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1 Introduction

Although epistemology, the study of knowledge, has a long and honorable tradition in
philosophy, starting with the Greeks, the idea of a formal logical analysis of reasoning
about knowledge is somewhat more recent, going back to at least von Wright [Wright
1951]. The first book-length treatment of epistemic logic is Hintikka’s seminal work,
Knowledge and Belief [Hintikka 1962]. The 1960’s saw a flourishing of interest in this
area in the philosophy community. Axioms for knowledge were suggested, attacked,
and defended. Models for the various axiomatizations were proposed, mainly in terms
of possible-worlds semantics, and then again attacked and defended (see, for example,

[Gettier 1963; Lenzen 1978; Barwise and Perry 1983]).

More recently, reasoning about knowledge has found applications in such diverse fields
as economics, linguistics, artificial intelligence, and computer science. While researchers
in these areas have tended to look to philosophy for their initial inspiration, it has also
been the case that their more pragmatic concerns, which often centered around more com-
putational issues such as the difficulty of computing knowledge, have not been treated in
the philosophical literature. The commonality of concerns of researchers in all these areas
has been quite remarkable, as has been attested by the recent series of interdisciplinary
conferences on the subject [Halpern 1986b; Vardi 1988; Parikh 1990; Moses 1992; Fagin
1994].

In this survey, I attempt to identify and describe some of the common threads that
tie together research in reasoning about knowledge in all the areas mentioned above.
I also briefly discuss some of the more recent work, particularly in computer science,
and suggest some lines for future research. This should by no means be viewed as a
comprehensive survey. The topics covered clearly reflect my own biases.

2 The “classical” model

We begin by reviewing the “classical” model for knowledge and belief (now almost 40
years old!), the so-called possible-worlds model. The intuitive idea here is that besides
the true state of affairs, there are a number of other possible states of affairs, or possible
worlds. Some of these possible worlds may be indistinguishable to an agent from the true
world. An agent is then said to know a fact o if ¢ is true in all the worlds he thinks
possible. For example, an agent may think that two states of the world are possible: in
one it is sunny in London, while in the other it is raining in London. However, in both
these states it is sunny in San Francisco. Thus, this agent knows that it is sunny in San
Francisco, but does not know whether it is sunny in London.

The philosophical literature has tended to concentrate on the one-agent case, in order
to emphasize the properties of knowledge. However, many applications of interest involve
multiple agents. Then it becomes important to consider not only what an agent knows
about “nature”, but also what he knows about what the other agents know and don’t



know. It should be clear that this kind of reasoning is crucial in bargaining and economic
decision making. As we shall see, it is also relevant in analyzing protocols in distributed
computing systems (in this context, the “agents” are the processes in the system). Such
reasoning can get very complicated. Most people quickly lose the thread of such nested
sentences as “Dean doesn’t know whether Nixon knows that Dean knows that Nixon
knows that McCord burgled O’Brien’s office at Watergate”. (Clark and Marshall [1981]
discuss the difficulties people have dealing with such statements.) But this is precisely
the type of reasoning that goes on in a number of applications involving many agents.

To formalize this type of reasoning, we first need a language. The language I’ll
consider here is a propositional modal logic for n agents; this is a slight generalization
of the logic described in Fitting’s chapter in Volume 1 of this Handbook. Starting with a
set ® of primitive propositions (usually denoted by the letters p, ¢ and r), complicated
formulas are formed by closing off under negation, conjunction, and the modal operators
Ky, ..., K,. Thus, if ¢ and ¢ are formulas, then so are =, p A, and K;p, 1 =1,...,n.
As usual, we take ¢ V ¢ to be an abbreviation for =(—¢ A %) and ¢ = @ to be an
abbreviation for =g V 1.

The formula K;p is read “agent ¢ knows ¢”. The K;’s are called modal operators;
hence the name modal logic. We could also consider a first-order modal logic that allows
quantification along the lines discussed in Fitting’s chapter, but the propositional case is
somewhat simpler and has all the ingredients we need for our discussion.

We can express quite complicated statements in a straightforward way using this
language. For example, the formula

[(1 I(Qp A= [(2 [(1 [(QP

says that agent 1 knows that agent 2 knows p, but agent 2 doesn’t know that agent 1
knows that agent 2 knows p. We view possibility as the dual of knowledge. Thus, agent
1 considers @ possible exactly if he doesn’t know —p. This situation can be described
by the formula = K;—¢p. A statement like “Dean doesn’t know whether ¢” says that
Dean considers both ¢ and —¢ possible. With these observations, we can deal with the
sentence above, “Dean doesn’t know whether Nixon knows that Dean knows that Nixon
knows that McCord burgled O’Brien’s office at Watergate.” If we take Dean to be agent
1, Nixon to be agent 2, and p to be the statement “McCord burgled O’Brien’s office at
Watergate”, then this sentence can be expressed in the logic as

=K1 =(K2 K1 Kap) A ~Ki=(=Ky K1 Kap).

When reasoning about the knowledge of a group, it becomes useful to reason not just
about an individual agent’s state of knowledge, but also about the knowledge of the group.
For example, we might want to make statements such as “everyone in group G knows ¢”.
It turns out to be useful to be able to make even more complicated statements such as
“everyone in (G knows that everyone in G knows ¢”, and “¢ is common knowledge among
the agents in G”, where common knowledge is, informally, the infinite conjunction of the



statements “everyone knows, and everyone knows that everyone knows, and everyone

knows that everyone knows that everyone knows, ...”

Common knowledge was first studied by Lewis [1969] in the context of conventions. He
points out that in order for something to be a convention, it must be common knowledge
among the members of the group.

Common knowledge also arises in discourse understanding. If Ann asks Bob “Have
you ever seen the movie playing at the Roxy tonight?”, then in order for this question to
be interpreted appropriately, not only must Ann and Bob know what movie is playing
tonight, but Ann must know that Bob knows, Bob must know that Ann knows that Bob

knows, etc. (This is discussed by Clark and Marshall [1981]; Perrault and Cohen [1981]
offer a slightly dissenting view.)

Interest in common knowledge in the economics community was inspired by Aumann’s
seminal result [1976]. Aumann showed that if two people have the same prior probability
for an event and their posterior probability for the event (that is, the probability they
place on the event after getting some possibly different pieces of information) are common
knowledge, then these posterior probabilities must be equal. This result says that people
with the same prior probabilities cannot agree to disagree. Since then, common knowledge
has received a great deal of attention in the economics literature; the issues examined
include the number of rounds of communication information required before the posteriors
for an event become common knowledge [Geanakoplos and Polemarchakis 1982; Parikh
and Krasucki 1990] and whether it is reasonable for rationality to be common knowledge
(see [Brandenburger 1989] for a survey).

In order to express these notions, we augment the language with modal operators Eg
(“everyone in the group G knows”) and C¢ (“it is common knowledge among the agents
in G7), for every nonempty subset GG of {1,...,n}. This, we can make statements such
as Fgp A ~Cgp: everyone in G knows p, but p is not common knowledge.

As discussed in Fitting’s chapter, we can give semantics to this logic using the idea of
possible worlds and Kripke structures [Kripke 1963]. Formally, a Kripke structure M is a
tuple (S, 7, Kq,...,K,), where S is a set of stales or possible worlds,  is an interpretation
which associates with each state in S a truth assignment to the primitive propositions
(i.e., m(s)(p) € {true,false} for each state s € S and each primitive proposition p),
and K; is an equivalence relation on S (recall that an equivalence relation is a binary
relation which is reflexive, symmetric, and transitive). K, is agent ¢’s possibility relation.
Intuitively, (s, ) € K, if agent ¢ cannot distinguish state s from state ¢ (so that if s is the
actual state of the world, agent ¢ would consider ¢ a possible state of the world). We take
K; to be an equivalence relation, since it corresponds to the situation where, in state s,
agent ¢ considers t possible if it has the same information in both s and ¢. This type of
situation arises frequently in distributed systems and economics applications. However,
it is also possible to consider possibility relations with other properties (for example,
reflexive and transitive, but not symmetric); most of the discussion goes through with
very few changes if we change the nature of the possibility relation.



We now define a relation =, where (M, s) = ¢ is read “p is true, or satisfied, in state
s of structure M”.

,8) |= p for a primitive proposition p if 7(s)(p) = true
=it (M, s) = o

= o A (M,5) g and (M,5) = o

,8) = Kip if (M, t) = ¢ for all ¢ such that (s,t) € K;
,8) E Egp if (M,s) E Kyp for all i € G

,8) | Copif (M,s) = BEo for k =1,2,..., where ELp =gt Fgp and EE™ p =g

The first clause shows how we use the 7 to define the semantics of the primitive propo-
sitions. The next two clauses, which define the semantics of = and A, are the standard
clauses from propositional logic. The fourth clause is designed to capture the intuition
that agent ¢ knows ¢ exactly if ¢ is true in all the worlds that  thinks are possible. The
fiftth clause defines the semantics of Fgp in the most obvious way: Fge holds if each
agent in GG knows ¢, i.e., if K;p holds for all « € G. Finally, the last clause captures the
intuitive definition of common knowledge discussed above.

These ideas are perhaps best illustrated by an example. One of the advantages of
a Kripke structure is that it can be viewed as a labeled graph, that is, a set of labeled
nodes connected by directed, labeled edges. The nodes are the states of S; each node is
labeled by the primitive propositions true and false there, and there is an edge from s to
t labeled ¢ exactly if (s,t) € K;. For example, suppose ® = {p} and n = 2, so that our
language only has one primitive proposition p and there are only two agents. Further
suppose that M = (S, 7,K1,K3), where S = {s,t,u}, p is true at states s and u, but
false at ¢ (so that 7(s)(p) = 7(u)(p) = true and =(¢)(p) = false), agent 1 cannot tell s
and ¢ apart (so that 1 = {(s,s),(s,1),(¢,s), (¢, 1), (u,u)}), and agent 2 cannot tell s and
u apart (so that Ko = {(s,s),(s,u),(t,1),(u,s),(u,u)}). This situation can be captured
by the graph in Figure 1.

If we view p as standing for “it is sunny in San Francisco”, then in state s it is sunny
in San Francisco but agent 1 doesn’t know it (since he considers both s and ¢ possible).
On the other hand, agent 2 does know that it is sunny in state s, since in both worlds
that agent 2 considers possible at s (namely, s and u), the formula p is true. Agent 2 also
knows the true situation at state ¢, namely, that it is not sunny. It follows that in state
s agent 1 knows that agent 2 knows whether or not it is sunny in San Francisco (since
in both worlds agent 1 considers possible in state s, agent 2 knows what the weather in
San Francisco is). Thus, although agent 1 does not know the true situation at s, he does
know that agent 2 knows the true situation. By way of contrast, although in state s agent
2 knows that it is sunny in San Francisco, he doesn’t know that agent 1 doesn’t know
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Figure 1: A simple Kripke structure

this fact. (In one world that agent 2 considers possible, namely u, agent 1 does know
that it is sunny, while in another world agent 2 considers possible, s, agent 1 does not
know this fact.) All of this relatively complicated English discussion can be summarized
in one mathematical statement:

(M, S) |: P A _'[(1}7 A [(QP A [(1([(2p V [(2_‘}7) A _‘[(2_'[(1]7.

What about common knowledge? It is not hard to check that the formula ¢ =
Kyp V Ky—p is true at all three states s, ¢, and u in M. Taking G = {1,2}, an easy
induction on k now shows that in fact EXt is true at all three states, for all k. Thus,
(M, s) |E Cap.

Note that in both s and wu, the primitive proposition p (the only primitive proposition
in our language) gets the same truth value. One might think, therefore, that s and u are
the same, and that perhaps one of them can be eliminated. This is not true! A state
is not completely characterized by the truth values that the primitive propositions get
there. The possibility relation is also crucial. For example, in world s, agent 1 considers
t possible, while in u he doesn’t. As a consequence, agent 1 doesn’t know p in s, while
in u he does.

How reasonable is this notion of knowledge? What are its properties? One way of
investigating this issue is to try to find a complete characterization of the valid formulas,
that is, those formulas that are true in every state in every structure.

If we ignore the operators Fg and Cg for the moment, the valid formulas in the lan-
guage with only K; can be completely characterized by the following sound and complete
axiom system, due to Hintikka [Hintikka 1962]; i.e., all the axioms are valid and every
valid formula can be proved from these axioms.

Al. All instances of propositional tautologies.



R1. From ¢ and ¢ = ¢ infer ¢ (modus ponens)

R2. From ¢ infer K;p

A1l and RI1, of course, are holdovers from propositional logic. A2 says that an agent’s
knowledge is closed under implication. A3 says that an agent knows only things that
are true. This is the axiom that is usually taken to distinguish knowledge from belief.
You cannot know a fact that is false, although you may believe it. A4 and A5 are
axioms of introspection. Intuitively, they say that an agent is introspective: he can
look at his knowledge base and will know what he knows and doesn’t know. There are
numerous papers in the philosophical literature discussing the appropriateness of these
axioms (see [Lenzen 1978] for an overview). Philosophers have tended to reject both of
the introspection axioms for various reasons.

The validity of A3, A4, and A5 is due to the fact that we have taken the K;’s to be
equivalence relations. In a precise sense, A3 follows from the fact that K; is reflexive, A4
from the fact that it is transitive, and A5 from the fact that it is symmetric and transitive.
By modifying the properties of the K; relations, we can get notions of knowledge that
satisfy different axioms. For example, by taking K; to be reflexive and transitive, but
not necessarily symmetric, we retain A3 and A4, but lose A5; similar modifications give
us a notion that corresponds to belief, and does not satisfy A3. (See [Halpern and Moses
1992] for a survey of these issues, as well as a review of the standard techniques of modal
logic which give completeness proofs in all these cases.)

However, the possible-worlds approach seems to commit us to A2 and R2. This
suggests a view of our agents as “ideal knowers”, ones that know all valid formulas as
well as all logical consequences of their knowledge. This certainly doesn’t seem to be
a realistic model for human agents (although it might perhaps be acceptable as a first
approximation). Nor does it seem to even be an adequate model for a knowledge base
which is bounded in terms of the computation time and space in memory that it can use.
We’ll discuss some approaches to this problem of logical omniscience in Section 4 below.

Once we include the operators Fg and (g in the language, we get further properties.
These are completely characterized by the following additional axioms:

Cl. EGgO = /\iEG [(299

C2. Cap & FEg(p A Cap) (fixed point axiom)

RC1. From ¢ = Eg(¢ A ) infer ¢ = Cgtp (induction rule)



The fixed point axiom says that common knowledge of ¢ holds exactly when the group
(7 is in a particular situation where everyone in G knows that ¢ holds and that common
knowledge of ¢ holds. It turns out that this is the key property of common knowledge
that makes it a prerequisite for agreement and coordination. The induction rule gives us
a technique to verify that common knowledge holds in a certain situation. The reason
for its name is that once we know that ¢ = Eg(e A ) is valid, then we can show by
induction on k that ¢ = E&(¢ A ) is valid for all k, from which we can conclude that
v = Cgp is valid.

How hard is it to tell if a given formula defines a valid property of knowledge? We
can give an answer in terms of complexity theory. (See [Hopcroft and Ullman 1979]
for an introduction to complexity-theoretic notions mentioned below such as co-NP-
completeness.) It can be shown that if a formula ¢ is valid iff it is true at every state
in every structure with at most 2" states, where n is the length of ¢ viewed as a string
of symbols. From this result, it follows that validity is decidable: there is an algorithm
that, given a formula ¢, can tell whether or not it is valid. However, deciding validity
is not easy. If we consider systems with just one agent, then it is co-NP-complete, just
as it is for propositional logic [Ladner 1977]. But once we consider systems with two or
more agents, any algorithm that decides validity requires space polynomial in the size of
the input formula, even if we do not include common knowledge in the language. Once
we include common knowledge, the complexity goes up to exponential time [Halpern and
Moses 1992]. We'll return to the implication of these complexity results in Section 4.

3 A concrete interpretation: multi-agent systems

We want to use knowledge as a tool for analyzing multi-agent systems. For our purposes,
we can view any collection of interacting agents as a multi-agent system. This includes
the players in a poker game, processes in a computer network, or robots on an assembly
line.

To model such a system formally, we assume it consists of n agents, each of which
is in some local state at a given point in time. We assume that an agent’s local state
encapsulates all the information to which the agent has access. In a distributed system,
the local state of a process might include some initial readings, the list of messages it has
sent and received, and perhaps the reading of a clock. In a poker game, a player’s local
state might consist of the cards he currently holds, the bets made by other players, any
other cards he has seen, and any information he may have about the strategies of the
other players (for example, Bob may know that Alice likes to bluff, while Charlie tends
to bet conservatively). We make no assumptions here about the precise nature of the
local state.

We can then view the whole system as being in some global state, which is a tuple
consisting of each process’ local state, together with the state of the environment, where
the environment consists of everything that is relevant to the system that is not contained



in the state of the processes. Thus, a global state has the form (s.,s1,...,$,), where
Se 1s the state of the environment and s; is agent ¢’s state, for 2 = 1,...,n. The actual
form of the agents’ local states and the environment’s state depends on the application
being modeled. If we are studying a message-passing system consisting of communi-
cating agents, the environment’s state may include the status of the communication line
(whether it is up or down, or whether there are any messages in transit on the line), while
an agent’s local state may include the sequences of messages she has sent and received.
If we consider a system of sensors observing some terrain, a sensor’s local state may just
consist of its last (or last few) observations, while the environment’s state may include
features of the terrain not contained in the state of any of the sensors.

A system is not a static entity. To capture its dynamic aspects, we define a run to
be a function from time to global states. Intuitively, a run is a complete description of
what happens over time in one possible execution of the system. A point is a pair (r,m)
consisting of a run r and a time m. For simplicity, we take time to range over the natural
numbers in the remainder of this discussion. (In particular, this means that time steps
are discrete and that time is infinite.) At a point (r,m), the system is in some global
state r(m). If r(m) = (sc,81,...,8,), then we take r;(m) to be s;, agent ¢’s local state
at the point (r,m).

We formally define a system to consist of a set of runs. Notice how this definition
abstracts our intuitive view of a system as a collection of interacting agents. Instead of
trying to model the system directly, our definition models the possible behaviors of the
system. For example, in a poker game, the runs could describe all the possible deals and
betting sequences.

As we shall see, a system can be viewed as a Kripke structure except that we have
no function # telling us how to assign truth values to the primitive propositions. (In the
terminology of Fitting’s chapter, a system can be viewed as a frame.) To view a system
as a Kripke structure, we assume that we have a set ® of primitive propositions, which
we can think of as describing basic facts about the system. In the context of distributed
systems, these might be such facts as “the value of the variable z is 07, “process 1’s initial
input was 177, “process 3 sends the message m in round 5 of this run”, or “the system
is deadlocked”. An interpreted system I consists of a pair (R, x), where R is a system
and 7 is an interpretation for the propositions in ® which assigns truth values to the
primitive propositions at the global states. Thus, for every p € ® and global state s that
arises in R, we have 7 (s)(p) € {true, false}. Of course, = induces also an interpretation
over the points of R; simply take x(r,m) to be x(r(m)). We refer to the points of the
system R as points of the interpreted system Z. That is, we say that the point (r,m) is
in the interpreted system 7 = (R, ) if r € R.

We can associate with an interpreted system 7 = (R, ) a Kripke structure M7 =
(S,7,Kq,...,K,) in a straightforward way: We take S to consist of the points in Z. We
define K; so that ((r,m),(r',m’)) € K, if r;(m) = ri(m’). Clearly K; is an equivalence
relation on points. Intuitively, agent ¢ considers a point (', m’) possible at a point (r,m)
if ¢ has the same local state at both points. Thus, the agents’ knowledge is completely



determined by their local states.

We can now define what it means for a formula ¢ to be true at a point (r,m) in an
interpreted system Z, written (Z,r,m) = ¢, by applying our earlier definitions:

(Iv T,m) = iff (MI7 (r,m)) = .

We remark that we can also reason about time in interpreted systems. That is, we
can enrich the logic so that it contains temporal modal operators such as O and < and
give them analogous definitions to those given in van Benthem’s chapter in this Volume.
For example, Oy is true at a point if ¢ is true at that point and at all later points:

(Z,r,m) E Op iff (Z,r,m’) E ¢ for all m' > m.

In general, temporal operators are used for reasoning about events that happen along
a single run. By combining temporal and knowledge operators, we can make assertions
about the evolution of knowledge in the system.

This particular way of capturing knowledge in distributed systems is taken from
[Halpern and Fagin 1989]. Slight variants of it have been used in most of the papers that
attempt to define formal models for knowledge in distributed systems, such as [Chandy
and Misra 1986; Fischer and Immerman 1986; Halpern and Moses 1990; Parikh and Ra-
manujam 1985]. Interestingly, essentially the identical notion of knowledge was developed
independently by Rosenschein and his coworkers (cf. [Rosenschein 1985; Rosenschein and
Kaelbling 1986]) and used for describing and analyzing situated automata in AT applica-
tions.

Note that in this model, knowledge is an “external” notion. We don’t imagine a
process scratching its head wondering whether or not it knows a certain fact ¢. Rather,
a programmer reasoning about a particular protocol would say, from the outside, that the
process knows ¢ because in all global states consistent with its current state (intuitively,
all the global states that the process could be in, for all it knows) ¢ is true. This
notion of knowledge is information based, and does not take into account, for example,
the difficulty involved in computing knowledge. Nor could a process necessarily answer
questions based on its knowledge, with respect to this definition of knowledge. So on
what basis can we even view this as knowledge?

There are two reasonable answers to this question. The first is that it corresponds to
one common usage of the word. When trying to prove properties such as lower bounds on
the number of rounds required to complete a given protocol, the kinds of arguments that
one often hears have the form “We can’t stop after only three rounds, because process 1
might not know that process 2 knows that process 3 is faulty.” Now this informal use of
the word “know” is exactly captured by the definition above. Let ¢ say that process 2
knows that process 3 is faulty. Then process 1 doesn’t know @ exactly if there is a global
state of the system that process 1 cannot distinguish from the actual state where ¢ does
not hold; i.e., where process 2 doesn’t know that process 3 is faulty.



The second answer is that this notion gives us a useful formalization of our intuitions,
one that gives us important insights into the design and verification of distributed pro-
tocols. A good illustration of this is the coordinated attack problem, from the distributed
systems folklore [Gray 1978]. The following presentation is taken from [Halpern and
Moses 1990]:

Two divisions of an army are camped on two hilltops overlooking a common
valley. In the valley awaits the enemy. It is clear that if both divisions
attack the enemy simultaneously they will win the battle, whereas if only one
division attacks it will be defeated. The generals do not initially have plans
for launching an attack on the enemy, and the commanding general of the
first division wishes to coordinate a simultaneous attack (at some time the
next day). Neither general will decide to attack unless he is sure that the
other will attack with him. The generals can only communicate by means
of a messenger. Normally, it takes the messenger one hour to get from one
encampment to the other. However, it is possible that he will get lost in the
dark or, worse yet, be captured by the enemy. Fortunately, on this particular
night, everything goes smoothly. How long will it take them to coordinate an
attack?

Suppose the messenger sent by General A makes it to General B with a message
saying “Let’s attack at dawn”. Will general B attack? Of course not, since General
A does not know he got the message, and thus may not attack. So General B sends
the messenger back with an acknowledgement. Suppose the messenger makes it. Will
General A attack? No, because now General B does not know that General A got the
message, so General B thinks General A may think that he (B) didn’t get the original
message, and thus not attack. So A sends the messenger back with an acknowledgement.
But of course, this is not enough either.

In terms of knowledge, each time the messenger makes a transit, the depth of the
generals’ knowledge increases by one. Suppose we let the primitive proposition m stand
for “A message saying ‘Attack at dawn’ was sent by General A.” When General B
gets the message, Kgm holds. When A gets B’s acknowledgment, K4 Kgm holds. The
next acknowledgment brings us to KgK4Kgm. Although more acknowledgments keep
increasing the depth of knowledge, it is not hard to show that by following this protocol,
the generals never attain common knowledge that the attack is to be held at dawn.

What happens if the generals use a different protocol? That does not help either. As
long as there is a possibility that the messenger may get captured or lost, then common
knowledge is not attained, even if the messenger in fact does deliver his messages. It
would take us too far afield here to completely formalize these results (see [Halpern and
Moses 1990] for details), but we can give a rough description. We say a system R displays
unbounded message delays if, roughly speaking, whenever there is a run r € R such that
process ¢ receives a message at time m in r, then for all m’ > m, there is another run r’
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that is identical to r up to time m except that process : receives no messages at time m,
and no process receives a message between times m and m/'.

Theorem 3.1: [Halpern and Moses 1990] In any run of a system that displays unbounded
message delays, it can never be common knowledge that a message has been delivered.

This says that no matter how many messages arrive, we cannot attain common knowl-
edge of message delivery. But what does this have to do with coordinated attack? The
fact that the generals have no initial plans for attack means that in the absence of mes-
sage delivery, they will not attack. Since it can never become common knowledge that
a message has been delivered, and message delivery is a prerequisite for attack, it is not
hard to show that it can never become common knowledge among the generals that they
are attacking. More precisely, let attack be a primitive proposition that is true precisely
at points where both generals attack.

Corollary 3.2: In any run of a system that displays unbounded message delays, it can
never be common knowledge among the generals that they are attacking; i.e., if G consists
of the two generals, then Cg(attack) never holds.

We still do not seem to have dealt with our original problem. What is the connection
between common knowledge of an attack and coordinated attack? As the following
theorem shows, it is quite deep. Common knowledge is a prerequisite for coordination
in any system for coordinated attack, that is, in any system which is the set of runs of a
protocol for coordinated attack.

Theorem 3.3: [Halpern and Moses 1990] In any system for coordinaled altack, when
the generals attack, it is common knowledge among the generals that they are attacking.
Thus, tf T is an interpreted system for coordinated attack, and G consists of the two
generals, then at every point (r,m) of I, we have

(Z,r,m) | attack = Cg(attack).
Putting together Corollary 3.2 and Theorem 3.3, we get

Corollary 3.4: In any system for coordinated attack that displays unbounded message
delays, the generals never attack.

This result shows not only that coordinated attack is impossible (a fact that was well
known [Yemini and Cohen 1979]), but why it is impossible. The problem is due to an
unattainability of common knowledge in certain types of systems.

In fact, as results of Halpern and Moses [1990] show, common knowledge is unattain-
able in a much wider variety of circumstances. Roughly speaking, common knowledge
is not attainable whenever there is any uncertainty whatsoever about message delivery
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time. Common knowledge can be attained in “idealized” systems where we assume, for
example, that events can be guaranteed to take place simultaneously. However, in the
more common less-than-ideal systems, common knowledge is not attainable. Given that
we also showed that common knowledge is a prerequisite for agreement, we seem to have
something of a paradox here. After all, we often do reach agreement (or seem to!). Do
we in fact get common knowledge, despite the results that say we can not?

Two solutions to the paradox are suggested in [Fagin, Halpern, Moses, and Vardi
1995b; Halpern and Moses 1990]. The first involves a number of variants of common
knowledge that are attainable under reasonable assumptions, and may suffice in practice.
For example, we can consider a temporal variant called e-common knowledge, which
essentially says that “within € time units everyone knows that within € time units everyone
knows that ...” Just as common knowledge corresponds to simultaneous coordination, e
common knowledge corresponds to coordinating to within € time units. Further discussion
of variants of common knowledge can be found in [Dwork and Moses 1990; Fischer and
Immerman 1986; Fagin and Halpern 1994; Halpern and Moses 1990; Halpern, Moses, and
Waarts 1990; Moses and Tuttle 1988; Neiger and Toueg 1993; Panangaden and Taylor
1992].

This approach still does not explain the pervasive feeling that we do (occasionally)
attain common knowledge. The second approach attempts to deal with this issue. It is
based on the observation that whether or not we get common knowledge depends on the
granularity at which we model time. For example, suppose Alice and Bob are having a
conversation, and Alice sneezes. Is it common knowledge that Alice has sneezed? If we
model the situation in such a way that Alice and Bob perceive the sneeze simultaneously,
then indeed there is common knowledge of the sneeze. If we take a more fine-grained
model of time, where we take into account how long it takes for the information about
the sneeze to be processed, and only say that Bob perceives that Alice has sneezed when
he has processed this information, then not only is it unlikely that Alice and Bob perceive
the sneeze simultaneously, but it should be clear that Alice has some uncertainty as to
when Bob will perceive the sneeze. We can identify “the time required to perceive the
sneeze” with “the message delivery time” in our earlier discussion. The fact that there is
some uncertainty in the time required to perceive the sneeze again means that common
knowledge of the sneeze is unattainable (no matter how small the uncertainty is!).

When we try to model real-world events, we often use a coarse-grained model of time.
For example, when modeling distributed systems, we often assume that events occur in
rounds, where a round provides sufficient time for a message to be sent by one process
and received by its intended recipient, as well as time for some local computation. Is it
reasonable to use a coarse-grained model of time? It depends. More precisely, assume
that we are trying to show that a situation satisfies some property, or specification, o. We
have (at least) two ways of modeling the situation; one results in a coarse-grained system
(i.e., one using a coarse-grained notion of time), the other in a fine-grained system. It
is reasonable to use the coarse-grained system if ¢ holding in the coarse-grained system
also implies that it holds in the fine-grained system. That is, it is safe to use a coarse-
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grained system if it does not lead us astray, as far as the specifications of interest go. If
in fact Alice and Bob perceive the sneeze within several milliseconds of each other, then
using the coarse-grained system (i.e., acting as if the coarse-grained system is a correct
model of the world) is safe, provided that coordination to within several milliseconds is
acceptable. Typically it is. For some specifications, it may not be.

This clearly is a special case of a more general issue: When is a particular model an
accurate model of reality? There are very few general results along these lines; it is a
topic that deserves further investigation. See [Fagin, Halpern, Moses, and Vardi 1995b;
Neiger 1988] for some further discussion.

The analysis of the coordinated attack problem shows the power of a knowledge-based
approach to understanding distributed protocols. Numerous other papers have carried
out knowledge-based analyses of protocols (for example, [Chandy and Misra 1986; Dwork
and Moses 1990; Hadzilacos 1987; Halpern, Moses, and Tuttle 1988; Halpern, Moses,
and Waarts 1990; Halpern and Zuck 1992; Mazer and Lochovsky 1990; Mazer 1990;
Moses and Roth 1989; Moses and Tuttle 1988; Neiger and Toueg 1993; Panangaden and
Taylor 1992]; an overview of the earlier work can be found in [Halpern 1987]). These
papers suggest that the knowledge-based approach can indeed give useful insights. In
cases where simultaneous agreement is required, as in some variants of the well-studied
Byzantine agreement problem [Dolev and Strong 1982; Pease, Shostak, and Lamport
1980], common knowledge again turns out to play a key role (see [Dwork and Moses
1990; Moses and Tuttle 1988]). In eventual Byzantine agreement, where simultaneity is
not required, it turns out that a variant of common knowledge characterizes the level
of knowledge that is required [Halpern, Moses, and Waarts 1990]. For other protocols,
common knowledge (or one of its variants) is not required; depth two knowledge (A
knows that B knows) or depth three knowledge (A knows that B knows that A knows)
may suffice [Hadzilacos 1987; Halpern and Zuck 1992; Mazer 1990]. It would be of great
interest to have a deeper understanding of the level of knowledge required for various
classes of problems; this may help us gain a better understanding of protocol design.

4 The problem of logical omniscience

The model of knowledge described in Section 2 gives rise to a notion of knowledge that
seems to require that agents possess a great deal of reasoning power, since they know all
the consequences of their knowledge and, in particular, they know all tautologies. Thus,
the agents can be described as logically omniscient. While this notion of knowledge has
been shown to be useful in a number of applications, it is clearly not always appropriate,
particularly when we want to represent the knowledge of a resource-bounded agent.
What is an appropriate notion of knowledge in this case? That may depend in part on
the context and the application. In this section we’ll consider a number of approaches to
dealing with what has been called the logical omniscience problem.

One approach that has frequently been suggested is the syntactic approach: what an
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agent knows is simply represented by a set of formulas [Eberle 1974; Moore and Hendrix
1979]. Of course, this set need not be constrained to be closed under logical consequence
or to contain all instances of a given axiom scheme. While this approach does allow us to
define a notion of knowledge that doesn’t suffer from the logical omniscience problem, by
using it, we miss out on many of the merits of a knowledge-based analysis. If knowledge
is represented by an arbitrary set of formulas, we have no structure or principles to guide
us in our analysis. A somewhat more sophisticated approach is taken by Konolige [1986],
who considers starting with a set of base facts, and then closing off under a (possibly
incomplete) set of deduction rules. But even here we lose the benefits of a good underlying
semantics.

A semantic analogue to the syntactic approach can be obtained by using Montague-
Scott structures [Montague 1960]. The idea here is that a formula corresponds to a set of
possible worlds (intuitively, the set of worlds where it is true). Rather than representing
what an agent knows by a set of formulas (syntactic objects), we represent what an agent
knows by a set of sets of possible worlds. Since each set of possible worlds corresponds
to a formula, the two approaches are similar in spirit. Formally, we take a Montague-
Scott structure to be a tuple M = (S,7,Cy,...,C,), where S is a set of possible worlds
and 7 defines a truth assignment at each possible world, just as in the case of a Kripke
structure, while C;(s) is a set of subsets of S for each s € S. We can now define |= for all
formulas. All clauses are the same as for Kripke structures, except in the case of formulas
of the form K;p. In this case we have

(M, s) | Kig iff {£](M,1) | ¢} € Ci(s).

Thus, agent ¢ knows ¢ if the set of possible worlds where ¢ is true is one of the sets of
worlds that he considers possible.

The Montague-Scott approach has a great deal of power; by putting appropriate con-
ditions on the sets C; we can capture many interesting properties of knowledge, without
committing to others. For example, agent ¢’s knowledge is closed under implication (that
is, (Kip N Ki(p = v)) = Ko is valid) if C;(s) is closed under supersets for each s € S
(that is, T € C;(s) and T' C T" implies T" € C;(s)). Similarly, agent ¢ knows all tautologies
if S € Ci(s) for all s € S. (See [Vardi 1989] for more details on the fine-tuning that is
possible with the Montague-Scott approach.) Since we do not require that C;(s) be closed
under supersets nor that it contain 5, the Montague-Scott approach does not suffer from
the major problems of logical omniscience. However, because it is a semantic approach,
it cannot avoid having the following property: if ¢ and 1 are equivalent, then so are K;¢
and K;b. An agent cannot distinguish logically equivalent formulas (even if they have
different syntactic structure). Thus, we have the following inference rule, which is sound
for Montague-Scott structures:

o From p = ¢ infer K,p = K;v.

Of course, whether this is a problem depends on the particular application one has in
mind.
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While the Montague-Scott and the syntactic approach have a great deal of expressive
power, one gains very little intuition about knowledge from these approaches. In these
approaches knowledge is a primitive construct (much like the primitive propositions in a
Kripke structure). Arguably, these approaches give us ways of representing knowledge,
rather than modeling knowledge. We now investigate a few approaches that retain the
flavor of the possible-worlds approach, yet still attempt to mitigate the logical omniscience
problem.

One approach is to base an epistemic logic on a nonstandard logic, rather than on clas-
sical logic. There are a number of well-known nonstandard logics, including intuitionistic
logic [Heyting 1956], relevance logic [Anderson and Belnap 1975], and the four-valued
logic of [Belnap 1977a; Belnap 1977h; Dunn 1986]. Typically, these logics attempt to
reformulate the notion of implication, to avoid some of the problems perceived with the
notion of material implication. For example, in standard logic, from a contradiction one
can deduce anything; the formula (p A =p) = ¢ is valid. However, consider a knowledge
base into which users enter data from time to time. As Belnap [1977b] points out, it
is almost certainly the case that in a large knowledge base, there will be some inconsis-
tencies. One can imagine that at some point a user entered the fact that Bob’s salary
is $50,000, while at another point, perhaps a different user entered the fact that Bob’s
salary is $60,000.

In [Fagin, Halpern, and Vardi 1990], a logic of knowledge is defined that is based
on a nonstandard propositional logic called NPL, which is somewhat akin to relevance
logic, and where, among other things, a formula such as (p A =p) = ¢ is no longer valid.
The possible worlds are now models of NPL. Agents are still logically omniscient, but
now they know only NPL tautologies, rather than classical tautologies. This has some
advantages. In particular, it can be shown that questions of the form “Does K;p logically
imply K;17”, where ¢ and @ are propositional formulas in conjunctive normal form, can
be decided in polynomial time (which is not the case for standard logics of knowledge).
This is an important subclass of formulas. If we view ¢ as representing the contents
of a knowledge base and ) as representing a query to the database, then it essentially
amounts to asking whether a knowledge base that knows ¢ also knows . Thus, under
this interpretation of knowledge, queries to a knowledge base of the form “Do you know
©?” can be decided quite efficiently (assuming ¢ is in conjunctive normal form).

Yet another approach has been called the impossible-worlds approach. The idea here
is that the possible worlds, where all the customary rules of classical logic hold, are
augmented by “impossible” worlds, where they do not [Cresswell 1973; Hintikka 1975;
Rantala 1982; Rescher and Brandom 1979; Wansing 1990]. For example, in an impossible
world, it may be the case that p A —p holds, while this cannot be the case in a possible
world. It is still the case that an agent knows ¢ if ¢ is true in all the worlds that he
considers possible, but now an agent may consider impossible worlds possible. Thus,
an agent may not know all tautologies of classical logic, since in some of the worlds he
considers possible (namely, the impossible worlds), these tautologies may not hold.

Although there are impossible worlds in a structure, when we consider what are the
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valid formulas in the impossible-worlds approach, we only consider the standard possible
worlds. The intuition here is that although the agent may be confused and consider
impossible worlds possible, we, the logicians looking at the situation from the outside,
know better.

There are many variants of the impossible-worlds approach, depending on how one
constructs the impossible worlds. One variant is considered by Levesque [1984b]. In
Levesque’s impossible worlds, a primitive proposition may be either true, false, both, or
neither. This also makes Levesque’s approach closely related to relevance logic and to the
logic NPL discussed above. Indeed, it can be shown that Levesque’s structures are essen-
tially equivalent to NPL structures. The only significant difference between Levesque’s
approach and that of [Fagin, Halpern, and Vardi 1990] is that Levesque considers only the
possible worlds—the ones that obey the laws of classical logic—when considering validity,
whereas in [Fagin, Halpern, and Vardi 1990], all worlds are considered. Just as in the
context of NPL, checking whether K;¢ logically implies K;% for propositional formulas
¢ and % in conjunctive normal form can be decided in polynomial time. (Indeed, this
result was first proved in [Levesque 1984b], and then adapted to NPL in [Fagin, Halpern,
and Vardi 1990].)

Levesque [1984b] restricts attention to depth one formulas, where there are no nested
occurrences of K’s. He also restricts to the case of a single agent. Lakemeyer [Lakemeyer
1987] has extended Levesque’s approach to more deeply nested formulas; his approach
can also be extended to deal with multiple agents. Patel-Schneider [1985] and Lakemeyer
[1986] have also considered extensions to the first-order case which attempt to preserve
decidability for a reasonable fragment of the logic.

Yet another approach to dealing with logical omniscienceis to have truth in all possible
worlds be a necessary but not sufficient condition for knowledge. Fagin and Halpern [1988]
take this approach. Their logic of general awareness is essentially a mixture of syntax
and semantics. It starts with a standard Kripke structure, and adds to each state a set
of formulas that the agent is “aware” of at that state. Now an agent (explicitly) knows
a formula ¢ at state s exactly if ¢ is true in all worlds the agent considers possible at s
and @ is one of the formulas the agent is aware of at s. Thus, an agent may not know a
tautology, even if it is true at all the worlds that he considers possible, simply because he
is not aware of it. Similarly, an agent who knows ¢ and ¢ = ¥ may not know % because
he is not aware of 1.

There are a number of different interpretations we can give the notion of awareness.
For example, we could say that an agent is aware of a formula if he is aware of all
the concepts involved in that formula. Perhaps the most interesting interpretation is a
computational one, where an agent is aware of a formula if he can figure out whether the
formula is true (perhaps using some specific algorithm) within a prespecified time bound.
Under this interpretation, the awareness set at state s would consist of those formulas
whose truth the agent can figure out given the information it has acquired at state s.

This interpretation has been investigated in the context of the model for multi-agent
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systems discussed in the previous section in work of Halpern, Moses, and Vardi [1994],
which in turn is based on earlier work of Moses [1988]. The key idea is to add to the
agent’s local state the algorithm that he is using to compute his knowledge. Thus, the
agent’s local state at a point (r,m) has the form (A, (), where A is his algorithm and
( is the rest of his local state. We call £ the local data. In local state (A, (), the agent
computes whether he knows ¢ by applying the local algorithm A to input (¢,f). The
output is either “Yes”, in which case ¢ is known to be true, “No”, in which case ¢ is
not known to be true, or “?”, which intuitively says that the algorithm has insufficient
resources to compute the answer. It is the last clause that allows us to deal with resource-
bounded reasoners. We can now augment the logic by introducing new modal operators
X;,1=1,...,n, for algorithmic knowledge, defined as follows:

(Z,r,m) = Xip iff A(p,l) = “Yes”, where r;(m) = (A, /).

Thus, agent ¢ has algorithmic knowledge of ¢ at a given point if the agent’s algorithm at
that point outputs “Yes” when presented with ¢ and with the agent’s local data. (Note
that both the outputs “No” and ? result in lack of algorithmic knowledge.)

This definition makes clear that computing whether an agent knows ¢ has nothing to
do in general with computing whether ¢ is valid. Rather, it is closely related to the model-
checking problem, that is, the problem of checking whether ¢ is true at a particular point
in a system [Halpern and Vardi 1991]. Because of this, the fact that checking validity
is PSPACE-complete in multi-agent S5 [Halpern and Moses 1992] does not indicate that
computing knowledge in any particular situation will necessarily be hard. See [Halpern
and Vardi 1991] for further discussion of this point.

As defined, there is no necessary connection between X;p and K;p. An algorithm
could very well claim that agent ¢ knows ¢ (i.e., output “Yes”) whenever it chooses to,
including at points where K;¢ does not hold. Although algorithms that make mistakes
are common, we are often interested in local algorithms that are correct. We say that
a local algorithm is sound for agent ¢ in the system Z if for all points (r,m) of 7 and
formulas @, if r;(m) = (A, (), then (a) A(p,l) = “Yes” implies (Z,r,m) E K;p, and (b)
A(p,0) = “No” implies (Z,r,m) E = K;p. Thus, alocal algorithm is sound if its answers
are always correct. A local algorithm A is called complete for agent ¢ in the system 7 if for
all points (r,m) of Z and all formulas ¢, if r;(m) = (A, (), then A(p,l) € {“Yes”, “No” }.
Thus, a local algorithm is complete if it always gives a definite answer. Notice that at a
point where agent ¢ uses a sound and complete local algorithm, X;p < K;p holds. If we
restrict attention to sound algorithms, then algorithmic knowledge fits into the general
awareness framework of Fagin and Halpern [1988]: the agent can be viewed as being
aware of p at a given point precisely if her local algorithm returns “Yes” on input ¢ at
that point.

A number of earlier efforts to solve the logical omniscience problem can be embedded
easily into the framework of algorithmic knowledge. The approach of Konolige mentioned
above provides one example. Recall that in Konolige’s approach, an agent knows precisely
the formulas in the set that is obtained by starting with a base set and closing off under a
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(possibly incomplete) set of deduction rules. In the framework of algorithmic knowledge,
the base set of formulas would be part of the agent’s local data, while the formal system
would characterize her local algorithm.

For another example, consider Levesque’s impossible-worlds approach. Levesque is
mainly interested in modeling a knowledge base KB that is told a number of facts. This
can be modeled in the framework of multiagent systems by having a Teller and a KB as
agents. The KB’s local data at a given point is the sequence of facts it has been told.
If we assume that these facts are all propositional and that they describe an unchanging
world, then we can identify this sequence with the formula k consisting of the conjunction
of what it has been told. When asked a query ¢ in state &, for k and ¢ in CNF, suppose
we assume that the KB’s local algorithm is to test whether K'x = K¢ is valid under
Levesque’s semantics (or, equivalently, in the approach based on NPL used in [Fagin,
Halpern, and Vardi 1990]). If it is, the algorithm outputs “Yes”, otherwise it outputs
“?”. As we mentioned above, this can be done in polynomial time. By Levesque’s results,
this algorithm is sound, but not complete (even for formulas in CNF).

5 Knowledge, communication, and action

Implicit in much of the previous discussion has been the strong relationship between
knowledge, communication, and action. Indeed, much of the motivation for studying
knowledge by researchers in all areas has been that of understanding the knowledge
required to perform certain actions, and how that knowledge can be acquired through
communication. This is a vast area; we briefly review some recent trends here.

Early work of McCarthy and Hayes [1969] argued that a planning program needs to
explicitly reason about its ability to perform an action. Moore [1985] took this one step
further by emphasizing the crucial relationship between knowledge and action. Knowl-
edge is necessary to perform actions, and new knowledge is gained as a result of per-
forming actions. Moore went on to construct a logic with possible-worlds semantics that
allows explicit reasoning about knowledge and action, and then considered the problem
of automatically generating deductions within the logic. This work has been extended by
Morgenstern [1986]; she views “know” as a syntactic predicate on formulas rather than
a modal operator.

Another issue that has received a great deal of attention recently is the relationship
between knowledge and communication. Levesque [1984a] considered this from the point
of view of a knowledge base that could interact with its domain via TELL and ASK
operations. He showed, somewhat surprisingly, that the result of TELLing a knowledge
base an arbitrary sentence in a first-order logic of knowledge is always equivalent to the
result of T K LLing it a purely first-order sentence (i.e. one without any occurrences of
K). It is worth remarking here that it is crucial to Levesque’s result that there is only
one knowledge base, i.e. one agent, in the picture.

Characterizing the states of knowledge that result after communication is also sur-
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prisingly subtle. One might think, for example, that after telling someone a fact p he
will know p (at least, if it is common knowledge that the teller is honest). But this is not
true. For example, consider the sentence “p is true but you don’t know it”. When told
to agent ¢, this would be represented as p A =K;p. Now this sentence might be perfectly
true when it is said. But after ¢ is told this fact, it is not the case that K;(p A =K;p)
holds. In fact, this latter formula is provably inconsistent! It is the case, though, that i
knows that p A =K;p was true before, although it is no longer true now.

Even if we do not allow formulas that refer to knowledge, there are subtleties in
characterizing the knowledge of an agent. Consider the following example from [Fagin,
Halpern, and Vardi 1991]. Suppose that Alice has been told only one fact: the primitive
proposition p. Intuitively, all she knows i1s p. Since we are assuming ideal agents, Alice
also knows all the logical consequences of p. But is this all she knows? Suppose ¢ is
another primitive proposition. Surely Alice doesn’t know ¢, i.e. =K q holds. But we
assume Alice can do perfect introspection, so that she knows about her lack of knowledge
of gq. Thus K4—K 4q holds. But this means that even if “all Alice knows is p”, then she
also knows =K 4q, which is surely not a logical consequence of p! The situation can get
even more complicated if we let Bob into the picture. For then Alice knows that Bob
doesn’t know that Alice knows ¢. (How can he, since in fact she doesn’t know ¢, and Bob
does not know false facts.) And knowing that Bob can also do perfect introspection, Alice
knows that Bob knows this fact; i.e., K4Kp—KgK 4 ¢ holds! Thus, despite her limited
knowledge, Alice knows a nontrivial fact about Bob’s knowledge. (See [Fagin, Halpern,
and Vardi 1991; Halpern 1993b; Halpern and Moses 1984; Lakemeyer 1993; Lakemeyer
and Levesque 1988; Levesque 1990; Parikh 1991; Stark 1981] for further discussion of
these points.) Part of the difficulty here is due to negative introspection, i.e., the fact
that one has knowledge about one’s own lack of knowledge. If we remove this feature from
our model (i.e., discard axiom A5), then some of the subtleties disappear (cf. [Halpern

1993b; Vardi 1985]).

One approach that might go a long way to clarifying some of these problems is to use
the semantic model of multi-agent systems discussed in Section 3. Rather than describing
an agent’s knowledge as a collection of formulas, we instead describe (the runs of) the
protocol by which the agent acquires knowledge. As we mentioned earlier, Levesque’s
knowledge base can then be modeled as an agent in such a system, in which the Teller is
another agent. As shown by Fagin, Halpern, Moses, and Vardi [1995a, 1995b], such an
approach can be used to capture aspects of knowledge bases more elegantly and concisely
than the traditional axiomatic approach, and can help clarify some of the subtleties
discussed above.

6 Knowledge and probability

In many of the application areas for reasoning about knowledge, it is important to be able
to reason about the probability of certain events as well as the knowledge of agents. This
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arises in distributed systems, since we want to analyze randomized or probabilistic pro-
grams. In game theory and economics, researchers typically want to assume that agents
have priors on certain events and make their decisions accordingly. Indeed, although
researchers in economics and game theory did not use a logical language with operators
for probability, probability has explicitly appeared in their framework all along, going
back to the papers of Aumann [1976] and Mertens and Zamir [1985].

It seems straightforward to add probability into the framework that we have devel-
oped. As far as syntax goes, we can add statements such as Pr;(¢) = 1/2 (according to
agent 7, the probability that ¢ holds is 1/2), and then close off under knowledge oper-
ators, to allow formulas such as K;K;(Pri(¢) = 1/2) (this syntax is taken from [Fagin
and Halpern 1994]). In order to be able to decide if a formula such as Pr;(¢) = 1/2 is
true at a state s, the obvious approach would be to put a probability on the set of worlds
that agent ¢ considers possible at s (where the exact probability used would depend on
agent ¢’s prior, or some information contained in the problem statement).

The difficulty comes in deciding what probability space agent z should use. This
seems like it should be straightforward. A structure already tells us which worlds agent
¢ considers possible at state s. All that remains is to make this uncertainty a little
more quantitative, by assigning a probability to each of the worlds that agent ¢ considers
possible in such a way that the probabilities add up to 1. To see that the situation is not
quite so straightforward, consider the following example, taken from [Fagin and Halpern

1994]:

Suppose we have two agents. Agent 2 has an input bit, either 0 or 1. He
then tosses a fair coin, and performs an action a if the coin toss agrees with
the input bit, i.e., if the coin toss lands heads and the input bit is 1, or if the
coin lands tails and the input bit is 0. We assume that agent 1 never learns
agent 2’s input bit or the outcome of his coin toss. An easy argument shows
that according to agent 2, who knows the input bit, the probability (before
he tosses the coin) of performing action a is 1/2. There is also a reasonable
argument to show that, even according to agent 1 (who does not know the
input bit), the probability that the action will be performed is 1/2. Clearly,
from agent 1’s viewpoint, if agent 2’s input bit is 0, then the probability that
agent 2 performs action a is 1/2 (since the probability of the coin landing
heads is 1/2); similarly, if agent 2’s input bit is 1, then the probability of
agent 2 performing action a is 1/2. Thus, no matter what agent 2’s input
bit, the probability according to agent 1 that agent 2 will perform action a
is 1/2. It seems reasonable to conclude that agent 1 knows that the a priori
probability of agent 2 performing action a is 1/2. Note that we do not need
to assume a probability distribution on the input bit for this argument to
hold. Indeed, it holds independent of the probability distribution, and even
if there is no probability distribution on the input bit.

Now suppose we want to capture this argument in our formal system. From agent 1’s
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point of view, there are four possibilities: (0, k), (0,%),(1,4),(1,%) (the input bit was 0
and the coin landed heads, the input bit was 0 and the coin landed tails, etc.). We can
view these as the possible worlds or states in a Kripke structure. Call them sy, s9, s3,
and sy respectively; let S be the set consisting of all four states. Assume that we have
primitive propositions A, H, T', By, and B; in the language, denoting the events that
action a is performed, the coin landed heads, the coin landed tails, agent 2’s input bit is
0, and agent 2’s input bit is 1. Thus H is true at states s; and sz, A is true at states
sy and s3, and so on. Now suppose we try to put a probability space on S. It is clear
that the event “heads”, which corresponds to the set {s1, s3}, should get probability 1/2;
similarly the set {sy,s4} should get probability 1/2. On the other hand, there is no
natural probability we can assign to the set {s1, sy}, since this set corresponds to the
event “the input bit is 0”7, an event for which we do not have a probability.

In order to capture our informal argument, we can instead split up S into two separate
probability spaces, say Sg and Sy, where Sy consists of the points s; and s, while 5y
consists of the points s3 and s4. Intuitively, S; is the conditional space resulting from
conditioning on the event “the input bit is :”. We can view 5; as a probability space in
the obvious way; for example, in Sg, we give each of the points s; and s, probability 1/2.
In each of Sy and Sy, the probability of the event A is 1/2. For example, in S, the event
A holds at the point sy, which has probability 1/2. The fact that A has probability 1/2 in
each of Sy and 57 corresponds to our informal argument that, no matter what the input
bit is (even if agent 1 does not know the input bit), the probability of A is 1/2. Once we
split up S into two subspaces in this way, the statement Pri(A) = 1/2 holds at all four
points in S, and thus K;(Pri(A) = 1/2) holds: agent 1 knows that the probability of A
is 1/2.

While dividing up 5 into two subspaces in this way captures our informal argument, it
leads to an obvious question: What makes this the right way to divide S into subspaces?
Suppose instead we had divided S into four subspaces T4, ..., Ty, where T; is the singleton
{s;}. When we view T; as a probability space in the obvious way, the point s; must
have probability 1. With this choice of subspaces, Pri(A) = 1 is true at the points s,
and s3, and Pr(A) = 0 is true at the points s; and s4. Thus, all we can conclude is
Ki(Pri(A) =0V Pri(A) =1). The agent knows that the probability of A is either 0 or
1.

Notice that there is a reasonable interpretation that we can give to the choice of
Ty,...,Ty. Before the coin is tossed, the agent can argue that the probability of A is
1/2. What about after the coin has been tossed? There is one school of thought that
would argue that after the coin has been tossed, A has been decided one way or another.
Its probability is either 0 or 1, although agent 1 does not know which it is. From this
point of view, dividing S into Sy and 57 captures the situation before the coin toss, while
dividing 1t into T4, ..., Ty captures the situation after the coin toss. It is not a question
of which is right or wrong; both choices are appropriate, but capture different situations.

This issue is studied in a more general setting by Halpern and Tuttle [1993]. The
argument there is that different partitions of the set of possible worlds into subspaces cor-
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respond to playing against different adversaries, with different knowledge. For example,
the partition T4, ..., Ty corresponds in a precise sense to playing against an adversary
that knows the outcome of the coin toss, while the partition Sy, S7 corresponds to playing
an adversary that does not know the outcome. This point of view allows us to clarify
some important philosophical issues regarding the distinction between probability and
nondeterminism, as well as providing us with a means of analyzing randomized protocols.

7 Other work and further directions

I have discussed what I see as many of the most important trends in research on rea-
soning about knowledge but, as I mentioned in the introduction, this is by no means a
comprehensive survey. Let me briefly mention a few other topics that were neglected
above due to lack of space.

e Using epistemic logics to better understand aspects of nonmonotonicity: see, for
example, [Lin and Shoham 1990; Moses and Shoham 1993; Shoham 1988]. For
further details see Konolige’s chapter in Volume 3 of this Handbook.

e Connections between epistemic logics and zero-knowledge proofs [Goldwasser, Mi-
cali, and Rackoff 1989]: In a zero-knowledge proof, a prover tries to convince a
verifier of a certain fact (such that a particular number n is composite) without re-
vealing any additional information (such as the factors of n). To make this precise,
we need to invoke notions of computability and probability (since there is allowed
to be a small probability of error). These notions can be formalized in epistemic
logic by combining the resource-bounded approach of [Moses 1988; Halpern, Moses,
and Vardi 1994] with the logic of probability and knowledge of [Fagin and Halpern
1994]; see [Halpern, Moses, and Tuttle 1988] for details.

e Reasoning about knowledge/belief change over time: since the framework for multi-
agent systems described in Section 3 has time explicitly built in, it provides a
useful tool for studying how knowledge evolves over time. There are a number of
assumptions that one can make about how knowledge changes. This assumption
can be easily captured in the framework, although it makes formal reasoning about
knowledge and time far more complex [Halpern and Vardi 1988; Halpern and Vardi
1989]. As shown by Friedman and Halpern [1994a], this framework is also well-
suited to the study of belief change, in the spirit of the discussion in Gardenfors and
Rott’s chapter in this Volume. The first step in this approach is to add a plausibility
ordering to the system. Then an agent is said to believe ¢ if he knows that ¢ is true
in all the most plausible worlds (according to the plausibility ordering). Plausibility
can be viewed as a qualititative analogue of probability, so many of the issues
that arose in the discussion of knowledge and probability in Section 6 arise again
here. Friedman and Halpern [1994b] show that this framework can capture the two
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best-studied notions of belief change—belief revision [Alchourrén, Gardenfors, and
Makinson 1985] and belief update [Katsuno and Mendelzon |—in a straightforward
way. All this can be viewed as further evidence that there are fruitful connections
between the notions of knowledge, belief, probability, and plausibility, and that
these can all be usefully studied in one framework.

o Knowledge-based programming: One of the great advances in computer science
was the introduction of high-level programming languages. The goal is to allow a
programmer to write a program by saying “what she wants”, rather than painfully
describing “how to compute what she wants”. Since actions are often based on
knowledge, we might want to allow a programming language to have explicit tests
for knowledge, so that an agent’s actions can depend on what he knows. The
analyses of [Dwork and Moses 1990; Halpern and Zuck 1992; Moses and Tuttle 1988;
Halpern, Moses, and Waarts 1990] suggest that such knowledge-based programs do
indeed provide a high-level way to describe the relationship between knowledge and
action. Halpern and Fagin [1989] provide a formal semantics for knowledge-based
protocols, which is further refined in [Fagin, Halpern, Moses, and Vardi 1995b].
We are still a long way from having a full-fledged knowledge-based programming
language, where the details of how the knowledge is computed are invisible to the
programmer, but the possibility is tantalizing. The agent-oriented programming
approach suggested by Shoham [1993] can be viewed as a first step along these
lines.

Research is currently proceeding in all these areas, as well as the ones mentioned
earlier in this article. In earlier overview articles [Halpern 1986a; Halpern 1987; Halpern
1993a], I concluded with suggestions for areas where further research needed to be done.
The bibliography of this survey is testimony to the progress that has been made since
these overviews were written. Nevertheless, there is much more that could be done. In
particular, it seems to me that there are three areas where further research could lead to
major progress:

e Analyzing more protocols using tools of knowledge. It would be particularly in-
teresting to see if thinking in terms of adversaries can give us further insight into
randomized protocols. Having a larger body of examples will enable us to further
test and develop our intuitions.

o Getting more realistic models of knowledge, that incorporate resource-bounded
reasoning, probability, and the possibility of errors.

o Getting a deeper understanding of the interplay between various modes of reasoning
under uncertainty. I mentioned above the fruitful connections between knowledge,
belief, probability, and plausibility. There is undoubtedly much more work to be
done in getting a better understanding of the interplay between these notions.
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I am optimistic that the next five years will bring us a deeper understanding of all these
issues.

Acknowledgments: The presentation of the ideas in this paper owes a great deal to
discussions with Ron Fagin, Yoram Moses, and Moshe Vardi in the context of writing a
book on reasoning about knowledge [Fagin, Halpern, Moses, and Vardi 1995b].

References

Alchourrén, C. E., P. Gardenfors, and D. Makinson (1985). On the logic of theory
change: partial meet functions for contraction and revision. Journal of Symbolic

Logic 50, 510-530.
Anderson, A. and N. D. Belnap (1975). Entailment: The Logic of Relevance and Ne-

cessity. Princeton, N.J.: Princeton University Press.
Aumann, R. J. (1976). Agreeing to disagree. Annals of Statistics /(6), 1236-1239.

Barwise, J. and J. Perry (1983). Situations and Attitudes. Cambridge, Mass.: Bradford
Books.

Belnap, N. D. (1977a). How a computer should think. In Contemporary Aspects of
Philosophy, pp. 30-56. Oriel Press.

Belnap, N. D. (1977b). A useful four-valued logic. In G. Epstein and J. M. Dunn (Eds.),
Modern Uses of Multiple-Valued Logic, pp. 5-37. Dordrecht, Netherlands: Reidel.

Brandenburger, A. (1989). The role of common knowledge assumptions in game theory.
In F. Hahn (Ed.), The Economics of Information, Games, and Missing Markets.
Oxford, U.K.: Oxford University Press.

Chandy, K. M. and J. Misra (1986). How processes learn. Distributed Computing 1(1),
40-52.

Clark, H. H. and C. R. Marshall (1981). Definite reference and mutual knowledge. In
A. K. Joshi, B. L. Webber, and 1. A. Sag (Eds.), Elements of discourse understand-
ing. Cambridge, U.K.: Cambridge University Press.

Cresswell, M. J. (1973). Logics and Languages. London: Methuen and Co.

Dolev, D. and H. R. Strong (1982). Requirements for agreement in a distributed system.
In H. J. Schneider (Ed.), Distributed Data Bases, pp. 115-129. Amsterdam: North-
Holland.

Dunn, J. M. (1986). Relevance logic and entailment. In D. Gabbay and F. Guenthner
(Eds.), Handbook of Philosophical Logic, Vol. III, pp. 117-224. Dordrecht, Nether-
lands: Reidel.

Dwork, C. and Y. Moses (1990). Knowledge and common knowledge in a Byzantine
environment: crash failures. Information and Computation 88(2), 156-186.

24



Eberle, R. A. (1974). A logic of believing, knowing and inferring. Synthese 26, 356-382.
Fagin, R. (Ed.) (1994). Theoretical Aspects of Reasoning aboult Knowledge: Proc. Fifth

Conference. San Francisco, Calif.: Morgan Kaufmann.

Fagin, R. and J. Y. Halpern (1988). Belief, awareness, and limited reasoning. Artificial
Intelligence 34, 39-76.

Fagin, R. and J. Y. Halpern (1994). Reasoning about knowledge and probability. Jour-
nal of the ACM /1(2), 340-367.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995a). Knowledge-based pro-
gramming. In Proc. 14th ACM Symp. on Principles of Distributed Computing, pp.
153-163. A longer version appears IBM Technical Report RJ 9711.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995b). Reasoning about Knowl-
edge. Cambridge, Mass.: MIT Press.

Fagin, R., J. Y. Halpern, and M. Y. Vardi (1990). A nonstandard approach to the
logical omniscience problem. In R. Parikh (Ed.), Theoretical Aspects of Reasoning
about Knowledge: Proc. Third Conference, pp. 41-55. San Francisco, Calif.: Morgan
Kaufmann. To appear in Artificial Intelligence.

Fagin, R., J. Y. Halpern, and M. Y. Vardi (1991). A model-theoretic analysis of knowl-
edge. Journal of the ACM 91(2), 382-428. A preliminary version appeared in
Proc. 25th IEEE Symposium on Foundations of Computer Science, 1984.

Fischer, M. J. and N. Immerman (1986). Foundations of knowledge for distributed
systems. In J. Y. Halpern (Ed.), Theoretical Aspects of Reasoning about Knowledge:
Proc. 1986 Conference, pp. 171-186. San Francisco, Calif.: Morgan Kaufmann.

Friedman, N. and J. Y. Halpern (1994a). A knowledge-based framework for belief
change. Part I: foundations. In R. Fagin (Ed.), Theoretical Aspects of Reasoning
about Knowledge: Proc. Fifth Conference, pp. 44—64. San Francisco, Calif.: Morgan
Kaufmann.

Friedman, N. and J. Y. Halpern (1994b). A knowledge-based framework for belief
change. Part II: revision and update. In J. Doyle, E. Sandewall, and P. Torasso
(Eds.), Principles of Knowledge Representation and Reasoning: Proc. Fourth In-
ternational Conference (KR ’94), pp. 190-201. San Francisco, Calif.: Morgan Kauf-
mann.

Geanakoplos, J. and H. Polemarchakis (1982). We can’t disagree forever. Journal of
FEconomic Theory 28(1), 192-200.

Gettier, E. (1963). Is justified true belief knowledge? Analysis 23, 121-123.

Goldwasser, S., S. Micali, and C. Rackoff (1989). The knowledge complexity of inter-
active proof systems. STAM Journal on Computing 18(1), 186-208.

Gray, J. (1978). Notes on database operating systems. In R. Bayer, R. M. Graham,
and G. Seegmuller (Eds.), Operating Systems: An Advanced Course, Lecture Notes

25



in Computer Science, Vol. 66. Berlin/New York: Springer-Verlag. Also appears as
IBM Research Report RJ 2188, 1978.

Hadzilacos, V. (1987). A knowledge-theoretic analysis of atomic commitment protocols.
In Proc. 6th ACM Symp. on Principles of Database Systems, pp. 129-134. A revised
version has been submitted for publication.

Halpern, J. Y. (1986a). Reasoning about knowledge: an overview. In J. Y. Halpern
(Ed.), Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Conference,
pp. 1-17. San Francisco, Calif.: Morgan Kaufmann. Reprinted in Proc. National
Computer Conference, 1986, pp. 219-228.

Halpern, J. Y. (Ed.) (1986b). Theoretical Aspects of Reasoning about Knowledge:

Proc. 1986 Conference. San Francisco, Calif.: Morgan Kaufmann.

Halpern, J. Y. (1987). Using reasoning about knowledge to analyze distributed systems.
In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson (Eds.), Annual
Review of Computer Science, Vol. 2, pp. 37-68. Palo Alto, Calif.: Annual Reviews
Inc.

Halpern, J. Y. (1993a). Reasoning about knowledge: a survey circa 1991. In A. Kent
and J. G. Williams (Eds.), Encyclopedia of Computer Science and Technology,
Volume 27 (Supplement 12), pp. 275-296. New York: Marcel Dekker.

Halpern, J. Y. (1993b). Reasoning about only knowing with many agents. In Proc. Na-
tional Conference on Artificial Intelligence (AAAI °93), pp. 655—661.

Halpern, J. Y. and R. Fagin (1989). Modelling knowledge and action in distributed
systems. Distributed Computing 3(4), 159-179. A preliminary version appeared in
Proc. 4th ACM Symposium on Principles of Distributed Computing, 1985, with
the title “A formal model of knowledge, action, and communication in distributed
systems: preliminary report”.

Halpern, J. Y. and Y. Moses (1984). Towards a theory of knowledge and ignorance. In
Proc. AAAT Workshop on Non-monotonic Logic, pp. 125-143. Reprinted in K. R.
Apt (Ed.), Logics and Models of Concurrent Systems, Springer-Verlag, Berlin/New
York, pp. 459-476, 1985.

Halpern, J. Y. and Y. Moses (1990). Knowledge and common knowledge in a dis-
tributed environment. Journal of the ACM 37(3), 549-587. A preliminary version
appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

Halpern, J. Y. and Y. Moses (1992). A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence 54, 319-379.

Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis of zero
knowledge. In Proc. 20th ACM Symp. on Theory of Computing, pp. 132-147.

26



Halpern, J. Y., Y. Moses, and M. Y. Vardi (1994). Algorithmic knowledge. In R. Fagin
(Ed.), Theoretical Aspects of Reasoning aboul Knowledge: Proc. Fifth Conference,
pp- 255-266. San Francisco, Calif.: Morgan Kaufmann.

Halpern, J. Y., Y. Moses, and O. Waarts (1990). A characterization of eventual Byzan-
tine agreement. In Proc. 9th ACM Symp. on Principles of Distributed Computing,
pp. 333-346.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries.
Journal of the ACM 40(4), 917-962.

Halpern, J. Y. and M. Y. Vardi (1988). The complexity of reasoning about knowl-
edge and time in asynchronous systems. In Proc. 20th ACM Symp. on Theory of
Computing, pp. H3—65.

Halpern, J. Y. and M. Y. Vardi (1989). The complexity of reasoning about knowledge
and time, I: lower bounds. Journal of Computer and System Sciences 38(1), 195—
237.

Halpern, J. Y. and M. Y. Vardi (1991). Model checking vs. theorem proving: a man-
ifesto. In J. A. Allen, R. Fikes, and E. Sandewall (Eds.), Principles of Knowledge
Representation and Reasoning: Proc. Second International Conference (KR ’91),
pp- 325-334. San Francisco, Calif.: Morgan Kaufmann. An expanded version ap-

pears in Artificial Intelligence and Mathematical Theory of Computation (Papers
in Honor of John McCarthy) (ed. V. Lifschitz), Academic Press, 1991, pp. 151-176.

Halpern, J. Y. and L. D. Zuck (1992). A little knowledge goes a long way: knowledge-
based derivations and correctness proofs for a family of protocols. Journal of the

ACM 39(3), 449-478.
Heyting, A. (1956). Intuitionism: An Introduction. Amsterdam: North-Holland.
Hintikka, J. (1962). Knowledge and Belief. Ithaca, N.Y.: Cornell University Press.

Hintikka, J. (1975). Impossible possible worlds vindicated. Journal of Philosophical
Logic 4, 475-484.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Languages
and Computation. New York: Addison-Wesley.

Katsuno, H. and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In Principles of Knowledge Representation and Reasoning:

Proc. Second International Conference (KR °91), pp. 387-394.
Konolige, K. (1986). A Deduction Model of Belief. San Francisco, Calif.: Morgan Kauf-

mani.

Kripke, S. (1963). A semantical analysis of modal logic I: normal modal propositional
calculi. Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik 9,
67-96. Announced in Journal of Symbolic Logic, 24, 1959, p. 323.

27



Ladner, R. E. (1977). The computational complexity of provability in systems of modal
propositional logic. STAM Journal on Computing 6(3), 467-480.

Lakemeyer, G. (1986). Steps towards a first-order logic of explicit and implicit belief. In
J. Y. Halpern (Ed.), Theoretical Aspects of Reasoning about Knowledge: Proc. 1986
Conference, pp. 325-340. San Francisco, Calif.: Morgan Kaufmann.

Lakemeyer, G. (1987). Tractable meta-reasoning in propositional logics of belief. In
Proc. Tenth International Joint Conference on Artificial Intelligence (IJCAI '87),
pp- 402-408.

Lakemeyer, G. (1993). All they know: a study in multi-agent autoepestemic reasoning.
In Proc. Thirteenth International Joint Conference on Artificial Intelligence (IJCAI
’93), pp. 376-381.

Lakemeyer, G. and H. J. Levesque (1988). A tractable knowledge representation service
with full introspection. In M. Y. Vardi (Ed.), Proc. Second Conference on Theo-
retical Aspects of Reasoning about Knowledge, pp. 145-159. San Francisco, Calif.:
Morgan Kaufmann.

Lenzen, W. (1978). Recent work in epistemic logic. Acta Philosophica Fennica 30,
1-219.

Levesque, H. J. (1984a). Foundations of a functional approach to knowledge represen-
tation. Artificial Intelligence 23, 155-212.

Levesque, H. J. (1984b). A logic of implicit and explicit belief. In Proc. National
Conference on Artificial Intelligence (AAAI °84), pp. 198-202.

Levesque, H. J. (1990). All T know: a study in autoepistemic logic. Artificial Intelli-
gence 42(3), 263-309.

Lewis, D. (1969). Convention, A Philosophical Study. Cambridge, Mass.: Harvard

University Press.

Lin, F. and Y. Shoham (1990). Epistemic semantics for fixed-point nonmonotonic log-
ics. In Theoretical Aspects of Reasoning about Knowledge: Proc. Third Conference,
pp. 111-120. San Francisco, Calif.: Morgan Kaufmann.

Mazer, M. S. (1990). A link between knowledge and communication in faulty dis-
tributed systems. In R. Parikh (Ed.), Theoretical Aspects of Reasoning aboul
Knowledge: Proc. Third Conference, pp. 289-304. San Francisco, Calif.: Morgan
Kaufmann.

Mazer, M. S. and F. H. Lochovsky (1990). Analyzing distributed commitment by
reasoning about knowledge. Technical Report CRL 90/10, DEC-CRL.

McCarthy, J. and P. J. Hayes (1969). Some philosophical problems from the standpoint
of artificial intelligence. In D. Michie (Ed.), Machine Intelligence 4, pp. 463-502.
Edinburgh: Edinburgh University Press.

28



Mertens, J. F. and S. Zamir (1985). Formulation of Bayesian analysis for games of
incomplete information. International Journal of Game Theory 14(1), 1-29.

Montague, R. (1960). Logical necessity, physical necessity, ethics, and quantifiers. In-
quiry 4, 259-269.

Moore, R. C. (1985). A formal theory of knowledge and action. In J. Hobbs and R. C.
Moore (Eds.), Formal Theories of the Commonsense World, pp. 319-358. Norwood,
N.J.: Ablex Publishing Corp.

Moore, R. C. and G. Hendrix (1979). Computational models of beliefs and the se-
mantics of belief sentences. Technical Note 187, SRI International, Menlo Park,

Calif.

Morgenstern, L. (1986). A first order theory of planning, knowledge, and action. In
J. Y. Halpern (Ed.), Theoretical Aspects of Reasoning about Knowledge: Proc. 1986
Conference, pp. 99-114. San Francisco, Calif.: Morgan Kaufmann.

Moses, Y. (1988). Resource-bounded knowledge. In M. Y. Vardi (Ed.), Proc. Second
Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 261-276. San
Francisco, Calif.: Morgan Kaufmann.

Moses, Y. (Ed.) (1992). Theoretical Aspects of Reasoning about Knowledge:

Proc. Fourth Conference. San Francisco, Calif.: Morgan Kaufmann.

Moses, Y. and G. Roth (1989). On reliable message diffusion. In Proc. 8th ACM Symp.
on Principles of Distributed Computing, pp. 119-128.

Moses, Y. and Y. Shoham (1993). Belief as defeasible knowledge. Artificial Intelli-
gence 64(2), 299-322.

Moses, Y. and M. R. Tuttle (1988). Programming simultaneous actions using common
knowledge. Algorithmica 3, 121-169.

Neiger, G. (1988). Knowledge consistency: a useful suspension of disbelief. In M. Y.
Vardi (Ed.), Proc. Second Conference on Theoretical Aspects of Reasoning about
Knowledge, pp. 295-308. San Francisco, Calif.: Morgan Kaufmann.

Neiger, G. and S. Toueg (1993). Simulating real-time clocks and common knowledge
in distributed systems. Journal of the ACM 40(2), 334-367.

Panangaden, P. and S. Taylor (1992). Concurrent common knowledge: defining agree-
ment for asynchronous systems. Distributed Computing 6(2), 73-93.

Parikh, R. (1991). Monotonic and nonmonotonic logics of knowledge. Fundamenta

Informaticae 15(3,4), 255-274.

Parikh, R. and P. Krasucki (1990). Communication, consensus, and knowledge. Journal

of Economic Theory 52(1), 178-189.

Parikh, R. and R. Ramanujam (1985). Distributed processing and the logic of knowl-
edge. In R. Parikh (Ed.), Proc. Workshop on Logics of Programs, pp. 256-268.

29



Parikh, R. J. (Ed.) (1990). Theoretical Aspects of Reasoning aboul Knowledge:

Proc. Third Conference. San Francisco, Calif.: Morgan Kaufmann.

Patel-Schneider, P. F. (1985). A decidable first-order logic for knoweledge representa-
tion. In Proc. Ninth International Joint Conference on Artificial Intelligence (1J-
CAI ’85), pp. 455—458.

Pease, M., R. Shostak, and L. Lamport (1980). Reaching agreement in the presence of
faults. Journal of the ACM 27(2), 228-234.

Perrault, C. R. and P. R. Cohen (1981). It’s for your own good: a note on inaccurate
reference. In A. K. Johsi, B. L. Webber, and 1. A. Sag (Eds.), Elements of discourse
understanding. Cambridge, U.K.: Cambridge University Press.

Rantala, V. (1982). Impossible worlds semantics and logical omniscience. Acta Philo-
sophica Fennica 35, 18-24.

Rescher, N. and R. Brandom (1979). The Logic of Inconsistency. Totowa, N.J.: Row-
man and Littlefield.

Rosenschein, S. J. (1985). Formal theories of Al in knowledge and robotics. New Gen-
eration Computing 3, 345-357.

Rosenschein, S. J. and L. P. Kaelbling (1986). The synthesis of digital machines with
provable epistemic properties. In J. Y. Halpern (Ed.), Theoretical Aspects of Rea-
soning about Knowledge: Proc. 1986 Conference, pp. 83-97. San Francisco, Calif.:
Morgan Kaufmann.

Shoham, Y. (1988). Chronological ignorance: experiments in nonmonotonic temporal
reasoning. Artificial Intelligence 36, 271-331.

Shoham, Y. (1993). Agent oriented programming. Artificial Intelligence 60(1), 51-92.

Stark, W. R. (1981). A logic of knowledge. Zeitschrift fir Mathematische Logik und
Grundlagen der Mathematik 27, 371-374.

Vardi, M. Y. (1985). A model-theoretic analysis of monotonic knowledge. In
Proc. Ninth International Joint Conference on Artificial Intelligence (IJCAI 85),
pp- H09-512.

Vardi, M. Y. (Ed.) (1988). Proc. Second Conference on Theoretical Aspects of Reason-

ing about Knowledge. San Francisco, Calif.: Morgan Kaufmann.

Vardi, M. Y. (1989). On the complexity of epistemic reasoning. In Proc. 4th IFEE
Symp. on Logic in Computer Science, pp. 243-252.

Wansing, H. (1990). A general possible worlds framework for reasoning about knowl-

edge and belief. Studia Logica 49(4), 523-539.
Wright, G. H. v. (1951). An FEssay in Modal Logic. Amsterdam: North-Holland.

Yemini, Y. and D. Cohen (1979). Some issues in distributed processes communication.
In Proc. of the Ist International Conf. on Distributed Computing Systems, pp.
199-203.

30



