.g., Bergadano and Giordana
(1988); Pazzani and Kibler (1992); Ourston and Mooney (1994)).

10. Future Work

MLNs are potentially a tool of choice for many AI problems, but much
remains to be done. Directions for future work fall into three main areas:

Inference: We plan to develop more efficient forms of MCMC for MLNs,
study the use of belief propagation, identify and exploit useful special
cases, and investigate the possibility of lifted inference.

Learning: We plan to develop algorithms for learning and revising the struc-
ture of MLNs by directly optimizing (pseudo) likelihood, study alter-
nate approaches to weight learning, train MLNs discriminatively, learn
MLNs from incomplete data, use MLNs for link-based clustering, and
develop methods for probabilistic predicate discovery.

Applications: We would like to apply MLNs in a variety of domains, includ-
ing information extraction and integration, natural language processing,
vision, social network analysis, computational biology, etc.
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11. Conclusion

Markov logic networks (MLNs) are a simple way to combine probability
and first-order logic in finite domains. An MLN is obtained by attaching
weights to the formulas (or clauses) in a first-order knowledge base, and can
be viewed as a template for constructing ordinary Markov networks. Each
possible grounding of a formula in the KB yields a feature in the constructed
network. Inference is performed by grounding the minimal subset of the net-
work required for answering the query and running a Gibbs sampler over this
subnetwork, with initial states found by MaxWalkSat. Weights are learned
by optimizing a pseudo-likelihood measure using the L-BFGS algorithm,
and clauses are learned using the CLAUDIEN system. Empirical tests with
real-world data and knowledge in a university domain illustrate the promise
of MLNs. Source code for learning and inference in MLNs will be made
available at http://www.cs.washington.edu/ai/mln.
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