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Knowledge Representation 
II 

CSE 573
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Logistics

•Reading for Monday
 ???

•Office Hours 
 No Office Hour Next Monday (10/25)
 Bonus Office Hour: Today 3-4

• Or email me
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573 Topics 

Agency
Problem Spaces 

Search
Knowledge Representation & Inference 

Planning
Supervised
Learning 

Logic-Based Probabilistic

Reinforcement
Learning 
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Ways to make “plans”
Generative Planning

Reason from first principles (knowledge of actions)
Requires formal model of actions

Case-Based Planning
Retrieve old plan which worked on similar problem
Revise retrieved plan for this problem

Reinforcement Learning
Act ”randomly” - noticing effects 
Learn reward, action models, policy
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Generative Planning

Input
Description of (initial state of) world (in some KR)
Description of goal (in some KR)
Description of available actions (in some KR)

Output
Controller

E.g. Sequence of actions
E.g. Plan with loops and conditionals
E.g. Policy =  f: states -> actions

© Daniel S. Weld 6

Input Representation
• Description of initial state of world

 E.g., Set of propositions:
 ((block a)  (block b) (block c)  (on-table a) (on-table 

b) (clear a)  (clear b) (clear c) (arm-empty))
• Description of goal: i.e. set of worlds or ??

 E.g., Logical conjunction
 Any world satisfying conjunction is a goal
 (and (on a b) (on b c)))

• Description of available actions
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Simplifying Assumptions

Environment

Percepts Actions

What action 
next?  

Static 
vs. 

Dynamic

Fully Observable 
vs.

Partially 
Observable

Deterministic 
vs. 

Stochastic

Instantaneous 
vs. 

Durative

Full vs. Partial 
satisfaction

Perfect
vs.

Noisy
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Classical Planning

EnvironmentStatic 

Fully Observable 
Deterministic Instantaneous 

Full

Perfect

I  = initial state      G =  goal state Oi(prec) (effects)

[ I ] Oi Oj Ok Om [ G ]
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Planning Outline
• The planning problem
• Representation
• Compilation to SAT
• Searching world states

 Regression
 Heuristics

• Graphplan
• Reachability analysis & heuristics

• Planning under uncertainty
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How Represent Actions?
• Simplifying assumptions

 Atomic time
 Agent is omniscient (no sensing necessary). 
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions
 Actions: 

• Precondition: (conjunction of literals)
• Effects (conjunction of literals)

north11 north12

W0 W2W1
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How Represent Actions?

• Simplifying assumptions
 Atomic time
 Agent is omniscient (no sensing necessary). 
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions
 Actions: 

• Precondition: (conjunction of literals)
• Effects (conjunction of literals)
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How Encode STRIPS Logic ?
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Time in STRIPS Representation
• Action = function: worldState→ worldState
• Precondition 

 says where function defined
• Effects 

 say how to change set of propositions

a
anorth11

W0 W1

north11
precond: (and (agent-at 1 1)

(agent-facing north))

effect: (and  (agent-at 1 2)
(not (agent-at 1 1)))

Note: 
stri

ps doesn
’t

allo
w deriv

ed eff
ect

s; 

you must b
e co

mplete
!
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Action Schemata

(:operator pick-up
:parameters ((block ?ob1))
:precondition (and (clear ?ob1) 

(on-table ?ob1) 
(arm-empty))

:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (arm-empty))
(holding ?ob1)))

• Instead of defining: 
pickup-A and pickup-B and …

• Define a schema:
Note: strips doesn’t

allow derived effects; 

you must be complete!}
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Time Arguments in Logic

On(a, b, 0)
Have(bluePaint, 0)
Red(a, 0)

On(b,a, ?)
Blue(a, ?)

Init
ial 

Con
diti

ons
 

Goal

Closed World Assumption
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Preconditions & Effects
• If action is executed at time t

Paint(a, blue, t)
p: Have(bluePaint, t-1)
e: Blue(a, t+1)

¬Have(bluePaint, t+1)

Paint(a, blue, t) => 
Have(bluePaint, t-1)

Paint(a, blue, t) => 
Blue(a, t+1) ∧ ¬Have(bluePaint, t+1)

Propositions: even
Actions: odd
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Issues
• Frame problem
• Ramification problem
• Qualification problem

Paint(a, blue)
p: Have(bluePaint)
e: Blue(a)

¬Have(bluePaint)

On(a, b)
Red(a)

Blue(a)
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Compilation to SAT
• Init state
• Actions
• Goal ?
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The Idea
• Suppose a plan of length n exists
• Encode this hypothesis in SAT

 Init state true at t0
 Goal true at Tn
 Actions imply effects, etc

• Look for satisfying assignment
• Decode into plan

RISC: The Revolutionary Excitement
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History
• Green IJCAI-69
• STRIPS AIJ-71
• Decades of work on “specialized theorem 

provers”
• Kautz+Selman ECAI-92
• Rapid progress on SAT solving
• Kautz+Selman AAAI-96

 Electrifying results (on hand coded formulae)
• Kautz, McAllester & Selman KR-96

 Variety of encodings (but no compiler)
• CSE 573 => Ernst et al. IJCAI-97
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Blackbox
• Blackbox solves planning problems by converting 

them into SAT. 
 Very fast
 Initially hand copiled SAT; later…
 Tried different solvers

• Local search (GSAT)
• Systematic search with EBL (RelSAT)

• In 2000, GP-CSP could beat Blackbox
 But in 2001, a newer “SUPER-DUPER” SAT solver called 

CHAFF was developed, 
 CSP people are trying to copy over the ideas from CHAFF 

to CSP.
• In 2004, Blackbox…
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Medic

Init state
Actions
Goal

Plan

Planner

Compiler Logic 
Simplification DecoderSAT

Solver

© Daniel S. Weld 23

Axioms

¬Act1(…, t) ∨ ¬Act2(…, t)Exclude
Act1(…, t) ∨ Act2(…, t) ∨ …At-least-one
Classical / ExplanatoryFrame

Paint(A,Red,t) ⇒ Block(A, t-1)
Paint(A,Red,t) ⇒ Color(A, Red, t+1)

A ⇒ P, E
The goal holds at t=2nGoal
The initial state holds at t=0Init
Description / ExampleAxiom
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Space of Encodings
• Action Representations

 Regular
 Simplyu-Split
 Overloaded-Split
 Bitwise

• Frame Axioms
 Classical
 Explanitory
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Frame Axioms
• Classical

 ∀P, A, t  if   P@t-1  ∧
 A@t ∧
 A doesn’t affect P 
 then P@t+1

• Explanatory
 ∀P, A, t  if   P@t-1  ∧ ¬P@t+1
 then A1@t ∨ A2@t ∨ …
 forall Ai that do affect P
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Action Representation

Paint-A-Red,
Paint-A-Blue,
Move-A-Table

fully-instantiated actionRegular

ExampleOne Propositional
Variable per

Representation

Paint-Arg1-A ∧
Paint-Arg2-Red

fully-instantiated 
action’s argument

Simply-split

Act-Paint ∧ Arg1-A
∧ Arg2-Red

fully-instantiated 
argument

Overloaded-split

more
vars

more
clses

Bit1 ∧ ~Bit2 ∧
Bit3

Binary encodings of 
actions

Bitwise

Paint-A-Red = 5
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Main Ideas
• Clear taxonomy
• Utility of 

 Explanatory frame axioms (most things don’t change)
 Parallelism & conflict exclusion
 Type inference
 Domain axioms

• Surprising
 Effectiveness of regular action encodings
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Comparison Among Encodings

• Explanatory Frames beat classical
- few actions affect each fluent
- explanatory frames aid simplifications

• Parallelism is a major factor
- fewer mutual exclusion clauses
- fewer time steps

• Regular actions representation is smallest!
- exploits full parallelism
- aids simplification

• Overloaded, bitwise reps. are infeasible
- prohibitively many clauses
- sharing hinders simplification
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Optimization 1: Factored Splitting
- use partially-instantiated actions

HasColor-A-Blue-(t-1) ^ Paint-Arg1-B-t ^
Paint-Arg2-Red-t ⇒ HasColor-A-Blue-(t+1)

.38.20

.50.30

.69.46

OverloadedSimple

Literals

Clauses

Variables

factored
unfactored

Explanatory Frames
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Optimization 2: Types

A type is a fluent which no actions affects.
• type interference
• prune impossible operator instantiations
• type elimination

.10

.27

.97

.39

.74.67

.30.34

Explanatory

Classical

Type opts
No type opts

Literals BitwiseOverloadedSimpleRegular
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Domain-Specific Axioms

Adding domain-specific axioms 
increases clauses
decreases variables
decreases solve time dramatically.

2.24
1.84
1.53

<.05.86
.38.88
.26.86

Clauses TimeVars

c
b
a

domain info
no domain info
bw-

large
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Future Work 
• Negation, disjunctive preconds, ∀
• Domain axioms

 ∀t clear(x, t)  ≡ ¬ ∃y  on(y, x, t)
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Future Work
• Automatically choose best encoding

 Might do this for frame axioms
• Analyze SAT formulae structure 

 Generate WalkSAT params
 Which SAT solver works best (DPLL vs ? 

• Handle continuous vars (resource planning)
 Steve Wolfman’s quals project, IJCAI99 
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Future Work
• Reachability analysis
• Domain axioms  
• Compilation to …?

 CSP
 LP (Linear programming)
 Integer LP
 SAT + LP
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Domain Axioms
• Domain knowledge

 Synchronic vs. Diachronic constraints
• Speedup knowledge

 Action conflicts (=> by action schemata alone)

 Domain invariants (=> by initial state+schemata)

 Optimality heuristics

 Simplifying assumptions


