
Using CSP Look-Back Techniques to Solve Real-World SAT Instances

Roberto J. Bayardo Jr.
The University of Texas at Austin

Department of Computer Sciences (C0500)
Austin, TX 78712 USA
bayardo@cs.utexas.edu

http://www.cs.utexas.edu/users/bayardo

Robert C. Schrag
Information Extraction and Transport, Inc.

1730 North Lynn Street, Suite 502
Arlington, VA 22209 USA

schrag@iet.com
http://www.iet.com/users/schrag

Copyright 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

 Abstract

We report on the performance of an enhanced version of the
“Davis-Putnam” (DP) proof procedure for propositional
satisfiability (SAT) on large instances derived from real-
world problems in planning, scheduling, and circuit diagnosis
and synthesis. Our results show that incorporating CSP look-
back techniques -- especially the relatively new technique of
relevance-bounded learning -- renders easy many problems
which otherwise are beyond DP’s reach. Frequently they
make DP, a systematic algorithm, perform as well or better
than stochastic SAT algorithms such as GSAT or WSAT. We
recommend that such techniques be included as options in
implementations of DP, just as they are in systematic
algorithms for the more general constraint satisfaction
problem.

Introduction
While CNF propositional satisfiability (SAT) is a specific
kind constraint satisfaction problem (CSP), until recently
there has been little application of popular CSP look-back
techniques in SAT algorithms. In previous work [Bayardo
& Schrag 96] we demonstrated that a look-back-enhanced
version of the Tableau algorithm for 3SAT instances [Craw-
ford and Auton 96] can solve easily many instances which
without look-back are “exceptionally hard” -- orders of
magnitude harder than other instances with the same sur-
face characteristics. In this work the instances were artifi-
cially generated. Here, we demonstrate the practical utility
of CSP look-back techniques by using a look-back-
enhanced algorithm related to Tableau to solve large SAT
instances derived from real-world problems in planning,
scheduling, and circuit diagnosis and synthesis. Kautz and
Selman [96] had found unenhanced Tableau inadequate to
solve several planning-derived instances and resorted to
using a stochastic algorithm, WSAT (also known as Walk-
SAT) [Selman et al. 94]; our results show that look-back
enhancements make this recourse unnecessary.

Given the usual framework of backtrack search for sys-
tematic solution of the finite-domained constraint satisfac-
tion problem (CSP), techniques intended to improve
efficiency can be divided into two classes: look-ahead tech-
niques, which exploit information about the remaining
search space, and look-back techniques, which exploit
information about search which has already taken place.
The former class includes variable ordering heuristics,
value ordering heuristics, and dynamic consistency enforce-

ment schemes such as forward checking. The latter class
includes schemes for backjumping (also known as intelli-
gent backtracking) and learning (also known as nogood or
constraint recording). In CSP algorithms, techniques from
both classes are popular; for instance, one common combi-
nation of techniques is forward checking, conflict-directed
backjumping, and an ordering heuristic preferring variables
with the smallest domains.

SAT is a specific kind of CSP in which every variable
ranges over the values {true, false}. For SAT, the most pop-
ular systematic algorithms are variants of the Davis-Putnam
procedure (DP) [Davis et al. 62]. In CSP terms, DP is
equivalent to backtrack search with forward checking and
an ordering heuristic favoring unit-domained variables.
Two effective modern implementations of it are Tableau
[Crawford and Auton 96] and POSIT [Freeman 95]; both
are highly optimized and include carefully selected variable
ordering heuristics. Neither of these implementations (in
their published descriptions) include look-back enhance-
ments like we describe.

Systematic, or global search algorithms traverse a search
space systematically to ensure that no part of it goes unex-
plored. They are complete: given enough running time, if a
solution exists they will find it; if no solution exists they
will report this. Alternative to systematic algorithms for
SAT are stochastic, or local search algorithms such as
WSAT and GSAT [Selman et al. 92]. Stochastic algorithms
explore a search space randomly by making local perturba-
tions to a working assignment without memory of where
they have been. They are incomplete: they are not guaran-
teed to find a solution if one exists; they cannot report that
no solution exists if they do not find one.

Stochastic algorithms outperform systematic ones dra-
matically on satisfiable instances from the phase transition
region of random problem spaces, such as Random 3SAT
[Selman et al. 92]. Instances in this region are on average
most difficult for widely differing algorithms; they have
come to be used frequently as benchmarks for SAT algo-
rithm performance. At the same time, it is widely recog-
nized that they have very different underlying structures
from SAT instances one would expect to arise naturally in
real-world problems of interest.

Stochastic algorithms also outperform systematic algo-
rithms such as Tableau on some real-world problems. Sev-
eral SAT-encoded planning problems described by Kautz
and Selman [96] are infeasible for Tableau (given 10 hours)
but solved easily by WSAT (given around 10 minutes). Our

Appears in Proc. of the 14th Nat’l Conf. on Artificial Intelligence, 203-208, 1997.

look-back enhanced version of DP is competitive with
WSAT in identifying feasible plans using the same
instances. Furthermore, look-back-enhanced DP proves the
nonexistence of shorter plans in 1 to 3 minutes on instances
which Tableau did not solve in 10 hours; this task is impos-
sible for WSAT because of its incompleteness. The innova-
tive work of Kautz and Selman [96] was “pushing the
envelope” of feasibility for planning problems; this lays a
foundation where our look-back-enhanced DP slips in
neatly as a key component in a planning system at the state
of the art.

Definitions
A propositional logic variable ranges over the domain

. An assignment is a mapping of these values
to variables. A literal is the occurrence of a variable, e.g. ,
or its negation, e.g. ; a positive literal is satisfied
when the variable is assigned true, and a negative literal

 is satisfied when is assigned false. A clause is a sim-
ple disjunction of literals, e.g. ; a clause is sat-
isfied when one or more of its literals is satisfied. A unit
clause contains exactly one variable, and a binary clause
contains exactly two. The empty clause signals a con-
tradiction (seen in the interpretation, “choose one or more
literals to be true from among none”). A conjunctive nor-
mal formula (CNF) is a conjunction of clauses (e.g.

); a CNF is satisfied if all of its
clauses are satisfied.

For a given CNF, we represent an assignment notation-
ally as a set of literals each of which is satisfied. A nogood
is a partial assignment which will not satisfy a given CNF.
The clause encodes the nogood .
We call such a nogood-encoding clause a reason. Resolu-
tion is the operation of combining two input clauses men-
tioning a given literal and its negation, respectively,
deriving an implied clause which mentions all other literals
besides these. For example, resolves with

 to produce .

Basic Algorithm Description
The Davis-Putnam proof procedure (DP) is represented
below in pseudo-code. As classically stated, SAT is a deci-
sion problem, though frequently we also are interested in
exhibiting a satisfying truth assignment , which is empty
upon initial top-level entry to the recursive, call-by-value
procedure DP.

The CNF and the truth assignment are modified in
calls by name to UNIT-PROPAGATE. If contains a contra-

true false,{ }
x

x¬ x
x

x¬ x
x y z¬∨ ∨()

 ()

a b∨() x y z¬∨ ∨()∧

a b c¬∨ ∨() a¬ b¬ c, ,{ }

a b¬∨()
b c∨() a c∨()

σ

if in then return
if then

return

DP F σ,()
UNIT-PROPAGATE F σ,()

 () F
F ∅= exit-with σ()

α SELECT-BRANCH-VARIABLE F()←
DP F α(){ }∪ σ α{ }∪,()
DP F α¬(){ }∪ σ α¬{ }∪,()

F σ
F

diction, this is failure and backtracking is necessary. If all of
its clauses have been simplified away, then the current
assignment satisfies the CNF. SELECT-BRANCH-VARIABLE
is a heuristic function returning the next variable to value in
the developing search tree. If neither truth value works, this
also is failure.

UNIT-PROPAGATE adds the single literal from a unit
clause to the literal set , then it simplifies the CNF by
removing any clauses in which lambda occurs, and shorten-
ing any clauses in which occurs through resolution.

Modern variants of DP including POSIT and Tableau
incorporate highly optimized unit propagators and sophisti-
cated branch-variable selection heuristics. The branch-vari-
able selection heuristic used by our implementation is
inspired by the heuristics of POSIT and Tableau, though is
somewhat simpler to reduce implementation burdens.

Details of branch-variable selection are as follows. If
there are no binary clauses, select a branch variable at ran-
dom. Otherwise, assign each variable appearing in some
binary clause a score of
where and are the numbers of occurrences
of and in all binary clauses, respectively. Gather all
variables within 20% of the best score into a candidate set.
If there are more than 10 candidates, remove variables at
random until there are exactly 10. If there is only one candi-
date, return it as the branch variable. Otherwise, each candi-
date is re-scored as follows. For a candidate , compute

 and as the number of variables valued by
UNIT-PROPAGATE after making the assignment and

 respectively. Should either unit propagation lead to a
contradiction, immediately return as the next branch vari-
able and pursue the assignment for this variable which led
to the contradiction. Otherwise, score using the same
function as above. Should every candidate be scored with-
out finding a contradiction, select a branch variable at ran-
dom from those candidates within 10% of the best (newly
computed) score.

Except in the cases of contradiction noted above, the
truth value first assigned to a branch variable is selected at
random. We have applied the described randomizations
only where additional heuristics were not found to substan-
tially improve performance across several instances.

Incorporating CBJ and Learning
The pseudo-code version of DP above performs naive back-
tracking mediated by the recursive function stack. Conflict
directed backjumping (CBJ) [Prosser 93] backs up through
this abstract stack in a non-sequential manner, skipping
stack frames where possible for efficiency’s sake. Its
mechanics involve examining assignments made by UNIT-
PROPAGATE, not just assignments to DP branch variables,
so it is more complicated than the DP pseudo-code would
represent. We forego CBJ pseudo-code in this short paper.

while (exists in where)
UNIT-PROPAGATE F σ,()

ω F ω λ()=
σ σ λ{ }∪←
F SIMPLIFY F()←

λ
ω σ

λ¬

γ
neg γ() pos γ()⋅ neg γ() pos γ()+ +

pos γ() neg γ()
γ γ¬

γ
pos γ() neg γ()

γ{ }
γ¬{ }

γ

γ

We implement CBJ by having UNIT-PROPAGATE main-
tain a pointer to the clause in the (unsimplified) input CNF
which serves as the reason for excluding a particular assign-
ment from consideration. For instance, when is
part of the current assignment, the input clause
is the reason for excluding the assignment . When-
ever a contradiction is derived, we know some variable has
both truth values excluded. CBJ constructs a working rea-
son for this failure by resolving the two respective rea-
sons; then it backs up to the most recently assigned variable

 in . Suppose was the most recent assignment of
variable . If is excluded by a reason , then we
create a new working reason by resolving and and
back up to the most recently assigned variable in . Other-
wise, we install as the reason for excluding , change
the current assignment to include , and proceed with
DP.

Extending our example, suppose upon detecting failure
we have the complementary reason , and that

 was assigned after . Resolution gives us the working
reason , so CBJ backs up to where the assignment

 was made. If is excluded, then suppose the rea-
son is . Resolution yields the new working reason

 and CBJ keeps backing up. If is not excluded
(was a branch variable), becomes the reason
excluding , and replaces in the current
assignment before DP continues.

Learning schemes maintain derived reasons longer than
does CBJ, which can discard them as soon as they are no
longer denoting a value as excluded. Unrestricted learning
records every derived reason exactly as if it was a clause
from the underlying instance, allowing it to be used for the
remainder of the search. Because the overhead of unre-
stricted learning is high, we apply only the restricted learn-
ing schemes as defined in [Bayardo & Miranker 96]. Size-
bounded learning of order retains indefinitely only those
derived reasons containing or fewer variables. For
instance, the reason would be maintained by sec-
ond-order size-bounded learning, but longer reasons would
not. Relevance-bounded learning of order maintains any
reason that contains at most variables whose assignments
have changed since the reason was derived. For example,
suppose we are performing second-order relevance-
bounded learning, and we derive a reason
where variables , , and where assigned in the order
they appear. This reason would be maintained by second-
order relevance-bounded learning as long as remains
assigned as . As soon as is re-assigned or un-assigned
by a backup, the reason would be discarded.

Test Suites
We use three separate test suites to compare the perfor-
mance of look-back-enhanced DP with other algorithms
whose performance has been reported for the same
instances: SAT-encoded planning instances from Kautz and
Selman1; selected circuit diagnosis and planning instances
from the DIMACS Challenge directory associated with the
1993 SAT competition2; and planning, scheduling, and cir-

a¬ b¬,{ }
a b x∨ ∨()

x¬{ }

C

δ C γ{ }
γ γ¬{ } D

E C D
E

C γ{ }
γ¬{ }

a b x¬∨ ∨()
b a

a b∨()
b¬{ } b{ }

b¬ y∨()
a y∨() b{ }
b a b∨()

b¬{ } b{ } b¬{ }

i
i

a b∨()

i
i

a b y∨ ∨()
a b y

a
a¬ a

cuit synthesis instances from the 1996 Beijing SAT compe-
tition3.

Selected SAT-encoding planning instances constructed
by Kautz and Selman [96] (the hardest of these instances
which were available to us) are listed in Table 1. The “log”
instances correspond to planning problems in logistics; the
“bw” instances are for blocks worlds -- not “real” worlds --
but they are nonetheless hard. The “gp” instances are
Graphplan encodings, the “dir” instances direct encodings
(state-based for the logistics instances, linear for blocks
world), and the “un” instances are unsatisfiable Graphplan
encodings used to demonstrate the infeasibility of shorter
plans. (See cited paper for more details.)

In the DIMACS suite, we looked at Van Gelder and
Tsuji’s “ssa” (single-stuck-at) and “bf” (bridge-fault) circuit
diagnosis instances, and Selman’s tower of hanoi planning
instances also using linear encoding. For brevity, we report
on only the hardest, for all algorithms investigated, of the
single-stuck-at and bridge-fault instances (shown in Table
2).

We report on all instances in the Beijing suite, shown in
Table 3. The planning instances (“blocks”) again use the
linear encodings. The scheduling instances (“e”) encode
Sadeh’s benchmarks as described in [Crawford and Baker
94]. The circuit synthesis instances (“bit”) were contributed
by Bart Selman.

Experimental Methodology
Our algorithms are coded in C++ using fewer than 2000
lines including header files, blank lines, and comments.4

The implementation is flexible, with different look-back
techniques and degrees installed by setting various com-

1. Available at ftp://ftp.research.att.com/dist/ai/logistics.tar.Z and
satplan.data.tar.Z.

2. Available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiabil-
ity.

3. Available at http://www.cirl.edu/crawford/beijing.
4. Source code available at http://www.cs.utexas.edu/users/

bayardo.

TABLE 1. Kautz and Selman’s planning instances.

instance vars clauses sat type
log_gp.b 2,069 29,508 Y planning
log_gp.c 2,809 48,920 Y planning
log_dir.a 828 6,718 Y planning
log_dir.b 843 7,301 Y planning
log_dir.c 1,141 10,719 Y planning
log_un.b 1,729 21,943 N planning
log_un.c 2,353 37,121 N planning
bw_dir.c 3,016 50,457 Y planning
bw_dir.d 6,325 131,973 Y planning

TABLE 2. DIMACS instances.

instance vars clauses sat type
ssa2670-141 986 2,315 N diagnosis
bf1355-075 2,180 6,778 N diagnosis
hanoi4 718 4,932 Y planning
hanoi5 1931 14,468 Y planning

pile-time and run-time parameters. We did not optimize the
implementation extensively. We believe investing more
attention in this regard, perhaps along the lines suggested
by Freeman [95], should improve our performance by up to
a factor of three. Freeman’s more sophisticated branch-vari-
able selection heuristics and instance preprocessing tech-
niques also should improve performance.

We experiment with several variants of our DP algo-
rithm. The version applying no look-back enhancements is
denoted “naivesat”, that applying only CBJ “cbjsat”, one
applying relevance-bounded learning of order “relsat()”,
and one applying size-bounded learning of order “size-
sat()”. We only use learn orders of 3 and 4, since higher
learn orders resulted in too high an overhead to be generally
useful, and lower learn orders had little effect.

Care must be taken when experimenting with real world
instances because the number of instances available for
experimentation is often limited. The experiment must
somehow allow for performance results on the limited
instance space to generalize to other similar instances. We
found the runtime variance of algorithms solving the same
instance to be extremely high given what seem to be insig-
nificant differences in either value or variable ordering pol-
icies, whether or not the instance is satisfiable.

Kautz and Selman [96] address this issue by averaging
WSAT’s runtime over multiple runs. We take the same
approach and run our algorithms several times (100) on
each instance with a different random number seed for each
run to ensure different execution patterns. In order to deal
with runs which could take an inordinate amount of time, a
cutoff time was imposed (10 minutes unless otherwise
noted) after which the algorithm was to report failure. We
report the percentage of instances an algorithm failed to
solve within the cutoff time. We report the mean CPU time
required per run and sometimes the mean variable assign-
ments made per run, averaged over successful runs.

The experiments were performed on SPARC-10 worksta-
tions. Kautz and Selman [96] reported running times from a
110-MHz SGI Challenge. To “normalize” our running
times against theirs for the same instances, we solved a

TABLE 3. Beijing instances.

instance vars clauses sat type
e0-10-by-5-1 19,500 108,887 Y scheduling
e0-10-by-5-4 19,500 104,527 Y scheduling
en-10-by-5-1 20,700 111,567 Y scheduling
en-10-by-5-8 20,700 113,729 Y scheduling
ew-10-by-5-1 21,800 118,607 Y scheduling
ew-10-by-5-8 22,500 123,329 Y scheduling
3blocks 283 9,690 Y planning
4blocksb 410 24,758 Y planning
4blocks 758 47,820 Y planning
2bitadd_10 590 1,422 N synthesis
2bitadd_11 649 1,562 Y synthesis
2bitadd_12 708 1,702 Y synthesis
2bitcomp_5 125 310 Y synthesis
2bitmax_6 252 766 Y synthesis
3bitadd_31 8,432 31,310 Y synthesis
3bitadd_32 8,704 32,316 Y synthesis

i i
i

i

selected set of instances and compared the mean “flips per
second” reported by WSAT, concluding their machine to
have been 1.6 times faster than our SPARC-105. In the
experimental results that follow, we take the liberty of
reporting all run-times in “normalized SPARC-10” CPU
seconds. Instead of normalizing run-times reported by
Kautz and Selman for Tableau (ntab), we repeat the experi-
ments on our machine, only using the newest available ver-
sion of Tableau, “ntab_back”, available at http://
www.cirl.uoregon.edu/crawford/ntab.tar. This version of
Tableau incorporates a backjumping scheme, and hence is
most similar to our “cbjsat” (though better optimized).
Because ntab_back incorporates no randomizations, the
runtimes reported for this algorithm are for a single run per
instance.

Experimental Results
Table 4 displays performance data for relsat(4), WSAT, and
ntab_back on Kautz and Selman’s planning instances. Cut-
off time was 10 minutes for each instance except bw_dir.d,
for which it was 30 minutes. The times for WSAT are those
reported by Kautz and Selman [96], normalized to SPARC-
10 CPU seconds. Relsat(4) outperformed WSAT on most
instances. One exception where WSAT is clearly superior is
on instance log_dir.c which caused relsat(4) to reach cutoff
22 times. Instance bw_dir.d caused relsat(4) to reach cutoff
18 times, but it still outperformed WSAT by several min-
utes even after averaging in 30 minutes for each relsat cut-
off. Though it is difficult to draw solid conclusions about
the performance of ntab_back since the times reported are
only for a single run, we can determine that relsat(4) is
more effective than ntab_back on the instances for which
relsat(4) never reached cutoff, yet ntab_back required sub-
stantially more than 10 minutes to solve. This includes all
log_gp and log_un instances.

Table 5 displays performance data for our several DP
variants on DIMACS instance bf1355-075 -- the hardest of
the bridge-fault instances. Freeman [95] reports that POSIT
requires 9.8 hours on a SPARC 10 to solve this instance,
and we found ntab_back to solve it in 17.05 seconds. Table
6 displays the same information for the DIMACS instance

5. We could not easily repeat the experiments of Kautz and Sel-
man on our machines due to the need to hand-tune the multiple
input parameters of WSAT.

TABLE 4. Performance of relsat(4) on Kautz and Selman’s
planning instances.

instance relsat(4) % fail WSAT ntab_back
log_gp.b 12.9 0% 75.2 2,621
log_gp.c 39.4 0% 419.2 11,144
log_dir.a 4.1 0% 4.3 369.7
log_dir.b 16.6 0% 2.6 161.4
log_dir.c 90.3 22% 3.0 > 12 hours
log_un.b 66.8 0% -- 12,225
log_un.c 192.5 0% -- > 12 hours
bw_dir.c 119 0% 1072 16.9
bw_dir.d 813.3 18% 1499 > 12 hours

ssa270-141 -- the hardest of the single-stuck-at instances.
Freeman reports POSIT to require 50 seconds to solve this
instance6, and we found ntab_back to solve it in 1,353 sec-
onds. Both of these instances are unsatisfiable.

Naivesat was unable to solve either instance within 10
minutes in any of 100 runs. Adding CBJ resulted in the
bridge-fault instance being solved in all 100 runs, but the
single-stuck-at instance still caused 23 failures. All the
learning algorithms performed extremely well on the
bridge-fault instance. For the single-stuck-at-instance, rele-
vance-bounded learning resulted in a significant speedup.
Fourth-order size-bounded learning, while restricting the
size of the search space more than third-order size-bounded
learning, performed less well due to its higher overhead.

DIMACS instances hanoi4 and hanoi5 appear to contain
very deep local minima; although they are satisfiable, they
have not, to our knowledge, been solved by stochastic algo-
rithms. Ntab_back solves hanoi4 in 2,877 seconds but was
unable to solve hanoi5 within 12 hours. We are not aware of
any SAT algorithm reported to have solved hanoi5. The
results for our DP variants on hanoi4 appear in Table 7.
Though sizesat(4) appears faster than relsat(3), its mean
run-time is skewed by the fact that it only successfully
solved the instance in 21% of its runs. Relsat(3) was suc-
cessful in nearly all runs and relsat(4) in all but one. We ran
the same set of DP variants on hanoi5. The only variant that

6. Freeman also reports that POSIT exhibits high run-time vari-
ability on ssa2670-141, though the variance is not quantified.

TABLE 5. Performance on DIMACS bridge-fault instance
bf1355-075.

algorithm run-time assgnmnts % fail
naivesat -- -- 100%
cbjsat 115 999,555 0%
sizesat(3) 2.6 18,754 0%
sizesat(4) .5 3,914 0%
relsat(3) 3.6 23,107 0%
relsat(4) .6 4,391 0%

TABLE 6. Performance on DIMACS single-stuck-at instance
ssa270-141.

algorithm run-time assgnmnts % fail
naivesat -- -- 100%
cbjsat 415 9.4 Million 23%
sizesat(3) 242 5.0 Million 0%
sizesat(4) 278 4.7 Million 4%
relsat(3) 71 1.2 Million 0%
relsat(4) 46 .62 Million 0%

TABLE 7. Performance on DIMACS planning instance hanoi4.

algorithm run-time assgnmnts % fail
naivesat -- -- 100%
cbjsat 325 3.5 Million 94%
sizesat(3) 214 1.7 Million 92%
sizesat(4) 227 1.4 Million 79%
relsat(3) 254 1.6 Million 13%
relsat(4) 183 .89 Million 1%

successfully solved the instance at all was relsat(4), and it
did so in only 4 out of the 100 attempts. The average run-
time in these four successful runs was under three minutes.

Our DP variants performed relatively well on most of the
Beijing instances. The general trend was that thus far illus-
trated -- the more look-back applied, the better the perfor-
mance and the lower the probability of reaching cutoff. We
were able to solve all the instances within this suite without
significant difficulty using relsat(4) with the exception of
the “3bit” circuit instances which were never solved by any
of our DP variants. Interestingly, we found these instances
were trivial for WSAT.

The “2bit” circuit instances were trivial (a fraction of a
second mean solution time) even for cbjsat, with the excep-
tion of 2bitadd_10, their only unsatisfiable representative.
This instance was not solvable by any of our algorithms
within 10 minutes. After disabling cutoff, relsat(4) deter-
mined it unsatisfiable in 18 hours.

Relsat(4) solved 4 out of 6 scheduling instances with a
100% success rate. Two of the instances, e0-10-by-5-1 and
en-10-by-5-1 resulted in failure rates of 21% and 18%
respectively. Repeating the experiments for these two
instances with a 30-minute cutoff reduced the failure rate to
3% and 1% respectively. Crawford and Baker [94] reported
that ISAMP, a simple randomized algorithm, solved these
types of instances more effectively than WSAT or Tableau.
Our implementation of ISAMP solved these 6 instances an
order of magnitude more quickly than relsat(4), and with a
100% success rate. We did not find ISAMP capable of solv-
ing any other instances considered in this paper.

Of the Beijing planning instances, relsat(3) and relsat(4)
found 3blocks to be easy, solving it with 100% success in
6.0 and 6.4 seconds on average respectively. The 4blocksb
instance was also easy, with both relsat(3) and relsat(4)
again achieving 100% success, though this time in 79 and
55 seconds respectively. The 4blocks instance was more
difficult. The failure rate was 34% for relsat(3) and 17% for
relsat(4), with average CPU seconds of 406 and 333 sec-
onds respectively. Because the mean times were so close to
the cutoff, we expect increasing the cutoff time should sig-
nificantly reduce the failure rate as it did with the schedul-
ing instances.

Discussion
Look-back enhancements clearly make DP a more capable
algorithm. For almost every one of the instances tested here
(selected for their difficulty), learning and CBJ were critical
for good performance. We suspect the dramatic perfor-
mance improvements resulting from the incorporation of
look-back is in fact due to a synergy between the look-
ahead and look-back techniques applied. Variable selection
heuristics attempt to seek out the most-constrained areas of
the search space to realize inevitable failures as quickly as
possible. Learning schemes, through the recording of
derived clauses, can create constrained search-sub-spaces
for the variable selection heuristic to exploit.

Size-bounded learning is effective when instances have
relatively many short nogoods which can be derived with-

out deep inference. Relevance-bounded learning is effective
when many sub-problems corresponding to the current DP
assignment also have this property.7 Our findings indicate
that real-world instances often contain subproblems with
short, easily derived nogoods. Phase transition instances
from Random 3SAT tend to have very short nogoods
[Schrag and Crawford 96], but these seem to require deep
inference to derive, and look-back-enhanced DP provides
little advantage on them [Bayardo & Schrag 96].

As we have noted, a few test instances were infeasible
for look-back-enhanced DP but easy or even trivial for
WSAT. Look-back for DP is not a “magic bullet”, and good
look-back techniques alone will not result in universally
superior performance, just as alone the good look-ahead
techniques included in Tableau and POSIT do not. The best
algorithms, stochastic or systematic, are bound to be sty-
mied by instances of sufficient size and complexity or
adversarial structure. Nevertheless, combining good tech-
niques for look-ahead and look-back is likely to give better
performance across a broad range of problems.

Some researchers have attempted to exploit the distinct
advantages of systematic and stochastic search in hybrid
global/local search algorithms. Ginsberg and McAllester’s
[94] partial-order dynamic backtracking, which incorpo-
rates a form of relevance-bounded learning along with a
scheme that relaxes the restrictions on changing past vari-
able assignments, has been shown to perform better than
Tableau on a random problem space with crystallographic
structure. Mazure et al. [96] evaluated a hybrid algorithm
with interleaved DP and local search execution using sev-
eral instances from the DIMACS suite, showing that it fre-
quently outperformed capable non-hybrid DP
implementations. Because look-back enhanced DP is also
effective at solving the DIMACS instances used by Mazure
et al. and the crystallographic instances of Ginsberg and
McAllester [Bayardo and Schrag 96], future work is
required to see if and when these techniques are comple-
mentary to look-back.

Given the similarities between experimental results from
this study and those from our previous study on randomly
generated “exceptionally hard” instances [Bayardo and
Schrag 96], we speculate that this random problem space
may contain instances that better reflect computational dif-
ficulties arising in real-world instances than random spaces
like Random 3SAT.

Conclusions
We have described CSP look-back enhancements for DP
and demonstrated their significant advantages. We feel their
performance warrants their being included as options in DP
implementations more commonly. Where DP is used in a
larger system (for planning, scheduling, circuit processing,
knowledge representation, higher-order theorem proving,
etc., or in a hybrid systematic/stochastic SAT algorithm),

7. A theoretical comparison of these two methods for restricting
learning overhead appears in [Bayardo & Miranker 96].

look-back-enhanced DP should probably replace unen-
hanced DP; where another SAT algorithm is used, DP
should be given a new evaluation using look-back enhance-
ments. Finally, look-back-enhanced DP should become a
standard algorithm, along with unenhanced DP, against
which other styles of SAT algorithm are compared.

References

Bayardo, R. J. and Miranker, D. P. 1996. A Complexity Analysis
of Space-Bounded Learning Algorithms for the Constraint Satis-
faction Problem. In Proc. 13th Nat’l Conf. on Artificial Intelli-
gence, 558-562.

Bayardo, R. J. and Schrag, R. 1996. Using CSP Look-Back Tech-
niques to Solve Exceptionally Hard SAT Instances. In Proc. Sec-
ond Int’l Conf. on Principles and Practice of Constraint
Programming (Lecture Notes in Computer Science v. 1118),
Springer, 46-60.

Crawford, J. M. and Auton, L. D. 1996. Experimental Results on
the Crossover Point in Random 3SAT. Artificial Intelligence 81(1-
2), 31-57.

Crawford, J. M. and Baker, A. B. 1994. Experimental Results on
the Application of Satisfiability Algorithms to Scheduling Prob-
lems. In Proc. Twelfth Nat’l Conf. on Artificial Intelligence, 1097-
1097.

Davis, M., Logemann, G. and Loveland, D. 1962. A Machine Pro-
gram for Theorem Proving, CACM 5, 394-397.

Freeman, J. W. 1995. Improvements to Propositional Satisfiability
Search Algorithms. Ph.D. Dissertation, U. Pennsylvania Dept. of
Computer and Information Science.

Frost, D. and Dechter, R. 1994. Dead-End Driven Learning. In
Proc. of the Twelfth Nat’l Conf. on Artificial Intelligence, 294-300.

Ginsberg, M. and McAllester, D. 1994. GSAT and Dynamic Back-
tracking, Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourth Int’l Conf., 226-237.

Kautz, H. and Selman, B. 1996. Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search. In Proc. 13th Nat’l
Conf. on Artificial Intelligence, 558-562.

Mazure, M., Sais, L. and Gregoire, E. 1996. Detecting Logical
Inconsistencies. In Proc. of the Fourth Int’l Symposium on Artifi-
cial Intelligence and Mathematics, 116-121.

Prosser, P. 1993. Hybrid Algorithms for the Constraint Satisfac-
tion Problem. Computational Intelligence 9(3):268-299.

Schrag, R. and Crawford, J. M. Implicates and Prime Implicates in
Random 3SAT. Artificial Intelligence 81(1-2), 199-222.

Selman, B., Kautz, H., and Cohen, B., 1994. Noise Strategies for
Local Search. In Proc. Twelfth Nat’l Conf. on Artificial Intelli-
gence, 337-343.

Selman, B., Levesque, H. and Mitchell, D. 1992. A New Method
for Solving Hard Satisfiability Problems, In Proc. Tenth Nat’l
Conf. on Artificial Intelligence, 440-446.

Stallman R. M. and. Sussman G. J., 1977. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-
Aided Circuit Analysis. Artificial Intelligence 9, 135-196.

	Abstract
	Introduction
	Definitions
	Basic Algorithm Description
	Incorporating CBJ and Learning
	Test Suites
	Experimental Methodology
	Experimental Results
	Discussion
	Conclusions
	References

