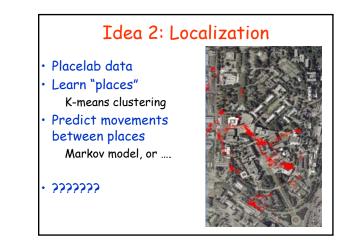
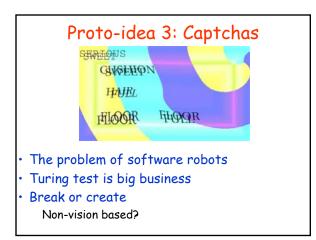
Markov Decision Processes

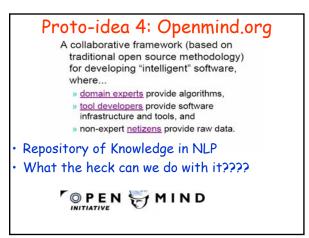
CSE 573

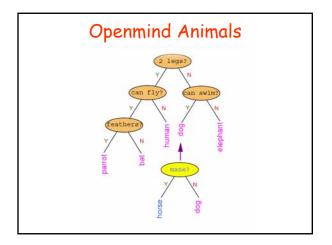
Feel free to consider other ideas

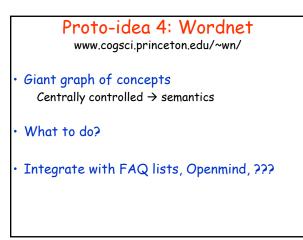


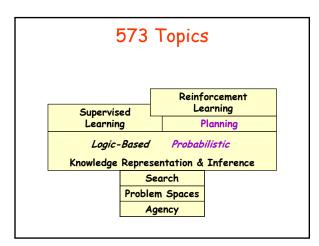


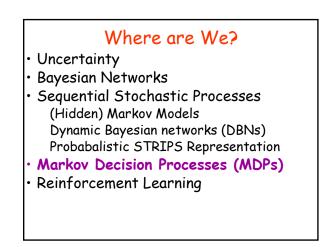


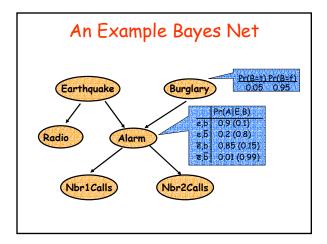


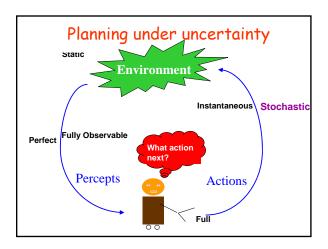




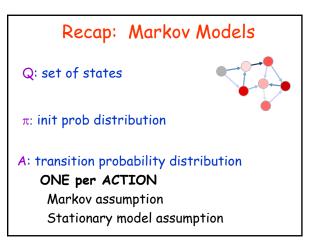


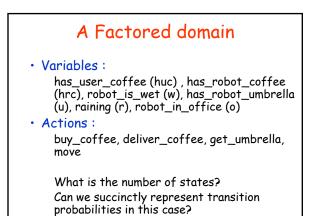


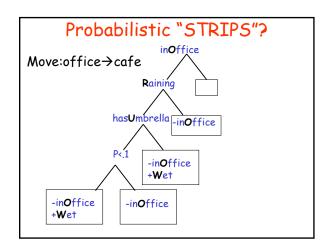


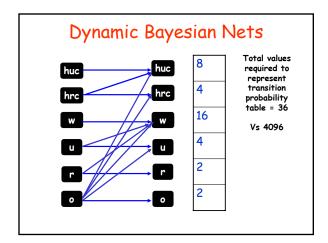


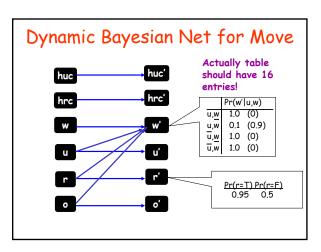
Models of Planning					
	Uncertainty Deterministic Disjunctive Probabilistic				
Complete Observation	Classical	Contingent	MDP		
Partial	333	Contingent	POMDP		
None	? ??	Conformant	POMDP		

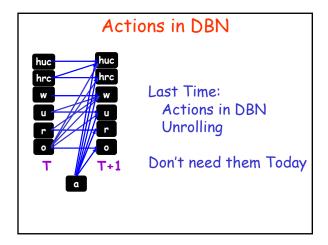












Observability

- Full Observability
- Partial Observability
- No Observability

Reward/cost

- Each action has an associated cost.
- Agent may accrue rewards at different stages. A reward may depend on The current state
 - The (current state, action) pair
 - The (current state, action, next state) triplet
- Additivity assumption : Costs and rewards are additive.
- Reward accumulated = R(s⁰)+R(s¹)+R(s²)+...

Horizon

- Finite : Plan till t stages. Reward = $R(s^0)+R(s^1)+R(s^2)+...+R(s^{\dagger})$
- Infinite : The agent never dies. The reward R(s⁰)+R(s¹)+R(s²)+... Could be unbounded.

?

 $\begin{array}{l} \text{Discounted reward}: R(s^0) + \gamma R(s^1) + \gamma^2 R(s^2) + ... \\ \text{Average reward}: \lim_{n \to \infty} (1/n) [\Sigma_i R(s^i)] \end{array}$

Goal for an MDP

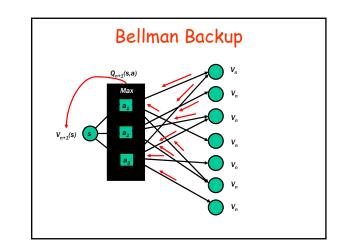
Find a *policy* which: maximizes *expected discounted reward* over an *infinite horizon* for a *fully observable* Markov decision process.

Why shouldn't the planner find a plan?? What is a policy??

Optimal value of a state Define V*(s) `value of a state' as the maximum expected discounted reward achievable from this state. Value of state if we force it to do action "a" right now, but let it act optimally later: Q*(a,s)=R(s) + c(a) +

- γΣ_{s'ε5} Pr(s'|a,s)V*(s')
 V* should satisfy the following equation:
 - $V^{*}(s) = \max_{a \in A} \{Q^{*}(a,s)\}$ = R(s) + max_{a \in A} {c(a) + $\gamma \Sigma_{s' \in S} Pr(s'|a,s)V^{*}(s')$ }

- Assign an arbitrary assignment of values to each state (or use an admissible heuristic).
- Iterate over the set of states and in each iteration improve the value function as follows:
 - $V_{t+1}(s) = R(s) + \max_{a \in A} \{c(a) + \gamma \Sigma_{s' \in S} \Pr(s' | a, s) \ V_t(s')\}$ `Bellman Backup'
- Stop the iteration appropriately. $V_{\rm t}$ approaches V* as t increases.



Stopping Condition

 ϵ -convergence : A value function is ϵ -optimal if the error (residue) at every state is less than ϵ .

Residue(s)= $|V_{t+1}(s) - V_t(s)|$ Stop when max_{ses} R(s) < ϵ

Complexity of value iteration

- One iteration takes $O(|S|^2|A|)$ time.
- Number of iterations required : poly(|S|,|A|,1/(1-y))
- Overall, the algorithm is polynomial in state space!
- Thus exponential in number of state variables.

Computation of optimal policy

- Given the value function V*(s), for each state, do Bellman backups and the action which maximises the inner product term is the optimal action.
- →Optimal policy is stationary (time independent) - intuitive for infinite horizon case.

Policy evaluation

Given a policy ∏:S→A, find value of each state using this policy.
 V^Π(s) = P(s) + c(∏(s)) +

$$V^{(s)} = R(s) + c(\Pi(s)) + c(\Pi(s))$$

$$\gamma[\Sigma_{s' \in S} \Pr(s' \mid \Pi(s), s) V^{(s')}]$$

• This is a system of linear equations involving |S| variables.

Bellman's principle of optimality

- A policy Π is optimal if $V^{\Pi}(s) \ge V^{\Pi'}(s)$ for all policies Π' and all states $s \in S$.
- Rather than finding the optimal value function, we can try and find the optimal policy directly, by doing a policy space search.

$\begin{array}{l} \mbox{Policy iteration} \\ \mbox{Start with any policy } (\Pi_0). \\ \mbox{Iterate} \\ \mbox{Policy evaluation}: \mbox{For each state find } V^{\Pi_i}(s). \\ \mbox{Policy improvement}: \mbox{For each state } s, \mbox{find action} \\ a^* \mbox{ that maximises } Q^{\Pi_i}(a,s). \end{array}$

If $Q^{\prod_{i}}(a^{*},s) > V^{\prod_{i}}(s)$ let $\prod_{i+1}(s) = a^{*}$

else let $\Pi_{i+1}(s) = \Pi_i(s)$

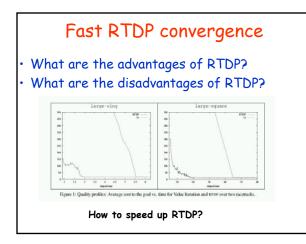
 Stop when Π_{i+1} = Π_i
 Converges faster than value iteration but policy evaluation step is more expensive.

Modified Policy iteration

• Rather than evaluating the actual value of policy by solving system of equations, approximate it by using value iteration with fixed policy.

RTDP iteration

- Start with initial belief and initialize value of each belief as the heuristic value.
- For current belief
 Save the action that minimises the current state value in the current policy.
 Update the value of the belief through Bellman Backup.
- Apply the minimum action and then randomly pick an observation.
- Go to next belief assuming that observation.
- Repeat until goal is achieved.

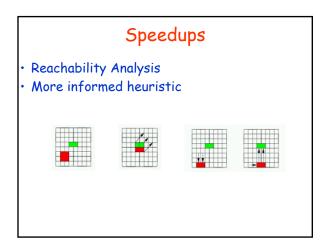


Other speedups

- Heuristics
- Aggregations
- Reachability Analysis

- In execution phase, we are uncertain where we are,
- but we have some idea of where we can be.
- A belief state = ?

Models of Planning				
	Deterministic	Uncertainty Disjunctive	1ty e Probabilistic	
Complete Observation	Classical	Contingent	MDP	
Partial	3 55	Contingent	POMDP	
None	3 55	Conformant	POMDP	



Mathematical modelling

- Search space : finite/infinite state/belief space. Belief state = some idea of where we are
- Initial state/belief.
- Actions
- Action transitions (state to state / belief to belief)
- Action costs
- Feedback : Zero/Partial/Total

Algorithms for search

- A* : works for sequential solutions.
- AO* : works for acyclic solutions.
- · LAO* : works for cyclic solutions.
- RTDP : works for cyclic solutions.

Full Observability

- Modelled as MDPs. (also called fully observable MDPs)
- Output : Policy (State → Action)
- Bellman Equation
 V*(s)=max_{aεA(s)} [c(a)+Σ_{s'εS} V*(s')P(s'|s,a)]

Partial Observability

- Modelled as POMDPs. (partially observable MDPs). Also called Probabilistic Contingent Planning.
- Belief = probabilistic distribution over states.
- What is the size of belief space?
- Output : Policy (Discretized Belief -> Action)

Bellman Equation

•

 $V^{*}(b)=\max_{a \in A(b)} [c(a)+\Sigma_{o \in O} P(b,a,o) V^{*}(b_{a}^{o})]$

No observability

Deterministic search in the belief space.
Output ?