
1

Logic in AI

CSE 573

© Daniel S. Weld 2

Logistics

•Monday?
•Reading

 Ch 8
 Ch 9 thru p 278
 Section 10.3

•Projects
 Due 11/10
 Teams and project plan due by this Fri

© Daniel S. Weld 3

Problem spaces
Blind

Depth-first, breadth-first, iterative-deepening,
iterative broadening

Informed
Best-first, Dijkstra's, A*, IDA*, SMA*,
DFB&B, Beam,

Local search
hill climbing, limited discrepancy, RTDP

Heuristics
Evaluation, construction via relaxation
Pattern databases

Constraint satisfaction
Adversary search

Search

© Daniel S. Weld 4

Takeaways
• Formulating a problem space (and a CSP!)
• Sampler of methods
• Importance of heuristics
• Speed / completeness tradeoff
• Space complexity

© Daniel S. Weld 5

573 Topics

Agency
Problem Spaces

Search

Knowledge
Representation

Reinforcement
Learning

Inference Planning
Supervised
Learning

Logic-Based Probabilistic

© Daniel S. Weld 6

Today
• Review of Propositional Logic
• Inference Algorithms

 As search: systematic & stochastic
• Themes

 Expressivity vs.
 Tractability

2

© Daniel S. Weld 7

Some KR Languages
• Propositional Logic
• Predicate Calculus
• Frame Systems
• Rules with Certainty Factors
• Bayesian Belief Networks
• Influence Diagrams
• Semantic Networks
• Concept Description Languages
• Nonmonotonic Logic

© Daniel S. Weld 8

In Fact…
• All popular knowledge representation

systems are equivalent to (or a subset of)
 Logic

• Either Propositional Logic
• Or Predicate Calculus

 Probability Theory

© Daniel S. Weld 9

What is Propositional Logic?

• And why have you studied it?

• And why are we torturing you again?

© Daniel S. Weld 10

Basic Idea of Logic
• By starting with true assumptions, you can
deduce true conclusions.

© Daniel S. Weld 11

Truth
•Francis Bacon (1561-1626)
No pleasure is comparable to
the standing upon the
vantage-ground of truth.

•Thomas Henry Huxley (1825-
1895)
Irrationally held truths may
be more harmful than
reasoned errors.

•John Keats (1795-1821)
Beauty is truth, truth beauty;
that is all ye know on earth,
and all ye need to know.

•Blaise Pascal (1623-1662)
We know the truth, not only
by the reason, but also by the
heart.

•François Rabelais (c. 1490-
1553)
Speak the truth and shame
the Devil.

•Daniel Webster (1782-1852)
There is nothing so powerful
as truth, and often nothing so
strange.

© Daniel S. Weld 12

AI=Knowledge Representation
& Reasoning

• Syntax
• Semantics
• Inference Procedure

 Algorithm
 Sound?
 Complete?
 Complexity

Knowledge Engineering

3

© Daniel S. Weld 13

Propositional Logic
• Syntax

 Atomic sentences: P, Q, …
 Connectives: ∧ , ∨, ¬, ⇒

• Semantics
 Truth Tables

• Inference
 Modus Ponens
 Resolution
 DPLL
 GSAT

• Complexity

© Daniel S. Weld 14

Propsitional Logic: Syntax
• Atoms

 P, Q, R, …
• Literals

 P, ¬ P
• Sentences

 Any literal is a sentence
 If S is a sentence

• Then (S ∧ S) is a sentence
• Then (S ∨ S) is a sentence

• Conveniences
P ⊃ Q same as ¬ P ∨ Q

© Daniel S. Weld 15

Special Syntactic Forms
• General Form:

((q∧¬ r) ⊃ s)) ∧ ¬ (s ∧ t)
• Conjunction Normal Form (CNF)

(¬ q ∨ r ∨ s) ∧ (¬ s ∨ ¬ t)
Set notation: { (¬ q, r, s), (¬ s, ¬ t) }
empty clause () = false

• Binary clauses: 1 or 2 literals per clause
(¬ q ∨ r) (¬ s ∨ ¬ t)

• Horn clauses: 0 or 1 positive literal per clause
(¬ q ∨ ¬ r ∨ s) (¬ s ∨ ¬ t)
(q∧r) ⊃ s (s∧t) ⊃ false

© Daniel S. Weld 16

Semantics
• Syntax: which arrangements of symbols are legal

 (Def “sentences”)
• Semantics: what the symbols mean in the world

 (Mapping between symbols and worlds)

Sentences

FactsFacts

Sentences

Representation

World

Sem
antics

Sem
antics

Inference

© Daniel S. Weld 17

Propositional Logic: SEMANTICS

• “Interpretation” (or “possible world”)
 Assignment to each variable either T or F
 Assignment of T or F to each connective via

defns

P T
T

F

F
Q

P T
T

F

F
Q

P ∧ Q P ∨ Q ¬ P

T
F F

F
F

T T
T T

F

Q

P T
F

T
F

© Daniel S. Weld 18

Satisfiability, Validity, & Entailment

• S is satisfiable if it is true in some world

• S is unsatisfiable if it is false all worlds

• S is valid if it is true in all worlds

• S1 entails S2 if wherever S1 is true S2 is
also true

4

© Daniel S. Weld 19

Examples

R => ¬R

S ∧ (W ∧ ¬S)

T ∨ ¬T

X => X

P => Q

© Daniel S. Weld 20

Notation

• Sound

• Complete
⎟= implies ⎟−

⇒
⊃
→
⎟−
⎟=

Inference
Entailment

}
Proves: S1 |-ie S2 if `ie’ algorithm says `S2’ from S1

Entails: S1 |= S2 if wherever S1 is true S2 is also true

⎟− ⊃ ⎟=

⎟= ⊃ ⎟−

Implication (syntactic symbol)

© Daniel S. Weld 21

Prop. Logic: Knowledge Engr

1. Choose Vocabulary

1) One of the women is a biology major
2) Lisa is not next to Dave in the ranking
3) Dave is immediately ahead of Jim
4) Jim is immediately ahead of a bio major
5) Mary or Lisa is ranked first

Universe: Lisa, Dave, Jim, Mary
LD = “Lisa is immediately ahead of Dave”
D = “Dave is a Bio Major”

2. Choose initial sentences (wffs)

© Daniel S. Weld 22

Reasoning Tasks
• Model finding

KB = background knowledge
S = description of problem
Show (KB ∧ S) is satisfiable
A kind of constraint satisfaction

• Deduction
S = question
Prove that KB |= S
Two approaches:

•Rules to derive new formulas from old (inference)
•Show (KB ∧ ¬ S) is unsatisfiable

© Daniel S. Weld 23

Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward & Forward Chaining
Based on rule of modus ponens

If know P1, …, Pn & know (P1 ∧... ∧ Pn)=> Q
Then can conclude Q

2. Resolution (Proof by Contradiction)
3. GSAT
4. Davis Putnam

© Daniel S. Weld 24

Inference 1: Forward Chaining

Forward (& Backward) Chaining
Based on rule of modus ponens

If know P1, …, Pn & know (P1 ∧... ∧ Pn)=> Q
Then can conclude Q

Pose as Search thru Problem Space?
States?
Operators?

5

© Daniel S. Weld 25

Analysis
• Sound?
• Complete?

Can you prove
{ } |= Q ∨ ¬Q

© Daniel S. Weld 26

Special Syntactic Forms: CNF
• General Form:

((q∧¬ r) ⊃ s)) ∧ ¬ (s ∧ t)

• Conjunction Normal Form (CNF)
(¬ q ∨ r ∨ s) ∧ (¬ s ∨ ¬ t)
Set notation: { (¬ q, r, s), (¬ s, ¬ t) }
empty clause () = false

© Daniel S. Weld 27

Inference 2: Resolution
[Robinson 1965]

{ (p ∨ α), (¬ p ∨ β ∨ γ) } |-R (α ∨ β ∨ γ)

Correctness
If S1 |-R S2 then S1 |= S2

Refutation Completeness:
If S is unsatisfiable then S |-R ()

© Daniel S. Weld 28

If the unicorn is mythical, then it is immortal, but
if it is not mythical, it is a mammal. If the
unicorn is either immortal or a mammal, then it
is horned.

Prove: the unicorn is horned.

Resolution

(¬ A ∨ H)

(M ∨ A)

(¬ H) (¬I ∨ H)

(¬ M)

(¬ M ∨ I)(¬I)(¬A)

(M)

()

M = mythical
I = immortal
A = mammal
H = horned

© Daniel S. Weld 29

Resolution as Search
• States?
• Operators

© Daniel S. Weld 30

Inference 3: Model Enumeration
for (m in truth assignments){

if (m makes Φ true)
then return “Sat!”

}
return “Unsat!”

View as Search?
Critique?

6

© Daniel S. Weld 31

Inference 4: DPLL
(Enumeration of Partial Models)

[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll_1(pa){
if (pa makes F false) return false;
if (pa makes F true) return true;
choose P in F;
if (dpll_1(pa U {P=0})) return true;
return dpll_1(pa ∪ {P=1});

}

Returns true if F is satisfiable, false otherwise

© Daniel S. Weld 32

a

b b

cc

(a ∨ b ∨ c)

(a ∨ ¬b)

(a ∨ ¬c)

(¬a ∨ c)

DPLL Version 1

© Daniel S. Weld 33

DPLL as Search
• Search Space?

• Algorithm?

© Daniel S. Weld 34

Improving DPLL

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true
If clause is true, then ... has the

Therefore: Okay to delete clauses containing

 s

tr

ame
value as ...

If lit
ue lit

eral is
erals!

L L L
C C C C

C C

L

∨ ∨
∧ ∧ ∧

∧ ∧

1 2 3

2 3

1 1

Therefore: Okay to delete shorten containing false liter

false, then clause (...) has
the same value as (...)

If literal is false, then clause () is fals
als!

Therefore: th
e

e empty clau

L L L
L L

L L

∨ ∨ ∨

∨ ∨

se means false!

© Daniel S. Weld 35

Improving DPLL (more)

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true
If clause is true, then ... has the

Therefore: Okay to delete clauses containing

 s

tr

ame
value as ...

If lit
ue lit

eral is
erals!

L L L
C C C C

C C

L

∨ ∨
∧ ∧ ∧

∧ ∧

1 2 3

2 3

1 1

Therefore: Okay to delete shorten containing false liter

false, then clause (...) has
the same value as (...)

If literal is false, then clause () is fals
als!

Therefore: th
e

e empty clau

L L L
L L

L L

∨ ∨ ∨

∨ ∨

se means false!

© Daniel S. Weld 36

Observation!

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true
If clause is true, then ... has the

Therefore: Okay to delete clauses containing

 s

tr

ame
value as ...

If lit
ue lit

eral is
erals!

L L L
C C C C

C C

L

∨ ∨
∧ ∧ ∧

∧ ∧

1 2 3

2 3

1 1

Therefore: Okay to delete shorten containing false liter

false, then clause (...) has
the same value as (...)

If literal is false, then clause () is fals
als!

Therefore: th
e

e empty clau

L L L
L L

L L

∨ ∨ ∨

∨ ∨

se means false!

7

© Daniel S. Weld 37

DPLL version 2
Davis – Putnam – Loveland – Logemann

dpll_2(F, literal){
remove clauses containing literal
if (F contains no clauses)return true;
shorten clauses containing ¬literal
if (F contains empty clause)

return false;
choose V in F;
if (dpll(F, ¬V))return true;
return dpll_2(F, V);

}

Partial assignment corresponding to a node is the
set of chosen literals on the path from the root
to the node

© Daniel S. Weld 38

a

b b

cc

(a ∨ b ∨ c)

(a ∨ ¬b)

(a ∨ ¬c)

(¬a ∨ c)

DPLL Version 2

© Daniel S. Weld 39

Structure in Clauses

• Pure Literals
 A symbol that always appears with same sign
 {{a ¬b c}{¬c d ¬e}{¬a ¬b e}{d b}{e a ¬c}}

• Unit Literals
 A literal that appears in a singleton clause
 {{¬b c}{¬c}{a ¬b e}{d b}{e a ¬c}}

 Might as well set it true! And simplify
 {{a ¬b c} {¬a ¬b e} {e a ¬c}}

 Might as well set it true! And simplify
 {{¬b} {a ¬b e}{d b}}
 {{d}}

© Daniel S. Weld 40

Further Improvements

2 3

Therefore: Branch immediately on unit litera
Formula () ... is only true when literal is true

If literal does not appear negated in formula , then setting
 true preserves satisfiability o

ls!
L C C L

L F
L

∧ ∧ ∧

Therefore: Branch immediately on pure liter
f

als!
F

May view this as adding
constraint propagation
techniques into play

© Daniel S. Weld 41

Further Improvements

2 3

Therefore: Branch immediately on unit litera
Formula () ... is only true when literal is true

If literal does not appear negated in formula , then setting
 true preserves satisfiability o

ls!
L C C L

L F
L

∧ ∧ ∧

Therefore: Branch immediately on pure liter
f

als!
F

May view this as adding
constraint propagation
techniques into play

© Daniel S. Weld 42

DPLL (previous version)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){
remove clauses containing literal
if (F contains no clauses) return
true;
shorten clauses containing
¬literal
if (F contains empty clause)

return false;
if (F contains a unit or pure L)

return dpll(F, L);
choose V in F;
if (dpll(F, ¬V))return true;
return dpll 2(F, V);

8

© Daniel S. Weld 43

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing ¬literal
if (F contains empty clause)

return false;
if (F contains a unit or pure L)

return dpll(F, L);
choose V in F;
if (dpll(F, ¬V))return true;
return dpll(F, V);

}

© Daniel S. Weld 44

a

b c

c

(a ∨ b ∨ c)

(a ∨ ¬b)

(a ∨ ¬c)

(¬a ∨ c)

DPLL (for real)

© Daniel S. Weld 45

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing ¬literal
if (F contains empty clause)

return false;
if (F contains a unit or pure L)

return dpll(F, L);
choose V in F;
if (dpll(F, ¬V))return true;
return dpll(F, V);

}

Where could we use a h
eurist

ic to

furth
er im

prove perfo
rmance?

What is
 the search space anyway?

© Daniel S. Weld 46

Heuristic Search in DPLL
• Heuristics are used in DPLL to select a (non-

unit, non-pure) proposition for branching

• Idea: identify a most constrained variable
 Likely to create many unit clauses

• MOM’s heuristic:
 Most occurrences in clauses of minimum length

© Daniel S. Weld 47

Success of DPLL
• 1962 – DPLL invented
• 1992 – 300 propositions
• 1997 – 600 propositions (satz)
• Additional techniques:

 Learning conflict clauses at backtrack points
 Randomized restarts
 2002 (zChaff) 1,000,000 propositions –

encodings of hardware verification problems

© Daniel S. Weld 48

Horn Theories
• Recall the special case of Horn clauses:

{ (¬ q ∨ ¬ r ∨ s), (¬ s ∨ ¬ t) }
{ ((q∧r) ⊃ s), ((s∧t) ⊃ false) }

• Many problems naturally take the form
of such if/then rules

 If (fever) AND (vomiting) then FLU

• Unit propagation is refutation complete
for Horn theories

 Good implementation – linear time!

9

© Daniel S. Weld 49

WalkSat
• Local search over space of complete truth
assignments

 With probability P: flip any variable in any
unsatisfied clause

 With probability (1-P): flip best variable in
any unsat clause
• Like fixed-temperature simulated annealing

• SAT encodings of N-Queens, scheduling
• Best algorithm for random K-SAT

 Best DPLL: 700 variables
 Walksat: 100,000 variables

[Slide #s from 2001]

© Daniel S. Weld 50

Random 3-SAT
• Random 3-SAT

 sample uniformly from
space of all possible 3-
clauses

 n variables, l clauses

• Which are the hard
instances?
 around l/n = 4.3

© Daniel S. Weld 51

Random 3-SAT
• Varying problem size, n

• Complexity peak
appears to be largely
invariant of algorithm
 backtracking algorithms

like Davis-Putnam
 local search procedures

like GSAT

• What’s so special about
4.3?

© Daniel S. Weld 52

Random 3-SAT
• Complexity peak

coincides with solubility
transition

 l/n < 4.3 problems under-
constrained and SAT

 l/n > 4.3 problems over-
constrained and UNSAT

 l/n=4.3, problems on
“knife-edge” between
SAT and UNSAT

© Daniel S. Weld 53

Project Issues
• DPLL vs. WalkSAT vs. ???
• Heuristics?
• Test problems?

© Daniel S. Weld 54

Real-World Phase Transition
Phenomena

• Many NP-hard problem distributions show
phase transitions -
 job shop scheduling problems
 TSP instances from TSPLib
 exam timetables @ Edinburgh
 Boolean circuit synthesis
 Latin squares (alias sports scheduling)

• Hot research topic: predicting hardness of a
given instance, & using hardness to control
search strategy (Horvitz, Kautz, Ruan 2001-3)

10

© Daniel S. Weld 55

Summary: Algorithms
• Forward Chaining
• Resolution
• Model Enumeration
• Enumeration of Partial Models (DPLL)
• Walksat

© Daniel S. Weld 56

Themes
• Expressiveness

 NPC in general
 Completeness / speed tradeoff
 Horn clauses, binary clauses

• Tractability

 Expressive but awkward
 No notion of objects, properties, or relations
 Number of propositions is fixed

