Statistical Learning
CSE 573

Logistics

* Team Meetings
+ Midterm
Open book, notes
Studying
+ See AIMA exercises
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573 Topics

Reinforcement

Supervised Learning
Learning | Planning

Logic-Based Probabilistic

Knowledge Representation & Inference

Search
Problem Spaces
Agency

Topics

* Parameter Estimation:
Maximum Likelihood (ML)
Maximum A Posteriori (MAP)
Bayesian
Continuous case
* Learning Parameters for a Bayesian Network
* Naive Bayes
Maximum Likelihood estimates
Priors
* Learning Structure of Bayesian Networks

Coin Flip
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P(HIC)=0.1 P(HIC)=05 P(H|C,)=0.9

Which coin will | use?

P(C)=1/3 P(C)=1/3 P(C,) = 1/3

Prior: Probability of a hypothesis
before we make any observations

Coin Flip
C, C, C,

P(HIC,)=0.1 P(H|C,)=05 P(HIC,)=0.9

Which coin will | use?

P(C)=1/3  P(C,)=1/3 P(C,) = 1/3

Uniform Prior: All hypothesis are equally likely
before we make any observations




Experiment 1: Heads

Which coin did | use?
PCIH)=?  P(CJH)=?  P(CjH)=7

[ 3
P(CiIH) = P(H) = Y P(HIC)P(C)

C, C,
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[PH[C)=0.1] P(HIC,) =05 P(HIC,) =0.9
|P(C1):1/3 P(C,)) = 1/3 P(C,) =1/3

Experiment 1. Heads

Which coin did | use?
P(C,|H) = 0.066 P(C,|H) = 0.333 P(C,|H) = 0.6

| Posterior: Probability of a hypothesis given data |
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P(HIC,)=0.1 P(H|C,)=0.5 P(HIC))=0.9
P(C)=1/3 P(C)=13 P(C)=1/3

Terminology

*Prior:

Probability of a hypothesis before we see any data
*Uniform Prior:

A prior that makes all hypothesis equaly likely
+Posterior:

Probability of a hypothesis after we saw some data
:Likelihood:

Probability of data given hypothesis

Experiment 2: Tails

Which coin did | use?
P(CHT)=? P(CJHT)="? P(C,HT)="?
P(C,|HT) = aP(HT|C,)P(Cy) = aP(H|C,)P(T|C1)P(C})
C, C, C,
LU @ &
P(H|IC)=0.1 P(H|C,)=05 P(H|C,)=0.9
P(C,))=1/3 P(C) =1/3 P(C.) =1/3

Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C,|HT) = 0.58 P(C,|HT) = 0.21
P(G\|HT) = aP(HT|C1)P(C1) = aP(H|Cy) P(T|C1)P(C))
C, C, C,
L @ 3
P(HIC)=0.1 P(HIC)=05 P(H|C,)=0.9
P(C)=1/3 P(C)=1/3 P(C) = 1/3

Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.21P(C,|HT) = 0.58 P(C,|HT) = 0.21

P(HIC,) = 0.5
P(C,) = 1/3




Your Estimate?

What is the probability of heads after two experiments?

Most likely coin:

P(HIC,) = 0.5

P(HIC,) =05
P(C,) = 1/3

Best estimate for P(H)

Using Prior Knowledge

C3

C, C,
&R 2230 )
LU @ v

P(HIC)=0.1 P(H|C,)=05 P(HIC)=0.9

Your Estimate?

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

Most likely coin:
C,

Best estimate for P(H)

P(H|C,) = 0.5
@ (HIC)

C,

P(HIC,) =05
P(C) = 1/3

Using Prior Knowledge

We can encode it in the prior:

P(C) =005 P(C,)=025 P(C,)=0.70
C

C, C, 3
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P(HIC)=0.1 P(H|C,)=05 P(H|C,)=0.9

Experiment 1: Heads
Which coin did | use?
P(CH) =7  P(CJH) =7 P(C;IH) =7

P(C1|H) = aP(H|C,)P(Cy)

C

C, C, 3
LU @ L

P(HIC)=0.1 P(H|C)=05 P(HIC,)=0.9

[[P(C)=005 P(C)=0.25 P(C)=0.70 ]

Experiment 1. Heads

Which coin did | use?
P(C,|H) = 0.006 P(C,|H) = 0.165 P(C,|H) = 0.829
Compare with ML posterior after Exp 1:
P(C,|H) = 0.066 P(C,|H) = 0.333 P(C,|H) = 0.600
Cl C2 C3
i ot \ /F\\
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P(HIC,)=0.1 P(H|C,)=0.5 P(H|C,)=0.9
P(C,)=0.05 P(C)=0.25 P(C,) =0.70




Experiment 2: Tails

Which coin did | use?
P(C,|HT)=? P(C,HT)="? P(C,|HT) =7

P(C1|HT) = aP(HT|C1)P(C1) = aP(H|C)P(T|C1)P(Cy)

C3

C, C,
=N =N -
P(HIC)=0.1 P(H|C,)=0.5 P(HIC,)=0.9
P(C)=0.05 P(C)=0.25 _P(C,)=0.70

Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.035P(C,|HT) = 0.481P(C,|HT) = 0.485

P(G,|HT) = oP(HT|C,)P(C1) = aP(H|C,)P(T|C1)P(C1)

C3

C, C,
-3 =N B
P(HIC)=0.1 P(H|C)=0.5 P(HIC,)=0.9
P(C)=0.05 P(C)=0.25 P(C)=0.70

Experiment 2: Tails

Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT)=0.481 P(C,|HT) = 0.485

P(HIC,) = 0.9
P(C.) = 0.70

Your Estimate?

Your Estimate?
What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)

» (g P(HIC,) = 0.9

P(HIC,) = 0.9
P(C,) = 0.70

Maximum A Posteriori (MAP) Estimate:
The best hypothesis that fits observed data
assuming a non-uniform prior

Best estimate for P(H)
P(H|C,) = 0.9

Most likely coin:

C3

P(HIC,) = 0.9
P(C.) = 0.70

Did We Do The Right Thing?

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

2

P(HIC)=0.1 P(H|C)=05 P(HIC,) =0.9




Did We Do The Right Thing?

P(C,|HT) =0.035 P(C,|HT)=0.481 P(C,JHT)=0.485

C, and C, are almost
equally likely

Cl CZ C3
P(HIC,)=0.1 P(H|C,)=0.5 P(H|C,)=0.9

A Better Estimate

3
Recall: P(H) = P(H|C;)P(C:) = 0.680

i=1

P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

C C, C

1

3
P(H|C,)=0.1 P(H|C)=05 P(HIC,)=0.9

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,
given data and (generally) assuming a
non-uniform prior

3
P(H) =Y _ P(H|C:)P(C:) = 0.680

i=1
P(C,|HT)=0.035 P(C,|HT)=0.481 P(C,|HT)=0.485

Cl C2 C3
P(H|IC,)=0.1 P(HIC,) =05 P(HIC,)=0.9

Comparison
After more experiments: HTH®

ML (Maximum Likelihood):

PH)=05

after 10 experiments: P(H) = 0.9
MAP (Maximum A Posteriori):

PH)=0.9

after 10 experiments: P(H) = 0.9
Bayesian:

P(H) = 0.68

after 10 experiments: P(H) = 0.9

Comparison

ML (Maximum Likelihood):
Easy to compute
MAP (Maximum A Posteriori):
Still easy to compute
Incorporates prior knowledge
Bayesian:
Minimizes error => great when data is scarce
Potentially much harder to compute

Summary For Now

Prior Hypothesis

Maximum Likelihood Uniform The most likely
Estimate

Maximum A Any The most likely

Posteriori Estimate

Weighted
Bayesian Estimate Any comb?naﬁon




Continuous Case

*In the previous example,
we chose from a discrete set of three coins

+In general,
we have to pick from a continuous distribution
of biased coins

Continuous Case

@

Continuous Case

Continuous Case

Prior Exp 1: Heads Exp 2: Tails
uniform /\
G k';k m.- @{;, , qia.- = ‘-;i .;@

with background

knowledge /\ /\
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Continuous Case
Posterior after 2 experiments:

. H w/ uniform prior

ML Estimate — :

MAP Estimate ===+
Bayesian Estimate= = F—

@ O @

with background
knowledge

K S _}:.:'.'..T

After 10 Experiments...

Posterior:

. w/ uniform prior
ML Estimate —

MAP Estimate =+---
Bayesian Estimate= —

ith background
knowledge




After 100 Experiments...

Topics

* Parameter Estimation:
Maximum Likelihood (ML)
Maximum A Posteriori (MAP)
Bayesian
Continuous case
* Learning Parameters for a Bayesian Network
* Naive Bayes
Maximum Likelihood estimates
Priors
* Learning Structure of Bayesian Networks
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Review: Conditional Probability

+ P(A | B) is the probability of A given B
+ Assumes that Bis the only info known.

* Defined by: P(ANE)

P(B)

P(A|B)=

True

Conditional Independence
A&B rot independent, since P(A|B) < P(A)

True

Conditional Independence
But: A4&B are made independent by —C

aaaaaaaaaa

P(A|-C) =
| P(A|B,—C)

True

4l

Bayes Rule

P(EH)P(H)

PHIE) =0 5

Simple proof from def of conditional probability:

P(HAE

P(HIE)= (P(E) ) (Def. cond. prob.)
P(H AE

P(EIH)= (P('_A') ) (Def. cond. prob.)

P(H AE)=P(E|H)P(H) (Multby P(H)inline 1)

PE|H)P(H)
P(E)

2 Dagic) " 4

QED: P(HI|E)= (Substitute #3 in #2)




An Example Bayes Net

Earthquake

43

Given Markov Blanket, X is
Independent of All Other Nodes

MB(X) = Par(X) U Childs(X) U Par(Childs(X))

45
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Given Parents, X is Independent of
Non-Descendants

44

=
=
Qerzca)
We have:

Parameter Estimation and
Bayesian Networks

E[B[RIA[T[M
T|IF|T|T|F|T
FIF|FIF[F|T
FIT|F|T|T|T
FIF|IF|T[T [T
FIT|F|F[F|F

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and
Bayesian Networks

@) G
Qe Garzea)

Prior

Now compute
either MAP or
Bayesian estimate

P(B) =}

+ data =

d
]

i
b

P(AIE,B) = ?
P(A|E,-B) = ?
P(A|-E,B) = ?
P(A|-E,-B) = ?

-
D
0

mmm M Hm

—AMH|m ™ ®

Parameter Estimation and
Bayesian Networks




Parameter Estimation and
Bayesian Networks
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Prior

P(A|-E,B) = ?

+ data= /

Recap
+ Given a BN structure (with discrete or

continuous variables), we can learn the
parameters of the conditional prop tables.

=
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Nigerts Cex) (o> /
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Learning The Structure

of Bayesian Networks

+ Search thru the space...
of possible network structures!
(for now, assume we observe all variables)

+ For each structure, learn parameters

+ Pick the one that fits observed data best
Caveat - won't we end up fully connected????

v
* When seg@iﬁ%‘f\add a penalty

oc model complexity

Topics

* Parameter Estimation:
Maximum Likelihood (ML)
Maximum A Posteriori (MAP)
Bayesian
Continuous case
* Learning Parameters for a Bayesian Network
+ Naive Baves
Friors-
* Learning Structure of Bayesian Networks
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What if we don‘t know
structure?

Learning The Structure
of Bayesian Networks

+ Search thru the space
* For each structure, learn parameters
+ Pick the one that fits observed data best

* Problem?
Exponential number of networks!
And we need to learn parameters for each!
Exhaustive search out of the question!

* S0 what now?




Learning The Structure
of Bayesian Networks

Local searchl!
Start with some network structure
Try to make a change
(add or delete or reverse edge)
See if the new network is any better

What should be the initial state?

Initial Network Structure?

* Uniform prior over random networks?

* Network which reflects expert knowledge?

Learning BN Structure

prior network+equivalent sample size

. @ improved network(s)

s 5
true | false | true
false | false | true

false | false | false
true | true | false

The Big Picture

+ We described how to do MAP (and ML)
learning of a Bayes net (including structure)

* How would Bayesian learning (of BNs) differ?

*Find all possible networks
*Calculate their posteriors

*When doing inference, return weighed
combination of predictions from all
networks!

10



