
1

Markov Decision Processes

CSE 573 

Logistics
• Reading

 AIMA Ch 21 (Reinforcement Learning)
• Project 1 due today

 2 printouts of report
 Email Miao with 

• Source code 
• Document in .doc or .pdf

• Project 2 description on web
 New teams 

• By Monday 11/15 - Email Miao w/ team + direction
 Feel free to consider other ideas

Idea 1: Spam Filter
• Decision Tree Learner   ?
• Ensemble of…                 ?
• Naïve Bayes ?

 Bag of Words Representation
 Enhancement

• Augment Data Set         ?

Idea 2: Localization
• Placelab data
• Learn “places”

 K-means clustering
• Predict movements 

between places
 Markov model, or ….

• ???????

Proto-idea 3: Captchas

• The problem of software robots
• Turing test is big business
• Break or create

 Non-vision based?

Proto-idea 4: Openmind.org

• Repository of Knowledge in NLP
• What the heck can we do with it????
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Openmind Animals Proto-idea 4: Wordnet
www.cogsci.princeton.edu/~wn/

• Giant graph of concepts
 Centrally controlled semantics

• What to do?

• Integrate with FAQ lists, Openmind, ???

573 Topics 

Agency
Problem Spaces 

Search
Knowledge Representation & Inference 

Planning
Supervised
Learning 

Logic-Based Probabilistic

Reinforcement
Learning 

Where are We?
• Uncertainty
• Bayesian Networks
• Sequential Stochastic Processes

 (Hidden) Markov Models
 Dynamic Bayesian networks (DBNs)
 Probabalistic STRIPS Representation

• Markov Decision Processes (MDPs)
• Reinforcement Learning

An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio

Planning

Percepts Actions

What action 
next?  

Static 

Fully Observable 

StochasticInstantaneous 

Full 

Perfect

Planning under uncertainty

Environment
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Models of Planning

POMDPConformant???

POMDPContingent ???

MDPContingentClassical
Complete 
Observation

Partial

None

Uncertainty
Deterministic   Disjunctive   Probabilistic

Recap:  Markov Models

Q: set of states

π: init prob distribution

A: transition probability distribution
ONE per ACTION
Markov assumption
Stationary model assumption

A Factored domain

• Variables : 
 has_user_coffee (huc) , has_robot_coffee

(hrc), robot_is_wet (w), has_robot_umbrella
(u), raining (r), robot_in_office (o)

• Actions :
 buy_coffee, deliver_coffee, get_umbrella, 

move

 What is the number of states?
 Can we succinctly represent transition 

probabilities in this case?

Probabilistic “STRIPS”?
Move:office cafe

inOffice

Raining

hasUmbrella

-inOffice
+Wet

P<.1

-inOffice

-inOffice
+Wet

-inOffice

Dynamic Bayesian Nets 

huc

hrc

w 

u 

r 

o o 

r 

u 

w 

hrc

huc

2

2

4

16

4

8 Total values 
required to 
represent 
transition 
probability 
table = 36

Vs 4096

Dynamic Bayesian Net for Move

huc

hrc

w 

u 

r 

o o’ 

r’ 

u’ 

w’ 

hrc’

huc’

Pr(r=T) Pr(r=F)
0.95     0.5

Pr(w’|u,w)
u,w 1.0   (0)
u,w 0.1   (0.9)
u,w 1.0   (0)
u,w 1.0   (0)                 

Actually table 
should have 16 
entries!
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Actions in DBN

huc
hrc
w 

u 

r 
o o 

r 
u 

w 

hrc
huc

T        T+1 
a 

Last Time:
Actions in DBN
Unrolling

Don’t need them Today

Observability
• Full Observability
• Partial Observability
• No Observability

Reward/cost
• Each action has an associated cost.
• Agent may accrue rewards at different 

stages. A reward may depend on
 The current state
 The (current state, action) pair
 The (current state, action, next state) triplet

• Additivity assumption : Costs and rewards are 
additive.

• Reward accumulated = R(s0)+R(s1)+R(s2)+…

Horizon
• Finite : Plan till t stages. 

 Reward = R(s0)+R(s1)+R(s2)+…+R(st)
• Infinite : The agent never dies.

 The reward R(s0)+R(s1)+R(s2)+… 
 Could be unbounded.

 Discounted reward : R(s0)+γR(s1)+ γ2R(s2)+…
 Average reward : lim n ∞ (1/n)[Σi R(si)]

 ?

Goal for an MDP
• Find a policy which:

 maximizes  expected discounted reward
 over an infinite horizon
 for a fully observable
 Markov decision process.

Why shouldn’t the planner find a plan??
What is a policy??

Optimal value of a state
• Define V*(s) `value of a state’ as the maximum 

expected discounted reward achievable from this 
state.

• Value of state if we force it to do action “a”
right now, but let it act optimally later:

Q*(a,s)=R(s) + c(a) + 
γΣs’εS Pr(s’|a,s)V*(s’)

• V* should satisfy the following equation:
V*(s) = maxaεA {Q*(a,s)}

= R(s) + maxaεA {c(a) + γΣs’εS Pr(s’|a,s)V*(s’)}
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Value iteration
• Assign an arbitrary assignment of values to 

each state (or use an admissible heuristic).

• Iterate over the set of states and in each 
iteration improve the value function as follows:

Vt+1(s)=R(s) + maxaεA {c(a)+γΣs’εS Pr(s’|a,s) Vt(s’)} 
`Bellman Backup’

• Stop the iteration appropriately. Vt approaches 
V* as t increases.

Max

Bellman Backup

a1

a2

a3

s

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Qn+1(s,a)

Vn+1(s)

Stopping Condition
• ε-convergence : A value function is ε –optimal 

if the error (residue) at every state is less 
than ε.  
 Residue(s)=|Vt+1(s)- Vt(s)| 
 Stop when maxsεS R(s) < ε

Complexity of value iteration
• One iteration takes O(|S|2|A|) time.
• Number of iterations required :     

poly(|S|,|A|,1/(1-γ))
• Overall, the algorithm is polynomial in state 

space!
• Thus exponential in number of state 

variables.

Computation of optimal policy
• Given the value function V*(s), for each 

state, do Bellman backups and the action 
which maximises the inner product term is 
the optimal action.

• Optimal policy is stationary (time 
independent) – intuitive for infinite horizon 
case.

Policy evaluation
• Given a policy Π:S A, find value of each 

state using this policy.
• VΠ(s) = R(s) + c(Π(s)) +

γ[Σs’εS Pr(s’| Π(s),s)VΠ(s’)]
• This is a system of linear equations 

involving |S| variables.
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Bellman’s principle of optimality
• A policy Π is optimal if VΠ(s) ≥ VΠ’(s) for 

all policies Π’ and all states s є S.
• Rather than finding the optimal value 

function, we can try and find the optimal 
policy directly, by doing a policy space 
search.

Policy iteration
• Start with any policy (Π0).
• Iterate

 Policy evaluation : For each state find VΠi(s).
 Policy improvement : For each state s, find action 

a* that maximises QΠi(a,s).
 If QΠi(a*,s) > VΠi(s) let Πi+1(s) = a* 
 else let Πi+1(s) = Πi(s)

• Stop when Πi+1 = Πi
• Converges faster than value iteration but 

policy evaluation step is more expensive.

Modified Policy iteration
• Rather than evaluating the actual value of 

policy by solving system of equations, 
approximate it by using value iteration with 
fixed policy.

RTDP iteration

• Start with initial belief and initialize value of 
each belief as the heuristic value.

• For current belief 
 Save the action that minimises the current state 

value in the current policy.
 Update the value of the belief through Bellman 

Backup.
• Apply the minimum action and then randomly 

pick an observation.
• Go to next belief assuming that observation.
• Repeat until goal is achieved.

Fast RTDP convergence
• What are the advantages of RTDP?
• What are the disadvantages of RTDP?

How to speed up RTDP?

Other speedups
• Heuristics
• Aggregations
• Reachability Analysis
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Going beyond full observability
• In execution phase, we are uncertain 

where we are, 
• but we have some idea of where we can be.
• A belief state = ?

Models of Planning

POMDPConformant???

POMDPContingent ???

MDPContingentClassical
Complete 
Observation

Partial

None

Uncertainty
Deterministic   Disjunctive   Probabilistic

Speedups
• Reachability Analysis
• More informed heuristic

Mathematical modelling
• Search space :  finite/infinite state/belief space.

 Belief state = some idea of where we are 
• Initial state/belief.
• Actions 
• Action transitions (state to state / belief to 

belief)
• Action costs
• Feedback : Zero/Partial/Total

Algorithms for search
• A* : works for sequential solutions.
• AO* : works for acyclic solutions.
• LAO* : works for cyclic solutions. 
• RTDP : works for cyclic solutions.

Full Observability
• Modelled as MDPs. (also called fully 

observable MDPs)
• Output : Policy (State Action)
• Bellman Equation

V*(s)=maxaεA(s) [c(a)+Σs’εS V*(s’)P(s’|s,a)]
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Partial Observability
• Modelled as POMDPs. (partially observable 

MDPs). Also called Probabilistic Contingent 
Planning.

• Belief = probabilistic distribution over 
states. 

• What is the size of belief space?
• Output : Policy (Discretized Belief -> Action)
• Bellman Equation

V*(b)=maxaεA(b) [c(a)+ΣoεO P(b,a,o) V*(ba
o)]

No observability
• Deterministic search in the belief space.
• Output ?


