Reinforcement Learning
CSE 573

]
Ever Feel Like Pavlov's Poor Dog?

Logistics

* Reading for Wed
AIMA Ch 20 thru 20.3
* Teams for Project 2
+ Midterm
Typical problems - see ALMA exercises
In class / takehome
Open book / closed
Length

2 Dasic)

573 Topics

Reinforcement

Supervised Learning
Learning | Planning

Logic-Based Probabilistic

Knowledge Representation & Inference

Search
Problem Spaces
Agency

Pole Demo

Review: MDPs
S = set of states set (|S| =n)

A = set of actions (|A| =m)

Pr = transition function Pr(s,a,s')

represented by set of m n x n stochastic

matrices (factored into DBNSs)
each defines a distribution over SxS

R(s) = bounded, real-valued reward fun

represented by an n-vector

Goal for an MDP
Find a policy which:

maximizes expected discounted reward

over an infinite horizon
for a fully observable
Markov decision process.

Bellman Backup

Improve estimate of value function
Vt+1(s) = R(s) +

Max,,, {c(a)+ Expected future reward

Avergd over dest states

Value Iteration

* Assign arbitrary values o each state
(or use an admissible heuristic).

* Iterate over all states
Improving value funct via Bellman Backups

+ Stop the iteration when converges
(V;approaches V* as t > «)

+ Dynamic Programming

2 Dasic) " A

Note on Value Iteration

* Order in which one applies Bellman Backups
Irrelevant!

+ Some orders more efficient than others
:‘0
3

+ 9-0-0-0-0-0-0-O

Action cost = -1. Discount factor, y = 1

9

Expand figure

- Initialize all value functions to O
* First backup sets goal to 10

+ Use animation

Policy evaluation

* Given a policy TT:S>A, find value of each
state using this policy.
* VTI(s) = R(s) + c(TT(s)) +
V[Zges Pr(s'| TT(s).s)VT(s")]
* This is a system of linear equations
involving | S| variables.

Policy iteration

+ Start with any policy (TTy).
+ Iterate
Policy evaluation : For each state find VTi(s).
Policy improvement : For each state s, find action
a* that maximizes Qi(a,s).
If QMi(a*,s) > VTi(s) let TT,,(s) = a*
else let TT,4(s) = TT(s)
- Stop when TT;,; = TT;
+ Converges faster than value iteration but
policy evaluation step is more expensive.

2 Dagic) " 1

Modified Policy iteration

+ Instead of evaluating the actual value of
policy by
Solving system of linear equations, ...

* Approximate it:
Value iteration with fixed policy.

How is learning to act possible when...

+ Actions have non-deterministic effects
Which are initially unknown

* Rewards / punishments are infrequent
Often at the end of long sequences of actions

+ Learner must decide what actions to take

* World is large and complex

Excuse Me...

* MDPs are greaft, IF..
We know the state transition function P(s,a,s')
We know the reward function R(s)

+ But what if we don't? L
Like when we were babies...
And like our dog...

2 Dasic)

Naive Approach
1. Act Randomly for a while

2. Learn

Transition function
Reward function

3. Use value iteration, policy iteration, ...

Problems?

(Or systematically explore all possible actions)

RL Techniques

—_

Passive RL

n

Adaptive Dynamic Programming

w

. Temporal-difference learning
Learns a utility function on states

treats the difference between expected / actual
reward as an error signal, that is propagated
backward in time

Concepts

+ Exploration functions
Balance exploration / exploitation

* Function approximation
Compress a large state space into a small one
Linear function approximation, neural nets, ...
Generalization

9 Donial

Example:
+ Suppose given policy
+ Want to determine how good it is

©Danigl S Weld

Just Like Policy Evaluation

* Except..?

Approach 1

- Direct estimation

Estimate (/(5)as average total reward of epochs
containing s (calculating from s to end of epoch)
* Pros / Cons?

Requires huge amount of data
doesn't exploit Bellman constraints!

Expected utility of a state =
its own reward +
expected utility of successors

Objective: Value Function

3 0.812 0.868 0.918 |1_|

2 0.762 0660 | [=1]

1 0.705 0.655 0.611 0.388

2 Dasic) "

Passive RL

+ Given policy T,

: I.T

=1
estimate U7(s)
+ Not given |t R
transition matrix, nor
1 2 3 4

reward function!
- Epochs: training sequences

(L1)>(12)>1L3)>(12)>(13)>(12)>1L1)>(1.2)>(2.2>(32) -1
(1L1)>(12)>(13)>(2.3)>(2.2)>(2.3)>(3.3) +1
(1L,1)>(12)>11)>(1L2)>1L1)>21)>22)>(2.3)>(3.3) +1
(1,1)>(1,2)>2,2)>(1.2)>(1,3)>(2,3)>(1,3)>(2.3)>(3.3) +1
(1L,1)>21)>22)>21)>1L1)>12)>(13)>(23)>(2.2)>3.2) -1
(L,1)>21)>1L1)>(12)>(22)>(32) -1

2 Dasial 22

Approach 2

Adaptive Dynamic Programming
Requires fully observable environment
Estimate transition function M from training data
Solve Bellman eqn w/ modified policy iteration

U™ =R(s) 'H/Z M ;s'U (s

Pros / Cons:

Requires complete observations
Don't usually need value of a//states

2 Dagic)

Approach 3

* Temporal Difference Learning

Do backups on a per-action basis

Don't try to estimate entire transition function!
For each transition from s fo s', update:

o= Learning rate

R(s) +7U"(s) -U"(s)

Ur(s)«<U”"(s)+

Y = ODiscount rate

Notes IT

. w TD (O)”
One step lookahead

U”(s) «U"(s)+

R(s)+yU7(s") -U"(s)

Can do 2 step, 3 step...

Notes ITT

* Online: update immediately after actions
Works even if epochs are infinitely long

+ Offline: wait until the end of an epoch
Can perform updates in any order
E.g. backwards in time
Converges faster if rewards come at epoch end
Why?!?

* ADP Prioritized sweeping heuristic

Bound # of value iteration steps (small A ave)
Only update states whose successors have fIA
Sample complexity ~ADP

Speed ~ TD

on

Notes

* Once U is learned, updates become O:

when U7 (s) = R(s) +yU " (")

+ Similar o ADP
Adjusts state to ‘agree’ with observed successor
* Not al/ possible successors

Doesn't require M, model of transition function

Intermediate approach: use M fo generate

“"Pseudo experience”

2 Dasic)

TD(L)

* Or, .. take it to the limit!
- Compute weighted average of all future states

R(s) + U7 (S,1) —U"(s,)

U™(s) «U"(s) +

becomes

U™ (5) < U™ (s)+a(R(8) + 71— A)> AU (5,)-U*(5))

i=0

weighted average

* Implementation
Propagate current weighted TD onto past states
Must memorize states visited from start of epoch

28

Q-Learning

* Version of TD-learning where
instead of learning value funct on states

we learn funct on [state,action] pairs
U7 (s) «U"(s)+a(R(s)+pyU”"(sY-U"(s)

becomes

Q(a,s) « Q(a,s)+ax(R(s)+y maax Q(@',s")-Q(a,s)

* [Helpful for model-free policy learning]

30

2 Dagic)

Baseball

CMU Robotics

Puma arm learning to throw
training involves 100 throws
(video is lame; learning is good)

Part IT

+ So far, we've assumed agent had policy

* Now, suppose agent must learn it
While acting in uncertain world

2 Dasic) " 3

Active Reinforcement Learning

Suppose agent must make policy while
learning

First approach:
Start with arbitrary policy
Apply Q-Learning
New policy:
In state s,
Choose action a that maximizes Q(a,s)

Problem?

Utility of Exploration
* Too easily stuck in non-optimal space
“Exploration versus exploitation tradeoff"”

* Solution 1
With fixed probability perform a random action
* Solution 2
Increase est expected value of infrequent states
U*(s) € R(s) + y max, f(25' P(s' | a,s) U*(s"), N(a,s))
Properties of f(u, n) ??

Ifn>N, U ie. normal utility
Else, R* i.e. max possible reward

Part TIT

* Problem of large state spaces remain
Never enough training data!
Learning takes too long

* What to do??

Function Approximation

* Never enough training data!
Must generalize what learning to new situations

+ Idea:
Replace large state table by a smaller,
parameterized function
Updating the value of state will change the value
assigned to many other similar states

Linear Function Approximation

* Represent U(s)as a weighted sum of
features (basis functions) of s

U, (s)=6,,(5)+0,f,(s)+..+6,f (5)

n-'n

* Update each parameter separately, e.g-

R(s)+7U,(s)-U,(s) #

0, <0 +

Example

" U(s)=0p+0; x+ 0,y
* Learns good approximation

10

2 Dasic)

38

But What If..

cU(S)=0p+0; x+0,y +60;52

+ Computed Features

2=\ (xg-X)2 + (ygy)?

10

Neural Nets

* Can create powerful function approximators
Nonlinear
Possibly unstable
* For TD-learning, apply difference signal to
neural net output and perform back-
propagation

Policy Search

* Represent policy in terms of Q functions

+ Gradient search

Requires differentiability
Stochastic policies; softmax
+ Hillclimbing

Tweak policy and evaluate by running
* Replaying experience

4l

Walking Demo
UT AustinVilla

Aibo walking - before & after 1000
training instances (across field)
.. yields fastest known gait!

* Neural network with 80 hidden units
Used computed features
- 300,000 games against self

©Danigl S Weld

43

Applications to the Web

Focused Crawling

* Limited resources
Fetch most important pages first
+ Topic specific search engines
Only want pages which are relevant to topic
* Minimize stale pages
Efficient re-fetch to keep index timely
How track the rate of change for pages?

2 Dasic) "

44

Standard Web Search Engine Architecture

store documents,
check for duplicates, -
extract links
/

create an
inverted
index

«— |inverted

Search

engine
servers,

Slide adapted from Marty Hearst / UC Berkeley]

45

Performance
Rennie & McCallum (ICML-99)

Spidering CS Departments

Optimal —

RL Future (;’bims) rrrrrrr

RL Immediate (2 bins) -~
Breadth-First

Percent Research Papers Found

1 15 2 25 3 235 4 45 ©&
Percent Hyperlinks Followed

2 Dasial "

A6

Methods

+ Agent Types
gU'I‘il iTkaEased

Action-value based (Q function)

Reflex
* Passive Learning

Direct utility estimation

Adaptive dynamic programming

Temporal Jlffference earning
* Active Learning

Choose random action 1/nth of the time

Exploration by adding to utility function

Q-learning (learn action/value f directly - model free)
- Generalization

Function apﬁroximaﬁon (linear function or neural networks)
* Policy Searc

Stochastic policy repr / Softmax

Reusing past experience

2 Danigl S Vield

Summary

+ Use reinforcement learning when
Model of world is unknown and/or rewards are delayed
+ Temporal difference learning
Simple and efficient training rule
*+ Q-learning eliminates need for explicit T model
+ Large state spaces can (sometimes!) be handled
Function approximation, using linear functions
Or neural nets

2 Dagic) "

48

