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Abstract

The setting of today’s world is a busy one, and the amount of information presented to any user can be overwhelming. To balance out this problem, context-aware products can be of use. We describe a simulation tool for making location-based inference, based on a person’s schedule, current location, and past movement history. The tool, called LocSim Visualizer, combines GPS data with satellite images and provides an inference framework for testing location-based inference models. In this paper, we describe LocSim Visualizer and some initial results when used in combination with Hidden Markov Models. We conclude by claiming that LocSim Visualizer provides an efficient testbed for evaluating location-aware artificial intelligence techniques. 
Introduction

Ever since the beginning of time, movement has been one of the things most explored by the human race. It exists everywhere around us, and it is transformed and used in a variety of applications in our everyday life. Human movement is aided by a tremendous amount of varying applications, but mostly to achieve a change in velocity, direction or both.
But every movement (or series through time of it) has a pattern associated with it, a pattern oftentimes clearly visible to yourself and other humans, and oftentimes not. Our goal in this mini project is to construct an agent who successfully learns and makes use of the patterns in our everyday activities. An abundance of data is available through different systems in our environment, but their use is often not connected for the general user to easily access.
In this paper, we focus on the exploration of different context-aware systems, in the most commonly used forms of context: that of location. In our research, we strive to connect the tracking of a user via the GPS (Global Positioning System), with the real-time data gathered from the online service of MyBus.org
. This service provides the user with a constantly refreshing source of information on the predicted arrival times (delayed, early or on time) of any bus on any Seattle bus line. The algorithm used is described in (Cathey and Dailey 2003).
By combining these two free and readily available information sources, a number of predictions can be made based on the user’s learned movement pattern and the current proximity to bus stops with real-time bus departure status. The aim is this project setting was to create a visual and easy-to-use tool, to use in the environment of the University of Washington campus. Bus stops on or with close proximity to the campus were included for use in the tool.
The problem specifically addressed in this project is the one of presenting to the user contextually useful information on the current status of the nearby bus net. The meaning of words as ‘contextually useful’ and ‘nearby’ is determined by the learned user movement pattern, combined with information on preferred bus routes and proximity to bus stops which suitable buses will reach on a for the user convenient time.
The connection and use to similar projects, such as recent development in the area of helping the cognitively disabled (Patterson et al. 2002), is apparent to us. Our hope is that the system described below can be of good use in many environments, especially that of students (who have a highly scheduled life, often dependant on the buses) and people with cognitive impairments.
Data gathering and technology
Ideally, one would like to implement and test the above described tool in and for the real world. However, accurately gathering sufficient data from the amount of users we need for constructing our application would require much more time than given to this project. Therefore, we needed to make some simplifying arrangements and assumptions, to make data gathering and testing run swiftly.
Collecting GPS data

For the setting of this project, the need for accurate GPS data, spanning over the entire campus was essential. Also, mappings between specific locations (e.g. bus stops) and their GPS coordinates were also needed. Systems for collecting and predicting these data are presented in several other contemporary research papers (Ashbrook and Starner 2003; and Liao et al. 2004), but for the scale and simplicity of this project, we chose to do a direct mapping by creating databases holding the needed information.
TerraServer. To collect sufficient data of high quality, we used two sources different sources, both with their own advantages (as well as limitations). The first one, TerraServer
, is an online database operated by the Microsoft Corporation, providing search options through older satellite images. The TerraServer-USA Website (which was used in this project) is one of the world's largest online databases, providing free public access to a vast data store of maps and aerial photographs (of surprisingly high resolution) of the United States. TerraServer is also said to be designed to work with commonly available computer systems and Web browsers over slow speed communications links. Although those restrictions were not an issue in the setting of this project, it provides a valuable opportunity for running our application on lower-performance hardware platforms as well.
The search option is not the only way of retrieving information from TerraServer, but image retrieval and GPS coordinate mapping can also be done via easy web services provided by Microsoft. An extension of our product to an online version is therefore feasible, but in our current version (once again to the time limit) we have included support for generic satellite images ourselves.
GeoLogger. Using TerraServer for providing the overview, a tool for making more precise measurements was however needed. For the tracking down of the exact GPS whereabouts of all bus stops included (27 in total, on and around campus), the wearable GPS-tool of GeoLogger
 came in handy. The GeoLogger consists of an antenna and a logging unit, powered by either a rechargeable or internal 9V battery. The flexibility of this tool provides high freedom of movement, and the only additional information needed for establishing connection between the exact location and its GPS coordinates, is a manual recording of the time at the wanted location (e.g. at a bus stop). Since the logger is continuously recording data (with a one-second frequency), these recorded points also provided us with an exact walk over campus, used in an early stage for debugging. For coordinates not available to us with the GeoLogger, we used TerraServer data.
GPS Map Tool and Simulator
With the goal of accomplishing the above tasks, we constructed a tool for combining all the data gathered, do the correct inference and learning and visualize the result together with the generated predictions. This environment grew over the course of its development to be a rapid experimental environment, which allows for the implementation, testing and visualization of many different AI methods for location context-awareness and computations on movement patterns.
Data gathering and visualization
Combining our two GPS sources, the tool for data visualization provides an accurate and descriptive way of presenting the different data used. The interface provides the user with the opportunity of displaying any satellite image. By naming the image according to our name principles (let the name consist of the four GPS coordinate pairs for the corners of the image, e.g. TL(-122.31281,47.65694), BL(-122.31291,47.64974), TR(-122.29949,47.65686), BR(-122.29959,47.64966)1.jpg). This way, the application is flexible enough to handle any image, while still providing the correct GPS coordinates for every point on the map, using our mouse-over information display tool. The satellite images of the University of Washington campus used in this setting are actual images, collected from the TerraServer database.
Also presented on the visual map are our own bounding boxes for all buildings on campus. These bounding boxes can individually be switched on and off and the highlighting scheme changed, to make the visual freedom as high as possible and configurable for every user and project setting. Also, the names of buildings and bus stops are printed, to make the visualization of the simulation and inference process easily available to any user.
Simulation

One of the most important parts in an artificial setting like ours is that the simulation closely matches real scenarios. If not, the confidence put to the test results cannot be very high, when used as an early evaluation for any real-world application. 
For accurate modeling of the real world, the main point lies in using real-world data and as believable simulation individuals (moving on and off campus) as possible. To achieve these goals, we conducted several interviews with fellow students, to correctly get their average week schedules; containing information on day of week, location and departure times. These interviews resulted in a database of several schedule files (in our own format), with endless possibilities of adding additional individuals.
The schedule files are read by the simulator, and the movement patterns displayed on the visualization screen.
Learning movement patterns

One of the most critical features of any location agent is the ability to keep track of the current state, and that is especially true in an environment such as ours. The world we operate in contains an uncertainty as to where people will be heading next, which is connected to the learning problem of which bus stop and bus line will be accessed next. At best, these constraints on future information available only allow the agent to obtain a probabilistic assessment of the current state (and which are the plausible next ones).
Movement patterns and uncertainty 

The inference process is simplified by the fact that our problem is set in a highly scheduled environment (on campus), but then once again made harder by the possibility of random actions amongst the modeled people. Walking is most often not random by itself, but rather goal-directed. Introducing the fact of instant changes of goal for the walk (e.g. the sudden realization of you left your umbrella in a building you visited this morning), however adds an element of randomness and uncertainty to our setting. Also, the fact that user’s might be at different locations at given times each week (due to the instant decisions of changing movement pattern for a period of time), the introduction of the bus system further adds to the uncertainty. For dynamic worlds, such as the campus environment, we need a model who can handle this uncertainty in future observations.

Markov processes
To simplify the inference process, it is common to make the assumption of the world being looked upon as a series of snapshots, or time slices, where each time slice is treated as a time-state in the current world. Each state contains a number of stochastic variables, of which some are directly observable (such as our current location) and some are partially or totally unobservable (such as the next movement action in a random system). The observability of each variable can change over time (a fact that is often ignored for simplicity). 
However, there are some additional problems with this model. Due to the fact that the number of variables are unbounded (since they exist for every time slice, in an infinite time space), we have conditional probabilistic dependency on a number of parents that is very hard to deal with (infinitely many). The solution to this is two-fold, and includes the concepts of stationary processes and the Markov assumption. These assumptions simplify our model to only depend on laws that do not change over time and to only depend on the directly previous state, respectively. This type of Markov process is called a first-order Markov process (Markov Chain), and is written as
P(Xt|X0:t-1) = P(Xt|t-1)

The general Markov process is a system that can be in one of several (numbered) states, and can pass from one state to another each time step according to fixed probabilities. If a Markov system is in state i, there is a fixed probability, pij, of it going into state j the next time step, and pij is called a transition probability. 

A Markov system can be illustrated by means of a state transition diagram, which is a diagram showing all the states and transition probabilities (see Figure ??) below (notice that transitions with zero probability have no arc). 
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The same diagram can also be modeled by the matrix P, whose ijth entry is pij, Matrix P is called the transition matrix associated with the system. The entries in each row add up to 1. Thus, for instance, the above transition diagram would be modeled in its matrix form as in Figure ?? below.
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A simple example. Let us now illustrate the use of Markov processes with a simple and informal example. A Markov model could look at a long sequence of rainy and sunny days, and analyze the likelihood that one kind of weather gets followed by another kind. Let's say it was found that 25% of the time, a rainy day was followed by a sunny day, and 75% of the time, rain was followed by more rain. Let's say we found out additionally, that sunny days were followed 50% of the time by rain, and 50% by sun. Given this analysis, we could generate a new sequence of statistically similar weather by following these steps:
1. Start with today's weather. 

2. Given today's weather, choose a random number to pick tomorrow's weather. 

3. Make tomorrow's weather "today's weather" and iterate, starting each iteration at step 2.
What we would get when the above algorithm is applied to the probabilities stated above, is a sequence of days like:
Sunny, Sunny, Rainy, Rainy, Rainy, Rainy, Sunny, Rainy, Rainy, Sunny, Sunny,… and so on. In other words, the "output chain" of the Markov reasoning would statistically reflect the transition probabilities derived from weather we observed. Such a Markov Chain, while similar to the source in the small, is often nonsensical in the large (which is why it is a terrible way to predict weather). That is, the overall shape of the generated material will bear little formal resemblance to the overall shape of the source, but taken a few events at a time, this simple model seems to be working.
Higher Order and Hidden Markov Models

Whether the application of a first-order Markov process is appropriate to a problem setting depends on the domain itself. The loss of accuracy (through the assumption of the most previous state containing all needed information) can be remedied by increasing the order of the Markov model (that is, adding more parents into the dependence of the past). Increased accuracy can also be achieved by adding more state variables; depicting the fact that the process depends on additional variables, previously unaccounted for. 
Hidden Markov Model (HMM). In practice, there is a need for yet another kind of Markov Model, called Hidden Markov Model. The HMM illustrates the fact that the actual states of the world is not directly observable, but only indirectly do we interact with the states through our observations. Some (or all) of the states are therefore considered “hidden” from the external observer.
There are a number of variations on HMM problems, e.g. 

1. The number of states and transition probabilities are known 
a. Given data, find the optimum (most likely) position of the change points. 
b. How precisely should the points be stated? 
2. The number of states is known, but the transition probabilities are not. 

a. Estimate the transition probabilities. 
b. What accuracy is appropriate for the estimates? 
3. The number of states, and the architecture, are unknown. 

a. Find an HMM which models the data "well". 

b. The simplest model has one state, the most complex model has one state per data value; almost certainly neither extreme is justified. Quantifying model complexity is therefore a crucial issue.
Movement patterns and Markov Models

For the specific setting we are facing in this paper, there are some arguments concerning which model is needed for accurately learn and predict the behavior in our system. As stated earlier, this decision depends highly on the domain the prediction is taking place in. 
Turning our attention towards the real setting of the problem we are addressing we see that it contains many challenges for the AI used. To be able to correctly infer movement patterns and making predictions on behavior based upon those, we need a model that addresses all the problems of the real world. The challenge here though, lies in the fact that the real world is not perfect, with noisy data, randomness and other factors in play. In the span of this mini project, we have had no opportunity of collecting real data over a longer period of time, and also no “real” persons to follow during the same period. A simulator was therefore constructed for the sake of this project, and it allowed us to effectively control our world and running a sizeable amount of experiments, while still not loosing connection to the real world. Fully accounting for all difficulties of the real world is a challenging problem, as the use of a three-level dynamic Bayesian network in (Liao et al. 2004) shows.
Our ambition throughout the course of this project has been to as accurately as possible model the real world in our simulator, but still some limiting assumptions has been made, thereby affecting our choice of process model. Firstly, since we are moving in a simulated world, there is no real noise on the data. In the real world, using the GPS system, there are of course several ways noise could be introduced into the data. If, for instance, the signal will be lost for a while (traveling in a tunnel, or entering a building), only low credibility can be assigned to the data point directly before and directly following the loss of the signal. Also, as all electronic devices, the reception of the logger used is somewhat affected by magnetic fields in the surrounding world.
In our simulated world, we are still using collected real GPS data points, but with the simplification that they are static, not dynamically generated (although our system is fully capable to handle dynamic generation of data points as well). This simplification reduces the amount of uncertainty we have to take into account. Still, the randomness existing through the user’s sometimes instant change of goals, forces us to use process for probabilistic learning and reasoning.
When turning to the question on whether or not or problem setting qualifies as an instance of the Hidden Markov problem domain, let us reason about what information we have available. What we need to correctly predict the movement patterns is every location possible to visit (including bus stops and buildings) and the transition probability of us do the transition from a given location (state) to the next. As we have done extensive mappings all over campus (and also all locations in GPS coordinates are available), the information for the first part of the above problem formulation is certainly satisfied. Unfortunately, we are missing the transition probabilities, with which the user will choose which state to move to from the current location. Therefore, our problem setting falls under point 2, on the listing on the previous page; the transition probabilities need to be estimated.
Are the states of the Markov Model for the setting discussed in this project then really hidden? Are they not all known, and fully accessible by the GPS coordinates or the location name? All of the previous reasoning is true, but as pointed out by (François et al.), any given state can be on several paths through the world, and the states are therefore in practice hidden (although they can be deduced form observation sequences).
Implementing Hidden Markov Models

Testing and results

Future work

Conclusion
Related work
The field of context-awareness in software agents, combined with the task of localization and tracking, has been a focus of interest in quite a few papers in recent years. The value of a localization aid, for everybody as well as those with special needs, is a topic found interesting by many (in academic environments, as well as the industry). We present here a brief summary of some of the more important works; in terms of the impact it had on our project, but also the value they hold for future research and development in the field.
The aspect of aid of the kind of products discussed in this paper, comes to a most important use in the case of helping cognitively disabled (Patterson et al. 2002). As an example of such individuals, the world’s ever-increasing number of Alzheimer’s patients provides a target group, where context-aware agents are certainly useful. The paper of (Patterson et al. 2002) stresses the importance of active agent-intervention in times of challenge or confusion for the patient, and has its focus on from the background identifying occurring abnormal (and potentially harmful and confusing) behavior. The balance of missing potentially dangerous activities, while not disturbing the user with unwanted warnings, is a task that requires solid inference from learning, and even more so while predicting future behavior as we do. Combining the positive aspects of awareness with that of prediction accurately could enhance the aid for cognitively disabled greatly.
Many techniques have been suggested to accomplish the task of tracking and learning a person’s behavior, using his/her location at given times. The abundant source of information from GPS is used in a similar way to ours in (Liao et al. 2004). The setting is that of a hierarchical Markov model for learning the movement pattern of the user, and applying the filtered GPS data to an underlying graph of roads, intersections and transfer points. The system provides astonishingly accurate predictions of behavior (98% correct after training on 30 days of everyday movement). While the importance of such a system for future research is great, (Liao et al. 2004) also presents a way of detecting user errors, by tracking two models; one based on learning and the other one on potential, but probabilistically less likely, actions. When the user takes an “unexpected” action, the likelihood of the potential model is increased. While our model also includes leaning under the presence of seemingly random behavior, the tracker system suggested can in a more developed form hold great impact on a system such as ours.
Turning to other applications of the context-aware product, the paper of (Starner and Ashbrook 2004), describes its usefulness in both single-user and multi-user contexts (but focuses on the latter). In moving from single-user applications, (such as e.g. reminders of various tasks and transmission optimization), to the multi-user domain, the potential use for location-based learners is huge. In joint interaction with both environment and other users, a vision on a society of greater social interaction and mutual agreeability is close at hand. The paper introduces an interesting notion of using the movement patterns to learn places, defined as all geographical points where the user stays a certain amount of time, and then using additional data for clustering correlated places into locations and sublocations. This way, no information is needed before (as our predefined buildings), and the system makes efficient use of all data available. While spending much time on this building of the inference base, this idea can be applied to previously unknown environments, and combined with the movement data of other (maybe local) users, to give a heuristic for the prediction algorithm in our system. Also, the movement pattern of others learned in our system, could be used as a solving base for problems in a highly scheduled environment (such as ours on campus), such as quick adaptation to massive schedule changes from semester to semester.
The use of context-awareness in a mobile setting using cell phones is discussed in (François et al. 2004). The use of HMMs in a similar way to ours is here the basis of an application for allowing for smooth handovers of mobile hosts (MHs) between access points (APs). The Hidden Markov Model is used for modeling and learning the predicted path a user is on, and therefore earlier notify neighboring APs that a user will be accessing them soon with high probability. This adds another layer to the context-awareness, by allowing for a conditional use and transformation of information between internal states, rather than being output to an external viewer. For a system like ours, such an idea could be used in the sense of internal “communication” between locations, with the intention of e.g. preparing the potentially following location for the arrival of one or many individuals.
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