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Evaluating decision networks
1. set the evidence variables for the current state
2. For each possible value of the decision node

(a) Set the decision node to that value
(b) Calculate the posterior probabilities for the 

parent nodes of the utility node, using a 
standard probabilistic inference algorithm.

(c) Calculate the resulting utility for the action
3. Return the action with the highest utility

Decision Networks

20

The value of information

Not all available information is provided to the 
agent before it makes its decision
One of the most important parts of decision 
making is knowing what questions to ask.
To conduct expensive and critical tests or not 
depends on two factors:
– Whether the different possible outcomes would 

make a significant difference to the optimal course 
of action

– The likelihood of the various outcomes
Information value theory enables an agent to 
choose what information to acquire.
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Not all available information is provided to the 
agent before it makes its decision
Example
– An oil company is hoping to buy one of n 

indistinguishable blocks of ocean drilling rights
– Exactly one of the blocks contain oil worth C 

dollars, and that the price of each block is C/n 
dollars.

– A seismologist offers the results of a survey of 
block number 3, which indicates definitively 
whether the block contains oil. How much should 
the company pay for this information?

Value of Information
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Solution
1) block 3 contains oil → the company will buy this 

block
profit : C – C/n = (n-1)C/n

2) block 3 contains no oil → the company will buy a 
different block
profit : C/(n-1) – C/n = C/n(n-1)

expected profit : 
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General formula
– Value of perfect information(VPI)

• E : current evidence,      : current best choice
• Ej : newly obtained evidence
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Ch 17 - Making Complex 
Decisions

Outline
Sequential Decision Problems
Markov Decision Processes
Optimal policy
Value Iteration
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Example: Finding JulietExample: Finding Juliet

A robot, Romeo, is in Charles’ office and must deliver a 
letter to Juliet
Juliet is either in her office, or in the conference room. 
Without other prior knowledge, each possibility has 
probability 0.5

The robot’s goal is to minimize the time spent in transit

Charles’ off.

Juliet’s off.

Conf. room

10min

5min

10min
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Example: Finding JulietExample: Finding Juliet

States are:
– S0: Romeo in Charles’ office
– S1: Romeo in Juliet’s office and Juliet here
– S2: Romeo in Juliet’s office and Juliet not here
– S3: Romeo in conference room and Juliet here
– S4: Romeo in conference room and Juliet not here

Actions are:
– GJO (go to Juliet’s office)
– GCR (go to conference room)
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Utility ComputationUtility Computation
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Example: Finding JulietExample: Finding Juliet
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Another exampleAnother example

• The robot needs to recharge its batteries
• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• [4,3] or [4,2] are terminal states
• Reward of a terminal state: +1 or -1
• Reward of a non-terminal state: -1/25
• Utility of a history: sum of rewards of traversed states
• Goal: Maximize expected reward by ???
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1

4321
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Utility of an Action SequenceUtility of an Action Sequence

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories:

U = ΣhUh P(h)

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]
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Probability of Reaching the GoalProbability of Reaching the Goal

•P([4,3] | (U,R).[3,2]) = 
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

•P([4,3] | (U,R).[3,2]) = 0.65

31

Optimal PolicyOptimal Policy

A policy P is a complete mapping from states 
to actions
The optimal policy P* is the one that always 
yields a history (ending at a terminal state) 
with maximal expected utility.
Will study more with reinforcement learning
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Summary

Probability theory describes what an agent 
should believe based on evidence
Utility theory describes what an agent wants
Decision theory puts the two together to 
describe what an agent should do
A rational agent should select actions that 
maximize its expected utility.
Decision networks provide a simple formalism 
for expressing and solving decision problems.
Making complex decisions will be studied with 
reinforcement learning 
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Optimal PolicyOptimal Policy

A policy P is a complete mapping from states 
to actions
The optimal policy P* is the one that has 
 the greatest expected reward among  
 all policies.
What if a terminal state is never reached?
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Summary

Probability theory describes what an agent 
should believe based on evidence
Utility theory describes what an agent wants
Decision theory puts the two together to 
describe what an agent should do
A rational agent should select actions that 
maximize its expected utility.
Decision networks provide a simple formalism 
for expressing and solving decision problems.
Making complex decisions will be studied with 
reinforcement learning 
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Representing Actio
Deterministic Actions:

•  T :   For each state and 
 we specify a new state.

Stochastic Actions:
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specify a probability distribution over
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S A× S→

S A× Prob S( )→
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Representing Actions
Deterministic Actions:

•  T :   For each state and action
 we specify a new state.

Stochastic Actions:

• T : For each state and action we
specify a probability distribution over next states.
Represents the distribution P(s’ | s, a).

S A× S→

S A× Prob S( )→

1.0
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Representing Solutions
A policy π is a mapping from S  to A
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Following a Policy
Following a policy π:

1. Determine the current state s
2. Execute action π(s)
3. Goto step 1.

Assumes full observability:  the new state
executing an action will be known to the s
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Evaluating a Polic
How good is a policy  in a state s ?

For deterministic actions just total the
rewards obtained... but result may be infin

For stochastic actions, instead  expected 
obtained–again typically yields infinite val

How do we compare policies of infinite va
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Objective Function
An objective function maps infinite seque
to single real numbers (representing utilit

Options:
1. Set a finite horizon and just total th
2. Discounting to prefer earlier reward
3. Average reward rate in the limit

Discounting is perhaps the most analytica
most widely studied approach
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Discounting
A reward n steps away is discounted by
rate .

• models mortality:  you may die at an

• models preference for shorter solutio

• a smoothed out version of limited ho

We use cumulative discounted reward as
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Value Functions
A value function  : represents 

expected objective value obtained

following policy  from each state in S .

Value functions partially order the policies

• but at least one optimal policy exists

• all optimal policies have the same va

V π S ℜ→

π



Bellman Equations

Bellman equations give a recursive 
definition of the optimal expected reward 

If we can compute V*, we can easily find 
an optimal policy
o Choose an action with maximum expected 

reward
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Value Iteration

 V(s) to all 0
(change in V is small)

    stat

initialize
repeat until 

for each do

end for

end repeat

e s 
      ( ) : ( ) max ( | , ) ( )
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Demo



Advanced Topics

Explicit search through space of policies 
(policy iteration)
Partial observations - POMDP
Handling large state spaces
o Factored state and value function 

representations
o Approximate representations

• Tile coding, neural networks, ...
Simultaneously learning & solving an 
MDP or POMDP (reinforcement learning)
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