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Abstract 
Game playing, as one of the most challenging fields of 
artificial intelligence has received a lot of attention.  
Games like Othello, which have proven to fit in well 
with computer game playing strategies, have spawned a 
lot of research in this direction. 
 
Though numerous computer Othello players have been 
designed, and have beaten human world champions, it is 
not very clear as to how the various Othello heuristics 
interact.  This paper implements and examines various 
heuristics, in an attempt to make observations about the 
interplay between the heuristics, and how well each 
heuristic contributes as a whole.  Identifying heuristics 
that contribute immensely to Othello game-play implies 
that more processor cycles could be allocated in that 
direction to enhance the quality of play.  Due to the 
complexity of accurate calculations, most heuristics tend 
to approximate. Like a typical stability heuristic, that 
approximates stability, instead of accurately calculating 
it.  By realizing the importance of the stability heuristic, 
it enables one to decide the amount of time to spend in 
such a function. 
 
Various experimental data is collected and analyzed in 
the evaluation section, where an insight is provided as to 
what the optimal way of using heuristics would be.  
Though this paper concentrates on Othello and heuristics 
pertaining to it, such analysis is applicable for other 
similar games, which descend from Go [16]. 

1. Introduction 
Game playing, as one of the well-admired 
components of artificial intelligence research, has 
captured tremendous amounts of attention.  
Computers, looking ahead beyond the next move 
and judiciously rationing out the next best move, 
mimic human intelligence, and at times, surpass 
it.  Computers have, to a good extent, captured 
the essence of game playing along with its 
intricate complexities.  The importance of game 
playing arises out of the competition that exists 

between the human race and machines.  It is a 
race to prove superior intelligence. 
 
Othello [14], a board game derived from Go, has 
been an example where computers have 
exemplified great game play, beating human 
world champions [9].  The primary reason being 
the small branching factor, allowing the 
computer to look ahead in abundance, thrashing 
human intuition and reasoning.  As processors 
increase in speed and complexity, the ability of 
computers to reason beyond the current state 
increases, while human intelligence maintains a 
fairly static average performance over 
generations.  This leads to an extending gap in 
the Othello-playing ability of humans and 
computers. 
 
The massive success of Othello, apart from the 
small branching factors involved, can also be 
attributed to heuristic functions successfully 
representing the state of the game.  Heuristics in 
Othello, suffer from few pitfalls, when chosen 
cautiously.   The typical calculated heuristic 
value is a linear function of various different 
heuristics.   We implement various heuristics, 
along with several optimizations, and determine 
the contribution of each heuristic to the entire 
game play.  In the process, we also determine the 
manner in which each heuristic interacts with the 
others.  Understanding the role of each heuristic 
in game play would enable us to use extra 
processor cycles in a productive fashion. 
 
We examine related work in Section 2, and offer 
a description of the rules of Othello for the reader 



in Section 3.  Section 4 discusses our different 
search strategies, while Section 5 examines the 
different heuristics we have implemented.  
Section 6 presents experimental results and we 
conclude with future work in Section 7. 

2. Related Work 
 
The birth of artificial intelligence had spawned 
research to enable computers to adopt a 
methodology of thinking that simulates the 
human brain.  But success was brought about 
through various other techniques such as alpha-
beta search, which do not mimic the human 
thought process.  Such techniques, coupled with 
the massive computing power of a commodity 
system, have proven to be far superior to the 
human brain in certain situations.  
 
The use of Othello to demonstrate the game 
playing capabilities of machines is not new.  
Othello’s rigorous constraints and rules severely 
constrain the next set of possible moves, hence 
implying a very low branching factor, making it 
practically feasible for a computer search.  The 
most common approach to playing Othello and 
other related games, is to perform searches on 
game trees using the alpha-beta search [4,11].  
[4] provides an overview of different tree search 
algorithms, while [11] makes a comparison 
between various modified forms of the minimax 
tree search algorithm. Computer Othello players, 
have comprehensively beaten human world 
champions [9], leading to a greater interest in this 
game to stay ahead of the human community of 
Othello players. 
 
Improved game play in Othello can result from 
(i) improvements in the search strategy used, or 
(ii) from better heuristic functions, or (iii) by 
using learning methods to enable the computer to 
learn for itself from massive amounts of data, or 
(iv) by adding extra hardware support.   
 
Improvements in the search strategy was done in 
[7,8]. [7,8] add probability to the minimax search 

algorithm, adding non-determinism to the 
approach, making it more effective. [11] provides 
an analysis of various modifications to the 
minimax strategy.  Extra hardware support has 
been added in [12] to enhance the game playing 
process.  Coin-flipping and other Othello related 
tasks are extremely fast on such machines. 
 
Learning has proved to be an efficient component 
in game playing systems.  This is primarily due 
to the fact that massive amounts of data of 
Othello game proceedings can be taken 
advantage of. [5] proposes an Othello playing 
program, Bill, which is a direct descendant of 
Iago [1].  Bill uses Bayesian learning techniques 
for the suggested feature combinations in Iago. 
[2] uses supervised learning to improve minimax 
searching. 
 
Though there has been a lot of prior work on 
developing heuristic functions [13], the 
interaction between heuristics and their 
contribution to Othello game-play is unclear.  
Our work concentrates on identifying fruitful 
heuristic components and analyzing their 
behavior.  To aid us in this process of analysis, 
various experiments were conducted.   

3. Othello 
 
Othello belongs to the family of board games that 
were derived from Go.  It consists of an 8 x 8 
board with black and white coins.  We name each 
column from left to right with an alphabet 
starting with ‘A’.  Each row is numbered from 
top to bottom starting with 1.  This is the notation 
that shall be followed throughout the rest of the 
paper.   
 
The initial configuration of the board is as shown 
in Figure 1.  Each player is associated with a coin 
color, either white or black.  A player owns the 
squares in which his/her color coin is present. 
White initially owns d4 and e5, while black owns 
e4 and d5.  Black always moves first.  
 



The game progresses as each player makes 
moves.  A move is made by placing a coin in an 
empty square.  When a player does so, all of the 
opponent’s coins bracketed between the newly 
placed coin and another coin of the same color 
get flanked into the color of the newly played 
coin.  The flanking of coins is shown in Figures 
2a and 2b. 

 A move is valid only if it flanks at least one of 
the opponents’ coins.  When such a move does 
not exist, the player skips a turn and the opponent 
makes a move. 
 

The game ends when at least one of the following 
conditions hold true: 
 

1) The board is full, with no empty spaces  
2) The board has coins of only one color 
3) When no player has a valid move 

4. Search Strategies 
This section examines one of the two most vital 
components of a game playing computer, the 
search mechanism.  The second component, 
heuristics, is examined in the subsequent section.  
The search technique allows the computer to look 
ahead and explore different moves through a 
systematic generation of next possible moves.  
The heuristic function complements the search 
process by evaluating the state of the game along 
the various paths.   
 
The efficiency of the search technique determines 
the extent to which the game tree is explored.  
The greater the efficiency of the search 
technique, the greater the number of nodes that 
can be searched, hence the farther the look ahead, 

 and the greater the insight obtained.  An ideal 
search mechanism should be efficient and prune 
irrelevant paths without loss of any important 
information.  We utilized three different search 
strategies: (i) Minimax search (ii) Alpha-Beta 
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Figure 1: Board showing the starting game 
configuration for Othello 
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Figure 2b : Blue highlighted squares show the flanked 
coins once the black has been placed in (G, 5) 
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Figure 2a: Blue highlighted squares show valid moves for 
black. 
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search and (iii) Alpha-Beta search with iterative 
deepening.  The following few subsections 
examine each one in greater detail.   
 
The game tree to be searched over is the tree of 
all possible game states with the current state of 
the game at the root.  The search cannot explore 
the entire game tree for a predominant portion of 
the game, since that would require tremendous 
amounts of time.  Hence, the search is typically 
done to a particular depth.  If the search depth is 
six, then that implies exploring all possible states 
which are at most six moves away from the 
current state.  Towards the end of the game, the 
search can be carried all the way to the end. 
  
We have a database of predetermined moves, 
which we refer to when possible.  This avoids 
any time wasted in searching when the next move 
to make is an obvious one.  For example, if a 
corner could be captured, then that should be the 
next move executed, hence searching would be 
redundant in such cases. 
4.1 Minimax Search 
 
The minimax search [4,11] does a depth-first 
exploration of the entire game tree.  The heuristic 
functions are utilized at the leaves to provide 
utility values.  The utility values are then backed 
up all the way to the root.  The manner in which 
the values are backed up to a node depends on 
whether the node is a min node or a max node.  
The max player has to make a move while at a 
max node, while the min player has to do so at 
the min node.  The max player is the player who 
has to make the actual next move in the game, 
and has to maximize his/her utility value, while 
the min player does the reverse.  A typical 
minimax tree is such that the min player and max 
player alternate.  This need not necessarily hold 
throughout, since turns may be skipped by 
players in certain games, such as Othello.  
 
 

4.2 Alpha-Beta Search 
 
Alpha-beta search [4] is similar to minimax, 
except that efficient pruning is done when a 
branch is rendered useless.  Such pruning tends 
to be rather effective and the search can proceed 
to great depths, allowing the computer to 
implement a relatively more powerful look 
ahead.  Pruning is done when it becomes evident 
that exploring a branch any further will not have 
an impact on its ancestors.  
4.3 Alpha-Beta Search With Iterative 
Deepening 
 
It becomes unclear as to the optimal depth to 
search up to, if the depth is to be defined 
statically.  Hence, we implemented alpha-beta 
with iterative deepening.  The algorithm sets 
depth to a reasonable initial value of three.  Then 
the depth is increased and the search is conducted 
again.  This is done till the timing constraints are 
not violated.  Before searching with an increased 
depth, a naïve check is made to ensure that the 
search about to be spawned will not violate 
timing constraints.  Using the time taken for the 
previous depth, we approximately calculate a 
new depth at which the next iteration can take 
place.  This new depth would be such that it 
finishes, according to the approximation, before 
the allotted time.  If it doesn’t, the process is not 
preempted, and the execution exceeds by a few 
milliseconds. 

5. Heuristics 
The heuristic functions control the ability of the 
computer to correctly determine how good a 
particular state is for a player.  A number of 
factors determine whether a given state of the 
game is good for a player.  For Othello, factors 
such as mobility, stability, corners and coin parity 
determine how favorable a particular position is 
for a player.  The most intuitive way to calculate 
a heuristic value is to create a linear combination 



of the quantitative representation of the various 
important factors. 
 
We have two major functions that return the 
utility value of a state.  The first utility function 
is a linear combination of several heuristic 
components that are critical to the evaluation of 
the state.  The second utility function uses 
statically assigned weights to squares on the 
board to calculate the utility value.  Both these 
functions are discussed in greater detail in the 
following subsections, and either one can be used 
to return the utility value of a state. 
5.1 Component-wise Heuristic Function 
 
This methodology of calculating the utility value 
uses various different heuristics and assigns 
different weights to those heuristics.  The state of 
an Othello game is evaluated after determining 
the mobility, coin parity, stability and corners-
captured aspect of the configuration.  We have a 
heuristic function to determine each one of these.  
Each heuristic scales its return value from -100 to 
100. We weigh these values appropriately to play 
an optimal game.   
 

5.1.1  Coin Parity 
 

This component of the utility function captures 
the difference in coins between the max player 
and min player.  The return value is determined 
as follows: 
 
Coin Parity Heuristic Value =  

100* (Max Player Coins –Min Player Coins)/ 
(Max Player Coins + Min Player Coins)  

 
The most natural strategy that many primitive 
computer Othello players employed was to base 
their move on a greedy strategy that tried to 
maximize the number of coins of a player at any 
point.  Such strategies failed miserably, and 
obviously so.  A single move can flank at most 
18 coins, which implies that games can swing 
from the control of one player to another very 
rapidly.  Since a complete exploration of the 
game tree would not be possible till the very end 
stages of the game, such a strategy does not 

incorporate the drastically dynamic nature of the 
game.  Neither does it account for the instability 
of coins.  A couple of stable coins might be better 
than ten unstable ones. 
 
5.1.2  Mobility 
 
An interesting tactic to employ is to restrict your 
opponent’s mobility and to mobilize yourself.  
This ensures that the number of potential moves 
that your opponent has would drastically 
decrease, and your opponent would not get the 
opportunity to place coins that might allow 
him/her to gain control.  Mobilizing yourself 
would imply a vast number of moves to choose 
from, hence indicating that you can exercise 
power and control the proceeding of the game. 
 
Mobility comes in two flavors [1], (i) actual 
mobility and (ii) potential mobility.  Actual 
mobility is the number of next moves a player 
has, given the current state of the game.  
Potential mobility is the number of possible 
moves the player might have over the next few 
moves.  Note that moves that are currently not 
legal, but might become legal in the near future 
are accounted for in the calculation of potential 
mobility. Hence, potential mobility captures the 
mobility of the player in the long term, while 
actual mobility captures the immediate mobility 
of the player.  Potential mobility looks ahead on 
its own without the help of searching strategies, 
hence it can compensate for a small depth, when 
quantifying the mobility aspect of the game. 
 
Actual mobility is calculated by examining the 
board and counting the number of legal moves 
for the player.  Potential mobility is calculated by 
counting the number of empty spaces next to at 
least one of the opponent’s coin.  Note that 
potential mobility is a rather crude measure but it 
proved to be rather effective.  There exists a 
tradeoff between the complexity of the 
calculation of potential mobility and its 
effectiveness.  The more effective it is required to 
be, the more complex it would become because 
looking ahead for mobility is a difficult task.  If 



the routine becomes too complex, then it would 
take up a significant amount of processor time, 
which could have been spent searching the game 
tree.  The actual mobility heuristic value is 
calculated as follows and the potential mobility 
heuristic value is calculated in an identical 
fashion. 
 
if((Max Player Actual Mobility Value + Min Player Actual Mobility 
Value) !=0) 

Actual Mobility Heuristic Value =  
100* (Max Player Actual Mobility Value –Min Player Actual 

Mobility Value)/ 
(Max Player Actual Mobility Value + Min Player Actual 

Mobility Value)  
else 

Actual Mobility Heuristic Value = 0 
 
5.1.3 Corners Captured 
 
Corners are the four squares a1, a8, h1, and h8.  
The specialty of these squares is that once 
captured, they cannot be flanked by the opponent.  
They also allow a player to build coins around 
them and provide stability to the player’s coins in 
the environment.  Capturing these corners would 
ensure stability in the region, and stability is what 
determines the final outcome to quite a large 
extent.  There is a high correlation between the 
number of corners captured by a player and the 
player winning the game.  Of course, it is not true 
that capturing a majority of the corners would 
lead to victory, since that clearly need not hold.  
But capturing a majority of the corners, allows 
for greater stability to be built.   
 
We assigned weights to corners captured, 
potential corners, and unlikely corners. A 
player’s potential corner is one which could be 
caught in the next move, while an unlikely corner 
is poised such that it cannot be captured in the 
near future.  These factors weighed together give 
rise to a player’s corner heuristic value. The 
return value is calculated as follows: 
  
if((Max Player Corner Value + Min Player Corner Value) !=0) 

Corner Heuristic Value =  
100* (Max Player Corner Heurisitc Value –Min Player Corner 

Heuristic Value)/ 
(Max Player Corner Heuristic Value + Min Player Corner 

Heurisitc Value)  
else 
 Corner Heuristic Value = 0 

 
5.1.4 Stability 
 
Stability of coins is a key factor in Othello.  The 
stability measure of a coin is a quantitative 
representation of how vulnerable it is to being 
flanked.  We classify coins as belonging to one of 
three categories: (i) stable, (ii) semi-stable and 
(iii) unstable.  Stable coins are coins which 
cannot be flanked at any point of time in the 
game from the given state.  Unstable coins are 
those that could be flanked in the very next 
move.  Semi-stable coins are those that could 
potentially be flanked at some point in the future,  
but they do not face the danger of being flanked 
immediately in the next move. Corners are 
always stable in nature, and as you build upon 
corners, more coins become stable in the region.   
 
Weights are associated to each of the three 
categories, and we sum the weights up to give 
rise to a final stability value for the player.  
Typical weights could be 1 for stable coins, -1 for 
unstable coins and 0 for semi-stable coins. 
 
if((Max Player Stability Value+ Min Player Stability Value) !=0) 

Stability Heuristic Value =  
100* (Max Player Stability Value–Min Player Stability Value)/ 

(Max Player Stability Value+ Min Player Stability Value)  
else 

Stability Heuristic Value = 0 
 
5.2 Static Weights Heuristic Function 
4 -3 2 2 2 2 -3 4 
-3 -4 -1 -1 -1 -1 -4 -3 
2 -1 1 0 0 1 -1 2 
2 -1 0 1 1 0 -1 2 
2 -1 0 1 1 0 -1 2 
2 -1 1 0 0 1 -1 2 
-3 -4 -1 -1 -1 -1 -4 -3 
4 -3 2 2 2 2 -3 4 

  
An alternative to using the utility function 
discussed in Section 5.1 is to have a static board 
of weights associated to each coin position as 
shown in Figure 3 [17].  The heuristic value for a 
player is calculated by adding together the 

Figure 3: Shows the static weights assigned to each 
individual position in the board 



Table 1b: Shows the number of coins won and lost by each of the 
heuristics on the whole, when it played against other heuristics.  

weights of the squares in which the player’s coins 
are present. 
 
The static board implicitly captures the 
importance of each square on the board, and 
encourages the game play to tend towards 
capturing corners.  Dynamically changing these 
weights would mean that we would have to use 
heuristics to calculate the weight of a position 
based on its stability, offer of mobility and etc.  
This would imply that the calculation of the 
utility value would be similar to the one 
discussed in Section 5.1. 
 
Utility Value =  
    Max Player Utility Value– Min Player Utility Value 

6. Evaluation 
We implemented the Othello game along with 
the various heuristics and search strategies in the 
Visual Studio .NET C++ framework.  The entire 
code base consisted of around 4000 lines of code. 
The search strategies implemented were the ones 
discussed in Section 4, while the heuristics 
implemented were the ones explained in Section 
5.  We ran all tests on a system with 2 GB of 
RAM, and 4 Intel Xeon processors, each clocked 
at 2.8 GHz. 
 

This section illustrates the relative importance of 
the various heuristics.  A series of experiments 
were conducted with our Othello game, in which 
we enabled different heuristics of varying 

weights and activated computer versus computer 
auto play.  Though we implemented the three 
different search strategies mentioned in Section 
5, we use the alpha-beta search strategy with a 
depth of 5, unless otherwise mentioned. 
6.1 One-on-One Heuristic Comparison 

Table 1(a) shows the results of the games that 
were conducted.  Table 1(b) represents the results 
in Table 1(a) as the total number of coins won 
and lost by each heuristic. We played each 
heuristic against every other heuristic, and two 
such games were played for each pair, one with a 
different heuristic starting both times.  The 
games were arranged such that the heuristics 
listed down column 1 played first. 

It is evident from the tables that the corner 
heuristic is the most powerful stand-alone 
heuristic. The corner heuristic beats all heuristics.  
Mobility and stability have a close competition 
for second place, with both matching the other 
almost equally. 

The corner heuristic guides the game in a 
direction that enhances the chances of capturing 
corners.  The greater the number of corners 
captured, the more the control a player can 
exercise over the middle portions of the board, 
thus flanking a significant portion of the 
opponent’s coins.  Thus, irrespective of what the 
other heuristics play, this heuristic ensures that 
corners are not easily given up.  This enables the 
corner heuristic to nullify to a certain extent the 

advantage of the other heuristics when playing 
against them. 

Stability, with its classification of stable, semi-
stable and unstable moves is able to guide the 

 Coins Corners Stability Mobility 
Coins N/A 27-37  

Corners 
26-38 
Stability 

14-50 
Mobility 

Corners  53-11 
Corners 

N/A 39-25  
Corners 

39-25  
Corners 

Stability 58-0 
Stability 

13-51 
Corners 

N/A 23-41 
Mobility 

Mobility 59-5 
Mobility 

29-35 
Corners 

0-42 
Stability 

N/A  
 Coins Won Coins Lost 
Corners 254 130 
Mobility 204 158 
Stability 199 157 
Coins 83 295 

 
Table 1a: Shows how each heuristic performed against the other heuristics. 
Heuristics in column 1 played first and each cell specifies the score and the 
heuristic that won. A cell x,y represents the results of the game between 
heuristic x and heuristic y. 



Figure 4: Board configurations in the match between Coin 
parity (white) and Stability (black) heuristics 

game in a good direction. It ensures that as many 
coins as possible are captured and promoted 
higher in the stability order.  This strategy 
minimizes the opportunity for the opponent to 
flank coins and take over the game.  Games  

 

 

 

 

 
 

 
 

played with stability as the primary concern, tend 
to play moves to capture corners and edges as 
fast as possible, and build upon these regions.  
This introduces stability in the region, which 
pervades through the board subsequently. Figure 
4 shows how the stability heuristic captures 
corners and edges when it plays against the coin 
parity heuristic. Though the greedy coin parity 
heuristic starts well, by grabbing unstable coins, 
the stability heuristic prevails as it grabs stable 
coins and flanks the opponent’s coins. Stability 
loses to the corner heuristic primarily because the 
corner heuristic is more hungry for corners, 
hence preventing the stability heuristic from 
capturing them.  This means that stability cannot 
be built by the stability heuristic, because of the 
lack of its ability to grab the most stable regions 
of the board, the corners, against the corner 
heuristic.  
 
Mobility, on the other hand, is effective mainly 
because it minimizes the number of moves the 
opponent has, while maximizing the other 
player’s moves.  This implies that the opponent is 
never able to take complete control over the 

game due to the lack of available moves.  
Mobility forces the opponent to choose from a 
constrained set of moves.  The player using the 
mobility heuristic, on the other hand, would 
enjoy a wide variety of moves.  
As expected, the greedy strategy of maximizing 
the number of coins does not perform too well.  
In Othello, it is easy to gain a lot of unstable 
coins in one move, but losing them is equally 
easy.  The player with the most stable coins in 
the final stages of the game controls the board.  
Hence, though the ultimate goal is to maximize 
the number of coins, using that as a heuristic 
fails. 

6.2 Heuristic Contributions 
 E-Coins E-Corners E-Stability E-Mobility 
Everything 60-4 

Everything 
   

Everything  39-25 
Everything 

  
Everything   47-17 

Everything 
 

Everything    58-6 
Everything 

 
 
 Everything Everything Everything Everything 
E-Coins 53-11 E-

Coins 
   

E-Corners  14-50 
Everything 

  
E-
Stability 

  4-60 
Everything 

 
E-
Mobility 

   28-35 
Everything 

Tables 2a and 2b depict the results for the games 
with a player with all heuristics enabled versus a 
player with all but one heuristic enabled.  Such 
an experiment would depict the importance of 
the omitted heuristic, and would give an 
approximate idea of their impact on the game 
play, with optimal weight settings.  The weights 
for the heuristics were as follows: the corner 
heuristic had a weight of 30, the mobility 
heuristic had a weight of 5, while the stability 

Table 2a & 2b: These tables show the importance of a heuristic X 
by playing all heuristics against everything with heuristic X 
omitted. Heuristics in column 1 played first and each cell 
specifies the score and the heuristic that won. A cell x,y 
represents the results of the game between heuristic x and 
heuristic y. 

Table 2a 



heuristic had a weight of 25 and the coin parity 
heuristic also had a weight of 25.  These weights 
were chosen after a lot of experimentation 
against online computer Othello players, such as 
[15].  After varying them extensively, these were 
found to provide maximum benefit.  These are 
the weights used for other experiments as well, 
unless otherwise stated. 

We use the term Everything to represent the 
function that contains all the heuristic 
components discussed in Section 5.1. E-x is used 
to represent the function that calculates the 
heuristic value using all the heuristics in 
Everything except x. It is interesting to note the 
results of the games between the Everything 
heuristic Vs E-Coins heuristic.  In one game, 
Everything wins, and in the other E-Coins wins.  
This fickle behaviour can be attributed to the 
greedy nature of the coin parity heuristic.  While 
using the coin parity heuristic, it is very easy to 
be caught in a local maxima trap, which is what 
happened in the game in which E-Coins won.  
Since the coin parity heuristic drove the 
Everything heuristic to a local maxima, the E-
Coins heuristic was able to beat it easily. In the 
other case, where Everything won, either no such 
local maxima was encountered, or the rest of the 
heuristics managed to maneuver the computation 
safely away.  
In Section 6.1, it was noted that the most 
powerful standalone heuristic was the corners 
heuristic.  The results in tables 2a and 2b suggest 
that when in a group, stability makes the greatest 
impact.  The main reason for this can be 
attributed to the corners-stability heuristic 
combination.  The corners heuristic wins corners 
and hence stable positions.  The stability 
heuristic builds upon these stable positions to 
provide a strong position for the player.  When E-
Stability is played with Everything, Everything is 
defeated drastically both the times.  This is 
because without the help of stability, E-Stability 
is not able to work up a strong hold on the game, 
while Everything uses its stability heuristic to 
take control.   

To confirm the effect of the corner-stability 
heuristic combination, we conducted a game 
between the stability heuristic against the corner 
and stability heuristics put together.  The corner 
and stability heuristics won both the times with 
scores of 36-28 and 20-44. This proves that the 
stability heuristic fares well in the presence of the 
corners heuristic. In such a group setting of 
heuristics, stability seems to have the most 
impact. 

Corners and mobility, as expected, cause a 
degradation in game play quality when they are 
removed from the Everything heuristic.  This is 
very obvious, since the corners heuristic ensures 
that corners, as starting stable positions are 
caught, and that the stability heuristic can build 
upon this. Corners appear to be a less powerful 
heuristic than stability when it is not a standalone 
heuristic, primarily because stability is better 
complemented by the mobility heuristic. 
Capturing corners, from our experience, 
increases mobility, hence the mobility heuristic 
aids the stability heuristic to capture corners and 
build stability.  The mobility heuristic, however, 
does not aid the corner heuristic to build stability 
once the corners have been captured. 

The mobility heuristic ensures that the opponent 
does not have too many moves to choose from, 
hence restricting the opponents control over the 
board.  Though mobility has a low weight, it has 
such a great impact on the game play, as 
demonstrated by the results.  This suggests that 
increasing the weight of the mobility heuristic 
might enhance play quality, but that was not true 
during our experimentation, because high 
mobility downplayed other heuristics leading to 
bad moves.   

6.3 Component-wise Heuristic Vs Static Board 
Heuristic 

The component-wise heuristic is basically a mix 
of the four heuristics mentioned in Section 5.1. 
The static board heuristic is the one that was 
discussed in Section 5.2, where board positions 
are assigned certain static weights. Two games 



were played between the two.  The game with the 
static board heuristic starting first had a result of 
26-38 with the component-wise heuristic 
winning.  While the other game, with the 
component-wise heuristic playing first, had a 
score of 60-4 with the component-wise heuristic 
winning again.   

The main reason for the defeat of the static board 
heuristic is due to its lack of ability to 
dynamically change weights to represent the 
current state of the game.  The component-wise 
heuristic captures that state of the game and 
suitably modifies the weight in order to guide the 
game in the right direction.  For example, the 
static board heuristic does not take into account 
the stability of the current state of the game 
before making the next move.  The static board 
heuristic takes a rather narrow-minded view of 
the game by claiming that certain squares are 
always good positions to play coins at, 
irrespective of the current state of the game. 

6.4 Component-wise Heuristic: Static Weights 
Versus Dynamic Weights  
 
The weights of the component-wise heuristic, if 
made static, do not fulfill the need for different 
strategies at different points in the game.  Hence, 
we changed the weights dynamically.  During the 
first few moves, stability and mobility were given 
high weights.  This was to ensure that we try to 
curb the opponent’s ability to make moves early 
on and we also try to build stability. As the game 
progresses, corners and stability obtain a high 
weight to ensure that they both play hand-in-hand 
to build a stable position.  When we are able to 
search the tree to the end of the game, we give all 
the weight to the coin parity heuristic.  This 
would be fine because there would be no local 
maxima anymore since we can search till the end 
and avoid any pitfalls.  Two games were played 
between the component-wise static weights and 
component-wise dynamic weights.  The game 
with the dynamic weights starting first had a 
score of 46-18 with the dynamic weights 
winning.  The other game with the static weights 
starting first had a score of 16-48 with dynamic 

weights winning.  This proves the superiority of 
the dynamically varying the weights. 
 
6.5 Alpha-beta Search with Iterative Deepening  

We conducted experiments to determine the 
effectiveness of the alpha-beta search with iterative 
deepening.  We ran a few experiments with a time 
limit set to three seconds.  The experiments were run 
with the optimal weights. The average depth searched 
was 5.6, and the maximum time taken for any search 
was 2.75 seconds.  The time taken for an average 
move was 2.69 seconds. This shows that our 
approximation was well within the bounds.  We used 
an average branching factor of 10 to compute the 
expected computation time for a particular game tree 
for various depths.  Changing the branching factor for 
estimation purposes led to frequent timing violations, 
hence we maintained it at 10. A feature like this is 
required to enable a computer Othello player to enter 
a tournament. It would also ensure less frustration 
from the user who would not be required to wait for 
tremendous amounts of time. 
 
Summary 
 

The results suggest that stability is a very 
powerful heuristic when used in conjunction with 
the corner, coin parity and mobility heuristics.  
Currently, the implementation of a typical 
stability heuristic provides an approximation to 
the actual stability value.  This is due to the 
complexity involved.  But allocating more 
processor power for this task would definitely 
prove to be profitable.   

7. Conclusion and Future Work 
 
Game playing has always been one of the most 
attractive fields of artificial intelligence research, 
and it will continue to be so.  It is one of the parts 
of artificial intelligence that the common man 
observes and interacts with. 
 
We evaluated the importance of a few heuristics 
in enhancing Othello game play.  This paper tried 



to explain the interaction amongst the various 
heuristics that are utilized to evaluate the state of 
an Othello game.  We also analyzed their 
importance. We found that increasing the 
accuracy of the stability heuristic would enhance 
game play greatly.  It was also interesting to note 
that though corners was the most powerful 
standalone heuristic, stability played a major role 
in the component-wise heuristic function. This 
study would allow one to identify the most 
important aspects, and enable more processor 
power to be thrown into it in order to increase the 
accuracy of the heuristic. 
 
Future work would include the incorporation of 
learning strategies into the system.  Such 
strategies tend to be very powerful, since they 
could make use of vast amounts of already 
existing data and can avoid pitfalls that 
deterministic algorithms can suffer from.  We 
can also build more upon our framework to give 
rise to an extremely good Othello player, that can 
then go on to participate in tournaments.   That 
would require careful weight modification, 
optimized lookup tables, and powerful learning 
strategies. 
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Appendix 
All the code was written by us, and we did not download any 
code from anywhere.  We both worked on everything together, 
and did not split the tasks, as we felt the given time was 
sufficient, and that two brains at a task is much better than one.  
Please refer to the user guide to play the Othello game.    


