
1

© Daniel S. Weld 1

Reinforcement Learning
CSE 573

Ever Feel Like Pavlov’s Poor Dog?
© Daniel S. Weld 2

Logistics
• Reading for Wed

 AIMA Ch 20 thru 20.3
• Teams for Project 2
• Midterm

 Typical problems – see AIMA exercises
 In class / takehome
 Open book / closed
 Length

© Daniel S. Weld 3

573 Topics

Agency
Problem Spaces

Search
Knowledge Representation & Inference

Planning
Supervised
Learning

Logic-Based Probabilistic

Reinforcement
Learning

© Daniel S. Weld 4

Pole Demo

© Daniel S. Weld 5

Review: MDPs
S = set of states set (|S| = n)

A = set of actions (|A| = m)

Pr = transition function Pr(s,a,s’)
represented by set of m n x n stochastic
matrices (factored into DBNs)

each defines a distribution over SxS

R(s) = bounded, real-valued reward fun
represented by an n-vector

© Daniel S. Weld 6

Goal for an MDP
• Find a policy which:

 maximizes expected discounted reward
 over an infinite horizon
 for a fully observable
 Markov decision process.

2

© Daniel S. Weld 7

Max

Bellman Backup

a1

a2

a3

s

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Qn+1(s,a)

Vn+1(s)

Improve estimate of value function
Vt+1(s) = R(s) +

MaxaεA {c(a)+γΣs’εS Pr(s’|a,s) Vt(s’)}
Expected future reward
Aver’gd over dest states

© Daniel S. Weld 8

Value Iteration
• Assign arbitrary values to each state

 (or use an admissible heuristic).

• Iterate over all states
 Improving value funct via Bellman Backups

• Stop the iteration when converges
 (Vt approaches V* as t ∞)

• Dynamic Programming

© Daniel S. Weld 9

Note on Value Iteration
• Order in which one applies Bellman Backups

 Irrelevant!

• Some orders more efficient than others

10

Action cost = -1. Discount factor, γ = 1

In
it
St
ate

© Daniel S. Weld 10

Expand figure
• Initialize all value functions to 0
• First backup sets goal to 10

• Use animation

© Daniel S. Weld 11

Policy evaluation
• Given a policy Π:S A, find value of each

state using this policy.
• VΠ(s) = R(s) + c(Π(s)) +

γ[Σs’εS Pr(s’| Π(s),s)VΠ(s’)]
• This is a system of linear equations

involving |S| variables.

© Daniel S. Weld 12

Policy iteration
• Start with any policy (Π0).
• Iterate

 Policy evaluation : For each state find VΠi(s).
 Policy improvement : For each state s, find action

a* that maximizes QΠi(a,s).
 If QΠi(a*,s) > VΠi(s) let Πi+1(s) = a*
 else let Πi+1(s) = Πi(s)

• Stop when Πi+1 = Πi
• Converges faster than value iteration but

policy evaluation step is more expensive.

3

© Daniel S. Weld 13

Modified Policy iteration
• Instead of evaluating the actual value of

policy by
 Solving system of linear equations, …

• Approximate it:
 Value iteration with fixed policy.

© Daniel S. Weld 14

Excuse Me…
• MDPs are great, IF…

 We know the state transition function P(s,a,s’)
 We know the reward function R(s)

• But what if we don’t?
 Like when we were babies…
 And like our dog…

© Daniel S. Weld 15

How is learning to act possible when…

• Actions have non-deterministic effects
 Which are initially unknown

• Rewards / punishments are infrequent
 Often at the end of long sequences of actions

• Learner must decide what actions to take

• World is large and complex

© Daniel S. Weld 16

Naïve Approach
1. Act Randomly for a while

 (Or systematically explore all possible actions)
2. Learn

 Transition function
 Reward function

3. Use value iteration, policy iteration, …

Problems?

© Daniel S. Weld 17

RL Techniques

1. Passive RL

2. Adaptive Dynamic Programming

3. Temporal-difference learning
 Learns a utility function on states

• treats the difference between expected / actual
reward as an error signal, that is propagated
backward in time

© Daniel S. Weld 18

Concepts
• Exploration functions

 Balance exploration / exploitation

• Function approximation
 Compress a large state space into a small one
 Linear function approximation, neural nets, …
 Generalization

4

© Daniel S. Weld 19

Example:
• Suppose given policy
• Want to determine how good it is

© Daniel S. Weld 20

Objective: Value Function

© Daniel S. Weld 21

Just Like Policy Evaluation
• Except…?

© Daniel S. Weld 22

Passive RL
• Given policy π,

 estimate Uπ(s)
• Not given

 transition matrix, nor
 reward function!

• Epochs: training sequences
(1,1) (1,2) (1,3) (1,2) (1,3) (1,2) (1,1) (1,2) (2,2) (3,2) –1
(1,1) (1,2) (1,3) (2,3) (2,2) (2,3) (3,3) +1
(1,1) (1,2) (1,1) (1,2) (1,1) (2,1) (2,2) (2,3) (3,3) +1
(1,1) (1,2) (2,2) (1,2) (1,3) (2,3) (1,3) (2,3) (3,3) +1
(1,1) (2,1) (2,2) (2,1) (1,1) (1,2) (1,3) (2,3) (2,2) (3,2) -1
(1,1) (2,1) (1,1) (1,2) (2,2) (3,2) -1

© Daniel S. Weld 23

Approach 1
• Direct estimation

 Estimate Uπ(s) as average total reward of epochs
containing s (calculating from s to end of epoch)

• Pros / Cons?

Requires huge amount of data
doesn’t exploit Bellman constraints!

Expected utility of a state =
its own reward +

expected utility of successors

© Daniel S. Weld 24

Approach 2
Adaptive Dynamic Programming

Requires fully observable environment
Estimate transition function M from training data
Solve Bellman eqn w/ modified policy iteration

Pros / Cons:

,() ()s s
s

U R s M U sπ π πγ ′
′

′= + ∑

Requires complete observations
Don’t usually need value of all states

5

© Daniel S. Weld 25

Approach 3
• Temporal Difference Learning

 Do backups on a per-action basis
 Don’t try to estimate entire transition function!
 For each transition from s to s’, update:

()()() () ()) (R s s UU s s sUU ππ π πα γ ′← −++

α=

γ =

Learning rate

Discount rate

© Daniel S. Weld 26

Notes
• Once U is learned, updates become 0:

0 (() () ()) when () () ()R s U s U s U s R s U sπ π π πα γ γ′ ′= + − = +

• Similar to ADP
 Adjusts state to ‘agree’ with observed successor

• Not all possible successors

 Doesn’t require M, model of transition function

 Intermediate approach: use M to generate
 “Pseudo experience”

© Daniel S. Weld 27

Notes II

()()() () ()) (R s s UU s s sUU ππ π πα γ ′← −++

• “TD(0)”
 One step lookahead

 Can do 2 step, 3 step…

© Daniel S. Weld 28

TD(λ)
• Or, … take it to the limit!
• Compute weighted average of all future states

1()()) (()(()) t t tt t U sU s U s R s U sπ ππ πγα + −+ +←

1
0

() (1() ())))()((t tt i
i

t
i

t R s U sUU s s sUπ π ππ γ λ λα
∞

+ +
=

−+ −← + ∑
becomes

weighted average
• Implementation

 Propagate current weighted TD onto past states
 Must memorize states visited from start of epoch

© Daniel S. Weld 29

Notes III

• Online: update immediately after actions
 Works even if epochs are infinitely long

• Offline: wait until the end of an epoch
 Can perform updates in any order
 E.g. backwards in time
 Converges faster if rewards come at epoch end
 Why?!?

• ADP Prioritized sweeping heuristic
 Bound # of value iteration steps (small ∆ ave)
 Only update states whose successors have ⇑∆
 Sample complexity ~ADP
 Speed ~ TD

© Daniel S. Weld 30

Q-Learning
• Version of TD-learning where

 instead of learning value funct on states
 we learn funct on [state,action] pairs

• [Helpful for model-free policy learning]

() ()

(

()() ()

(,) (,)) (max (,)

()
be

(,))
comes

a

U s U s

Q a s

U sR s U s

R s Q as sa sa QQ

π ππ π α

α

γ

γ
′

′+

′ ′+← −

+ −←

+

6

Baseball

CMU Robotics

Puma arm learning to throw
training involves 100 throws
(video is lame; learning is good)

© Daniel S. Weld 32

Part II

• So far, we’ve assumed agent had policy

• Now, suppose agent must learn it
 While acting in uncertain world

© Daniel S. Weld 33

Active Reinforcement Learning
Suppose agent must make policy while

learning

First approach:
Start with arbitrary policy
Apply Q-Learning
New policy:

In state s,
Choose action a that maximizes Q(a,s)

Problem?

© Daniel S. Weld 34

Utility of Exploration
• Too easily stuck in non-optimal space

 “Exploration versus exploitation tradeoff”

• Solution 1
 With fixed probability perform a random action

• Solution 2
 Increase est expected value of infrequent states

Properties of f(u, n) ??
U+(s) R(s) + γ maxa f(Σs’ P(s’ | a,s) U+(s’), N(a,s))

 If n > Ne U i.e. normal utility
 Else, R+ i.e. max possible reward

© Daniel S. Weld 35

Part III
• Problem of large state spaces remain

 Never enough training data!
 Learning takes too long

• What to do??

© Daniel S. Weld 36

Function Approximation
• Never enough training data!

 Must generalize what learning to new situations

• Idea:
 Replace large state table by a smaller,
 parameterized function
 Updating the value of state will change the value
 assigned to many other similar states

7

© Daniel S. Weld 37

Linear Function Approximation
• Represent U(s) as a weighted sum of

features (basis functions) of s

• Update each parameter separately, e.g:

()ˆ() ()
ˆ (ˆ ())

i i
i

U sR s U Us s
θ θ

θθ θ γα
θ

∂
+ ′+

∂
−←

1 1 2 2
ˆ () () () ... ()n nU s f s f s f sθ θ θ θ= + + +

© Daniel S. Weld 38

Example
• U(s) = θ0 + θ1 x + θ2 y
• Learns good approximation

10

© Daniel S. Weld 39

But What If…
• U(s) = θ0 + θ1 x + θ2 y

10

+ θ3 z

• Computed Features
 z= √ (xg-x)2 + (yg-y)2

© Daniel S. Weld 40

Neural Nets
• Can create powerful function approximators

 Nonlinear
 Possibly unstable

• For TD-learning, apply difference signal to
neural net output and perform back-
propagation

© Daniel S. Weld 41

Policy Search
• Represent policy in terms of Q functions
• Gradient search

 Requires differentiability
 Stochastic policies; softmax

• Hillclimbing
 Tweak policy and evaluate by running

• Replaying experience

Walking Demo

UT AustinVilla

Aibo walking – before & after 1000
training instances (across field)
… yields fastest known gait!

8

© Daniel S. Weld 43

~Worlds Best Player

• Neural network with 80 hidden units
 Used computed features

• 300,000 games against self
© Daniel S. Weld 44

Applications to the Web
Focused Crawling

• Limited resources
 Fetch most important pages first

• Topic specific search engines
 Only want pages which are relevant to topic

• Minimize stale pages
 Efficient re-fetch to keep index timely
 How track the rate of change for pages?

© Daniel S. Weld 45

Standard Web Search Engine Architecture

crawl the
web

create an
inverted
index

store documents,
check for duplicates,

extract links

inverted
index

DocIds

Slide adapted from Marty Hearst / UC Berkeley]

Search
engine
servers

user
query

show results
To user

© Daniel S. Weld 46

Performance
Rennie & McCallum (ICML-99)

© Daniel S. Weld 47

Methods
• Agent Types

 Utility-based
 Action-value based (Q function)
 Reflex

• Passive Learning
 Direct utility estimation
 Adaptive dynamic programming
 Temporal difference learning

• Active Learning
 Choose random action 1/nth of the time
 Exploration by adding to utility function
 Q-learning (learn action/value f directly – model free)

• Generalization
 Function approximation (linear function or neural networks)

• Policy Search
 Stochastic policy repr / Softmax
 Reusing past experience

© Daniel S. Weld 48

Summary
• Use reinforcement learning when

 Model of world is unknown and/or rewards are delayed
• Temporal difference learning

 Simple and efficient training rule
• Q-learning eliminates need for explicit T model
• Large state spaces can (sometimes!) be handled

 Function approximation, using linear functions
 Or neural nets

