Ch 17 - Making Complex
Decisions

Outline

m Sequential Decision Problems
m Markov Decision Processes

m Optimal policy

m Value lteration
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Example: Finding Juliet

= Arobot, Romeo, is in Charles’ office and must deliver a
letter to Juliet

= Juliet is either in her office, or in the conference room.
Without other prior knowledge, each possibility has
probability 0.5

5min
||

Juliet's off.

Conf. room

= The robot’s goal is to minimize the time spent in transit
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Example: Finding Juliet

= States are:
— S0: Romeo in Charles’ office
— S1: Romeo in Juliet’s office and Juliet here
- — S2: Romeo in Juliet’s office and Juliet not here
— S3: Romeo in conference room and Juliet here
— S4: Romeo in conference room and Juliet not here

m Actions are:
- — GJO (go to Juliet’s office)
— GCR (go to conference room)

B .



Utility Computation

Byl Juliet’s off.
Charles’ off. 10min
m"‘\' Conf. room
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Utility Computation
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Another example

3 +1
2 A -1
1

1 2 3 4

« The robot needs to recharge its batteries
 [4,3] provides power supply
* [4,2] is a sand area from which the robot cannot escape
* [4,3] or [4,2] are terminal states
- * Reward of a terminal state: +1 or -1
» Reward of a non-terminal state: -1/25
« Utility of a history: sum of rewards of traversed states
» Goal: Maximize expected reward by ??? 28




= A policy P is a complete mapping from states
to actions

m The optimal policy P* is the one that has
the greatest expected reward among
all policies.

= What if a terminal state is never reached?

Optimal Policy
3| ——— +1
2| 1 e
Ll
.




Stochastic Automata with Utilities

A Markov Decision Process (MDP) model O
contains:
. VAR
* A set of possible world states S A48
» A set of possible actions A C\v
A real valued reward function R(s,a) )

« A description T of each action’s effects in each state.

We assume the Markov Property: the effects of an action
taken in a state depend only on that state and not on the
prior history.

MDP Tutorial - 3




Stochastic Automata with Utilities

A Markov Decision Process (MDP) model

contains:
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* A set of possible world states S s
e A set of possible actions A t\ Q

* A real valued reward function R(s)
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Representing Actions

Deterministic Actions: O
« T: Sx A- S Foreachstate and action ¢y
we specify a new state. A4
0.6
Stochastic Actions: Q .

e T: Sx Ao Prob(S Foreach state and action we
specify a probability distribution over next states.
Represents the distribution P(s’| s, a).

MDP Tutorial - 5




Representing Actions

Deterministic Actions:

« T: Sx A- S Foreach state and action r'd, O
we specify a new state. - b
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Stochastic Actions:
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specify a probability distribution over next states.
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Representing Solutions

A policy Ttis a mapping from S to A

MDP Tutorial - 7




Following a Policy

Following a policy Tt )
1. Determine the current state s AV
2. Execute action 11(s) vV
3. Goto step 1. :\v

O

Assumes full observability: the new state resulting from
executing an action will be known to the system

MDP Tutorial - 8




Evaluating a Policy

How good is a policy 1t in a state s ? O
AR
For deterministic actions just total the L .4

rewards obtained... but result may be infinite. )

For stochastic actions, instead expected total reward
obtained—again typically yields infinite value.

How do we compare policies of infinite value?

MDP Tutorial - 9




Objective Functions

An objective function maps infinite sequences of rewards
to single real numbers (representing utility)
Options:

1. Set a finite horizon and just total the reward

2. Discounting to prefer earlier rewards

3. Average reward rate in the limit

Discounting is perhaps the most analytically tractable and
most widely studied approach

MDP Tutorial - 10




Discounting

A reward n steps away Is discounted by y"" for discount
rate O<y<1.

* models mortality: you may die at any moment
* models preference for shorter solutions
e a smoothed out version of limited horizon lookahead

We use cumulative discounted reward as our objective

(Max value <=M+ yIM + y2w +.... = L M)

1-y

MDP Tutorial - 11




Value Functions

A value function V_ : S - I represents the O

expected objective value obtained AV

following policy 1t from each state in S.. Py
AN/

Value functions partially order the policies,
* but at least one optimal policy exists, and
- all optimal policies have the same value function, V*

MDP Tutorial - 12




Bellman Equations

» Bellman equations give a recursive
definition of the optimal expected reward

V'(s)=R(s) + max ¥ P(s'|s,aV (s')

= |[f we can compute V*, we can easily find
an optimal policy
o Choose an action with maximum expected
reward



Value lteration

initialize V(s) to all O
repeat until (change in V is small)
for each state s do

V'(s):=R(s)+max ¥ P(s'|s,alV(s")

end for
V.=V’
end repeat



Demo




Advanced Topics

= Explicit search through space of policies
(policy iteration)

= Partial observations - POMDP

* Handling large state spaces

o Factored state and value function
representations

o Approximate representations
e Tile coding, neural networks, ...

= Simultaneously learning & solving an
MDP or POMDP (reinforcement learning)
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