Bayesian Networks

CSE 573

Last Time

* Basic notions
Atomic events
Probabilities
Joint distribution
+ Inference by enumeration
Independence & conditional independence
Bayes' rule
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Axioms of Probability Theory

+ All probabilities between 0 and 1
0<P(A)¢1

P(true) =1

P(false) = 0.

* The probability of disjunction is:
P(Av B)=P(A)+P(B)-P(AAB)

True

Conditional Probability

* P(A | B) is the probability of A given B
* Assumes that Bis the only info known.

* Defined by: P(ANE)

P(B)

P(A|B) =

True

Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch | = cateh | catch| = catch
cavity | 108 .012 .072| .008
= cavity | .016| .064 144 576

For any proposition ¢, sum the atomic events where it is true:
P(¢) = Liwps Plw)

P(toothache)=.108+.012+.016+.064
=.20 or 20%

Inference by Enumeration

Start with the joint distribution:

toothache = toothache

cateh| = catch catch | - catch
caviry | 108 .012 .072]| .008
.064 144 | .576

= cavity | .016

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
0.016 + 0.064

= 0.108 + 0.012 + 0.016 + 0.064

P(—cavity|toothache) =

0.4
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Problems ??

+ Worst case time: O(nd)

Where d = max arity

And n = number of random variables
- Space complexity also O(n9)

Size of joint distribution
- How get O(n?) entries for table??

Value of cavity &

catch irrelevant -

When computing
P(toothache)

reathache =1 teothache

cateh| = eatch | carch | = catch
cenvite | 108 .012 .072| .008
= cavity | 016 064 144 | 576

Independence

True

Independence

* Aand Bare /independent iff:

P(A[B)=P(A) These two constraints are
logically equivalent
P(B| A) = P(B)

* Therefore, if Aand Bare independent:

P(AAB)
P(B)

P(A|B)= P(A)

P(AAB)=P(A)P(B)
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Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A,B)=P(AP(B)

Cavity
Cavity decomposesinto \J0othache Catch
Toothache Catch

Weather

P(Toothache, Cateh, Cavity, Weather)

= P(Toothache, Catch, Cavity)P(W eather)

32 entries reduced to 12; for n independent biased coins, 2" — n

Complete independence is powerful but rare

What to do if it doesn't hold?

2

Conditional Independence
A&B rot independent, since P(A|B) < P(A)

True

Conditional Independence
But: A4&B are made independent by —C

True

i T
o8 2N
g e
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Conditional Independence

P(Toothache, Cavity, Catch) has 2* — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend
on whether | have a toothache:

(1) P(catch|toothache, cavity) = Plcatch|cavity)
The same independence holds if | haven't got a cavity:
(2) Plcatch|toothache, ~cavity) = P(catch|-cavity)

Cateh is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Instead of 7 entries, only need 5

Dogiel S \Weld

Power of Cond. Independence

Often, using conditional independence
reduces the storage complexity of the joint
distribution from exponential to linear!!

Conditional independence is the most basic &
robust form of knowledge about uncertain
environments.

Doniel S \Weld

Use to Compute Diagnostic
Probability from Causa/Probability

P(Ef fect|Cause) P(Cause)
P(Ef fect)

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001,
P(s) = 0.1,
P(sIM)= 0.8

P(Cause|Ef fect) =

P(M|S) = Plslm)P(m) _ 0.8 x 0.0001
T Py 01

Note: posterior probability of meningitis still very small!

= 0.0008

Conditional Independence II

P(catch | toothache, cavity) = P(catch | cavity)
P(catch | toothache,—cavity) = P(catch |-cavity)

Equivalent statements:
P(Toothache|Cateh, Cavity) = P(Toothache|Cavity)
P{Toothache, Catch|Cavity) = P(Toothache|Cavity)|P(Cateh|Cavity)

Why only 5 entries in table?

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cuavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

le., 24+ 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)
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Bayes Rule

P(EIH)P(H)

PHIB =" 0

Simple proof from def of conditional probability:

P(HAE
P(HIE)= (P(I/E\) ) (Def. cond. prob.)
P(E|H)= P(;(Q)E) (Def. cond. prob.)

P(H AE)=P(E|H)P(H) (Multby P(H)in line 1)

P(EIH)P(H)

QED: P(H|E)= P(E)

(Substitute #3 in #2)
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Bayes' Rule & Cond. Independence

P(Cavity|toothache A catch)
e P(toothache A cateh|Coavity)P(Coavity)
a P(toothache|Cavily)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Ef fect,) = P(Cause)ILP(Ef fect;|Cause)
F oy

Total number of parameters is /inear in n
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Bayes Nets

*In general, joint distribution Pover set of
variables (X7 x ... x X}) requires exponential
space for representation & inference

*BNs provide a graphical representation of
conditional independence relations in P
usually quite compact
requires assessment of fewer parameters, those
being quite natural (e.g., causal)
efficient (usually) inference: query answering and
belief update

An Example Bayes Net

@

Independence (in the extreme)

‘If X;, X5,... X;,are mutually independent, then
P(X], Xz,... Xn) = P(X])P(Xz) P(Xn)
+Joint can be specified with n parameters
cf. the usual 27-1 parameters required
*While extreme independence is unusual,
Conditional independence is common
*BNs exploit this conditional independence
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Earthquake Example 5
(con't)

+If T know if A/arm, no other evidence influences
my degree of belief in Nbricalls

PINIINZ,A,EB) = PINI/A)

also: AINZINZ,A,E,B) = P(INZ|A) and P(E/B) = P(E)
By the chain rule we have

PINLNZ,AE,B) = AINIINZ,AE,B) PIN2/AE,B)-
P(AIEB) P(E|B) P(B)
=P(N1JA) -P(N2|A) -P(A[BE) -P(E) -P(B)

+Full joint requires only 10 parameters (cf. 32)
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BNs: Qualitative Structure

*Graphical structure of BN reflects
conditional independence among variables
Each variable X'is a node in the DAG
Edges denote direct probabilistic influence
usually interpreted causally
parents of Xare denoted Par(X)
X is conditionally independent of all

nondescendents given its parents

Graphical test exists for more general
independence
“Markov Blanket"

on

Given Parents, X is Independent of
Non-Descendants
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For Example

Given Markov Blanket, X is
Independent of All Other Nodes

MB(X) = Par(X) u Childs(X) u Par(Childs(X))
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Pr(B=1) Pr(B=f)
Burglary 005095

Pr(A|E,B)

Earthquake

/ eb 09 (01)
eb 02(08)
e 085 (0.15)

eb 0.01(0.99)

Conditional Probability Tables
*For complete spec. of joint dist., guantify BN

*For each variable X, specify CPT: P(X / Par(X))
number of params /ocally exponential in /Par(X)/

If Xy, X5,... X, is any topological sort of the

network, then we are assured:
/D(X”,X”_] X]) = P{Xn/ Xﬂ—] "'X])'P(Xn—] /XH—Z X])
= P(Xn/ Pa/‘(Xn)) “PX,_q / Par(X,_) .. P(Xy)

Inference in BNs

*The graphical independence representation
yields efficient inference schemes
*We generally want to compute
Pr(X), or
Pr(X/E)where Eis (conjunctive) evidence
+Computations organized by network topology
*One simple algorithm:
variable elimination (VE)

P(B | J=true, M=true)

Earthquake Burglary
|

P(blj.m) = aP(b) XP(e) ZP(a|b,e)P(jla)P(m,a)
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Structure of Computation

Pimulb=e)
06

Pijl =)
05

Fiml =)
01

Pimla)
70

Dynamic Programming

Variable Elimination

*A factoris a function from some set of
variables into a specific value: e.g., A(€,ANI1)
CPTs are factors, e.g., P(A/E,B) function of A,E,B
*VE works by e/iminating all variables in turn
until there is a factor with only query variable

*To eliminate a variable:
Joinall factors containing that variable (like DB)
sum out the influence of the variable on new
factor
exploits product form of joint distribution

2 Dasic) " 3

Example of VE: P(N1)

P(N1)
N2ABEP(N1 N2,AB,E)
NZAB e P(N1JA)P(N2|A) P(B)P(A|B,E)P(E)

=2 AP(N1[A) ENZP(N2|A) EBP(B) ZEP(A|B,E)P(E)

=3 AP(N1|A) ENZP(N2|A) EBP(B) f1(A,B)

= EAP(N1|A) wP(N2|A) 2(A)

= 3, P(N1]A) 13(A)

= f4(N1)

Notes on VE

-Each operation is a simply multiplication of
factors and summing out a variable
*Complexity determined by size of largest
factor

e.g., in example, 3 vars (not )

linear in number of vars,

exponential in largest factorelimination ordering

greatly impacts factor size

optimal elimination orderings: NP-hard

heuristics, special structure (e.g., polytrees)
*Practically, inference is much more
-tractable using structure of this sort
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