473 Lesson Plan - Wed Sept 28 – MORE 225 – 1:30-2:50
80 min

1:30

1. Introduction. Mechanics. (5m)

1:35

2. History of AI. (15m)

1:50

3. State space search (20m)

- dfs, bfs, idfs

- best first

2:10

** 10 minute break **

2:20

- A* (20m)

- demo A* applet

2:40

4. Defining a state space by STRIPS operators. (10m)

--

State space search

Open - some data structure (e.g., stack, queue, heap)

Criteria - some method for removing an element from Open

Search(Start, Goal_test, Criteria)

 insert(Start, Open);

 repeat

if (empty(Open)) then return fail;

select Node from Open using Criteria;

if (Goal_test(Node)) then return Node;

for each Child of node do

 if (Child not already visited) then

Insert(Child, Open);

Mark Node as visited;

 end

Depth-First Graph Search

Open - Stack

Criteria - Pop

Breadth-First Graph Search

Open - Queue

Criteria - Dequeue (FIFO)

Depth-first search

Does not always find shortest paths

Must be careful to mark visited vertices, or you

could go into an infinite loop if there is a cycle

Breadth-first search

 Always finds shortest paths - optimal solutions

 Marking visited nodes can improve efficiency, but even

 without doing so, search is guaranteed to terminate

DFS Space Requirements

Assume:

Longest path in graph is length d

Highest number of out-edges is k

DFS stack grows at most to size dk

For k=10, d=15, size is 150

BFS Space Requirements

Assume

Distance from start to a goal is d

Highest number of out edges is k BFS

Queue could grow to size k^d

For k=10, d=15, size is 1,000,000,000,000,000

Iterative-Deepening DFS

Dijkstra's algorithm - generalizes BFS to graphs with costs on edges

--

Best-First Search

Consider finding shortest paths in Manhattan

The Manhattan distance (? x+ ? y) is an estimate of the distance to

the goal

It is a search heuristic

Best-First Search

Order nodes in priority to minimize estimated distance to the goal

Compare: BFS / Dijkstra

Order nodes in priority to minimize distance from the start

SLIDE - NON-OPTIMALITY OF BEST FIRST SEARCH

A*

Exactly like Best-first search, but using a different criteria for the

priority queue:

minimize (distance from start) + (estimated distance to goal)

priority f(n) = g(n) + h(n)

f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal

Suppose the estimated distance is always less than or equal to the

true distance to the goal heuristic is a lower bound

Then: when the goal is removed from the priority queue, we are

guaranteed to have found a shortest path!

--

DEMO

--

STRIPS OPERATORS

Planning == find a sequence of actions to turn

an initial state into a goal state

State = vertice = set of true facts

Action = edge = instantiated operator

Operators: Name(parameters)

preconditions: facts in "out state"

effects: facts to add and delete

Pickup(R, B, L)

precondition: at(R,L), at(B,L), handempty

effect: holding(R,B), ~at(B,L), ~handempty

