
1

Computational Evolution &
Digital Organisms

A look at a subset of Artificial Life
By Daniel Weise

Computational Evolution

Attempts to elucidate principles of evolution
Builds models of self-replicating organisms

Computational cost limits physical fidelity of the model.
Digital or chemical models

Mutation creates variation in populations
Reproduction can be sexual or asexual
Ability to (out) reproduce its genome is the usual
fitness measure

For some research, other fitness measures are used.

Not to be Confused With
Evolutionary Computing

A Search Technique inspired by biology
Points in search space represented as “genomes”
Crossover produces new points in search space
Mutation ensures variety

Ensures more of search space is sampled
Fitness function determines which subset of
population become progenitors
Larger populations increase coverage of space.
Search usually walks through “invalid” points

Overview of Talk

Motivation: The complexity of cellular life
Tierra and the evolution of digital organisms
Avida and other Tierra inspired work
Lessons/Future Research

Hexokinase

2

Complexity of
Regulatory
Mechanisms

Image from http://web.mit.edu/esgbio/www/pge/pgeother.html

Nature made this from

Molecules with differential binding affinities
for DNA.
Overlapping control regions.
Positive and negative feedback.
Cooperative binding.
How did it make the recipe?

Tierra, a Platform for Digital Evolution

Design Requirements/Inventions:
Organisms must be self-reproductive
Ability to out-reproduce the competition only
fitness criteria

Avoids “artificial” fitness functions.

Control (jumps/calls) is effected through templates
and targets, which are complementary “bit strings”

Jump nop1 nop0 nop1 goes to nop0 nop1 nop0
Organisms sense the environment

Dynamic “fitness” function

Tierra’s Digital Organisms

Each organism (cpu) has
4 registers (A, B, C, D)
Instruction pointer
10 word stack

Time slicing “implements” parallel organisms
When space for new organisms is needed,
the oldest organisms are reaped (as a rule).

Tierra’s Instruction Set

Data Movement
PushA, PopA, PushB, PopB, etc for C and D
MOVDC (D <- C), MOVBA, COPY ([A] to [B])

Control
JumpO, JumpB, Call, Ret, IfZ, nop0, nop1

Calculation
subcab, subaac, inca, incb, decc, incd, zero, not, shl

Biological and Sensing
adr, adrb, adrF, mal (allocate memory), divide

Mutational Sources

A copy error every X copy instructions
Cosmic rays

A bit in the soup gets flipped every Y instructions
Works because no cells are autosomes
Biased, not random

Probabilistic results of instructions
Every so often an instruction misfires
E.g., incA adds 2

No Insertion/deletions

3

The Tierran
Ancestor

Find 0000 [start] -> BX
Find 0001 [end] -> AX
Calculate size -> CX

Allocate daughter -> AX
Call 0011 (copy procedure)

Divide
Jump 0010

1111

1101

Push registers on stack
1010

Move [BX] -> [AX]
Decrement CX

If cx == 0 jump 0100
Increment ax & bx

Jump 0101
1011

Restore registers
return

1100

1110

The Tierran
Ancestor

Find 0000 [start] -> BX
Find 0001 [end] -> AX
Calculate size -> CX

Allocate daughter -> AX
Call 0011 (copy procedure)

Divide
Jump 0010

1111

1101

Push registers on stack
1010

Move [BX] -> [AX]
Decrement CX

If cx == 0 jump 0100
Increment ax & bx

Jump 0101
1011

Restore registers
return

1100

1110

Lots of redundancy

• Labels can be shortened

• Different control
constructs

• Cells only replicate once
or twice

• Templates can be labels

• Various return addresses
can be used

• Control can use any
matching code

Image (and similar ones) either from or based on Tom Ray’s Tierra paper.

Ancestor Code Quick Demo
Let’s watch the ancestor evolve

Find 0000 [start] -> BX
Find 0001 [end] -> AX
Calculate size -> CX

Allocate daughter -> AX
Call 0011 (copy procedure)

Divide
Jump 0010

1111

1101

Push registers on stack
1010

Move [BX] -> [AX]
Decrement CX

If cx == 0 jump 0100
Increment ax & bx

Jump 0101
1011

Restore registers
return

1100

1110

Find 0000 [start] -> BX
Find 0001 [end] -> AX
Calculate size -> CX

Allocate daughter -> AX
Call 0011 (copy procedure)

Divide
Jump 0010

1111

1101

1110

Push registers on stack
1010

Move [BX] -> [AX]
Decrement CX

If cx == 0 jump 0100
Increment ax & bx

Jump 0101
1011

Restore registers
return

1110

Find 0000 [start] -> BX
Find 0001 [end] -> AX
Calculate size -> CX

Allocate daughter -> AX
Call 0011 (copy procedure)

Divide
Jump 0010

1111

1101

Push registers on stack
1010

Move [BX] -> [AX]
Decrement CX

If cx == 0 jump 0100
Increment ax & bx

Jump 0101
1011

Restore registers
return

1100

1110

Find 0000 [start] -> BX
Find 0001 [end] -> AX
Calculate size -> CX

Allocate daughter -> AX
Call 0011 (copy procedure)

Divide
Jump 0000

1111

1101

Push registers on stack
1010

Move [BX] -> [AX]
Decrement CX

If cx == 0 jump 1100
Increment ax & bx

Jump 0101
1011

Restore registers
return

1110

1100

4

Tierra’s Original Ancestor An interesting chicken-and-egg mutation

<C = size, B=@self>
nop1 nop1 nop0 nop1
mal
call nop0 nop0 nop1 nop1
divide
jump nopo nop0 nop1 nop0
ifz
nop1 nop1 nop0 nop0
<copy loop>

An interesting chicken-and-egg mutation

<C = size, B=@self>
nop1 nop1 nop0 nop1
mal
call nop0 nop0 nop1 nop1
divide
pushb (was jump) nopo nop0 nop1 nop0
ifz
ret (was nop1) nop1 nop0 nop0
<copy loop>

A Copy-Once Parasite
Stays just ahead of the reaper

nop1 nop1 zero not0 shl shl movdc
adrb nop0 nop0 pushc nop0
subaac
movba pushd nop0
adr nop0 nop1
inca
subcab pusha nop1 pushd nop1
mal
call nop0 nop0 nop1 nop0
divide

Two chances to find a copy loop
<C = size, B = @self>
mal pusha call movii pusha
call nop0 nop0 nop1 nop1
divide movii
pusha
mal
call nop0 nop0 nop1 nop1
divide mal subaac nop1
ret zero nop1 zero (jumps to start of daughter)
nop1 nop1 nop1 nop0

5

Feature or Bug?
CPU is independent of genome

A very small self-replicating parasite (15 long)
Nop1
Adrb nop0
MovBA
Adrf nop0 nop0
subAAC
Jump nop0 nop0 nop1 nop0
Nop1 nop1

Even smaller viable program:
Nop1

Feature or Bug?
Non-local effects

A template can match any nearby target
A request for memory can kill any organism,
even one “fitter”
A daughter cell can be placed anywhere
Allocating a large amount of memory for a
daughter can kill tens of organisms, creating
a dieoff

Feature or Bug?
Spaghetti Code is a Frequent Occurrence

Symbionts arise quite frequently
When a target is mutated, the target in
another cell is used.

Bug or Feature?
Parasites require necrophilia

Instructions are left in memory when an
organism is reaped.
“Parasites” keep using these instructions.

Bug or Feature?
Sloppy replicators instead of Indels

Tierra lacks insertion/deletion mutations
Biology uses indels
Harder to remove instructions without deletions
Harder to make room for new instructions

Tierra makes up for it with sloppy replicators
that move instructions around willy nilly

Buy maybe this is needed anyway?

Is Sloppiness needed to Bootstrap
Complexity?

Sloppiness (ad-hoc) mixing gave us
Mitochondia (ingestion without digestion)
Cloroplasts in bacteria (same story)
Gene mixing (via viruses)
Diploidy from Haploidy

6

Avida

Inspired by Tierra, but
Controlled instruction pointers (less slopiness)
Insertion/Deletion mutations
2 dimensional grid of organisms, not instructions
Only local next-neighbor effects
Fitness functions to augment reproduction

Experiments to test biological theories
Evolution of Complexity
Evolution of Complex Functions
Relationship among evolution rate and landscape

Lots of questions raised by Avida paper
we read.

What happens when treated as search problem
without using populations?

How does the system walk through deleterious steps in the
search space?

What insights are gained by treating the reduced
trace of a program as its phenotype?

Does this remove epistatic measurement effects?

What about sexual reproduction?
What is the density of paths thru mutation space?
Would a more Tierra-like system be better?
What sized rewards would work?

Digital Biosphere

Inspired by Tierra/Avida but
Want to design open-ended evolutionary
frameworks
Focus is on evolutionary trajectories.

Are there principles regarding these trajectories?

Will exploit the constraints of physics
Conservation Laws!
Energy requirements and metabolism

Will eventually move to chemical modeling to get
closer to biology.

Lessons

Evolution finds corners of the search space
If you build it, they will exploit it
Complexity comes from exploiting environment

Co-evolution makes the problem interesting
and different

Changing fitness functions
Designing a system for open-ended evolution
is still very much an open-ended problem.

What’s it all mean?
We have a source of new insights

Watching evolving dynamical systems give
insight and ideas.
Biologists aren’t trained to do this.
Many insights will be gained that will
eventually transfer over to biological thinking

More information

Me: http://cs.washington.edu/homes/weise
Reading course:
http://cs.washington.edu/homes/weise/590ce.
html
Course will have a project based 3 credit
option.

7

Open Questions/Future Research

Investigate the “Worm-hole” hypothesis: no
interesting genomes arise solely from single-
step changes to existing genomes.
Define phenotype as an organisms birthing
trace. Now re-explain all subsequent papers
in this light.
How do we get true diversity s.t. environment
changes kill half of everything?
How do we automatically detect novelty?

On “designing” open-ended evolutionary
systems.

In the days when Sussman was a novice, Minsky once came
to him as he sat hacking at the PDP-6.

"What are you doing?", asked Minsky.
"I am training a randomly wired neural net to play Tic-tac-toe"

Sussman replied.
"Why is the net wired randomly?", asked Minsky.
"I do not want it to have any preconceptions of how to play",

Sussman said.
Minsky then shut his eyes.
"Why do you close your eyes?", Sussman asked his teacher.
"So that the room will be empty."
At that moment, Sussman was enlightened.

The Value of Diploidy?

Most of the genes perform a walk from viable
organism to viable organism.
Some of the genes walk through non-viable
points in the search space.

