
An Analysis of Heuristics in Othello
Vaishnavi Sannidhanam and Muthukaruppan Annamalai

Department of Computer Science and Engineering,

Paul G. Allen Center,
University of Washington,

Seattle, WA-98195

{vaishu, muthu}@cs.washington.edu

Abstract
Game playing, as one of the most challenging fields of
artificial intelligence has received a lot of attention.
Games like Othello, which have proven to fit in well
with computer game playing strategies, have spawned a
lot of research in this direction.

Though numerous computer Othello players have been
designed, and have beaten human world champions, it is
not very clear as to how the various Othello heuristics
interact. This paper implements and examines various
heuristics, in an attempt to make observations about the
interplay between the heuristics, and how well each
heuristic contributes as a whole. Identifying heuristics
that contribute immensely to Othello game-play implies
that more processor cycles could be allocated in that
direction to enhance the quality of play. Due to the
complexity of accurate calculations, most heuristics tend
to approximate. Like a typical stability heuristic, that
approximates stability, instead of accurately calculating
it. By realizing the importance of the stability heuristic,
it enables one to decide the amount of time to spend in
such a function.

Various experimental data is collected and analyzed in
the evaluation section, where an insight is provided as to
what the optimal way of using heuristics would be.
Though this paper concentrates on Othello and heuristics
pertaining to it, such analysis is applicable for other
similar games, which descend from Go [16].

1. Introduction
Game playing, as one of the well-admired
components of artificial intelligence research, has
captured tremendous amounts of attention.
Computers, looking ahead beyond the next move
and judiciously rationing out the next best move,
mimic human intelligence, and at times, surpass
it. Computers have, to a good extent, captured
the essence of game playing along with its
intricate complexities. The importance of game
playing arises out of the competition that exists

between the human race and machines. It is a
race to prove superior intelligence.

Othello [14], a board game derived from Go, has
been an example where computers have
exemplified great game play, beating human
world champions [9]. The primary reason being
the small branching factor, allowing the
computer to look ahead in abundance, thrashing
human intuition and reasoning. As processors
increase in speed and complexity, the ability of
computers to reason beyond the current state
increases, while human intelligence maintains a
fairly static average performance over
generations. This leads to an extending gap in
the Othello-playing ability of humans and
computers.

The massive success of Othello, apart from the
small branching factors involved, can also be
attributed to heuristic functions successfully
representing the state of the game. Heuristics in
Othello, suffer from few pitfalls, when chosen
cautiously. The typical calculated heuristic
value is a linear function of various different
heuristics. We implement various heuristics,
along with several optimizations, and determine
the contribution of each heuristic to the entire
game play. In the process, we also determine the
manner in which each heuristic interacts with the
others. Understanding the role of each heuristic
in game play would enable us to use extra
processor cycles in a productive fashion.

We examine related work in Section 2, and offer
a description of the rules of Othello for the reader

in Section 3. Section 4 discusses our different
search strategies, while Section 5 examines the
different heuristics we have implemented.
Section 6 presents experimental results and we
conclude with future work in Section 7.

2. Related Work

The birth of artificial intelligence had spawned
research to enable computers to adopt a
methodology of thinking that simulates the
human brain. But success was brought about
through various other techniques such as alpha-
beta search, which do not mimic the human
thought process. Such techniques, coupled with
the massive computing power of a commodity
system, have proven to be far superior to the
human brain in certain situations.

The use of Othello to demonstrate the game
playing capabilities of machines is not new.
Othello’s rigorous constraints and rules severely
constrain the next set of possible moves, hence
implying a very low branching factor, making it
practically feasible for a computer search. The
most common approach to playing Othello and
other related games, is to perform searches on
game trees using the alpha-beta search [4,11].
[4] provides an overview of different tree search
algorithms, while [11] makes a comparison
between various modified forms of the minimax
tree search algorithm. Computer Othello players,
have comprehensively beaten human world
champions [9], leading to a greater interest in this
game to stay ahead of the human community of
Othello players.

Improved game play in Othello can result from
(i) improvements in the search strategy used, or
(ii) from better heuristic functions, or (iii) by
using learning methods to enable the computer to
learn for itself from massive amounts of data, or
(iv) by adding extra hardware support.

Improvements in the search strategy was done in
[7,8]. [7,8] add probability to the minimax search

algorithm, adding non-determinism to the
approach, making it more effective. [11] provides
an analysis of various modifications to the
minimax strategy. Extra hardware support has
been added in [12] to enhance the game playing
process. Coin-flipping and other Othello related
tasks are extremely fast on such machines.

Learning has proved to be an efficient component
in game playing systems. This is primarily due
to the fact that massive amounts of data of
Othello game proceedings can be taken
advantage of. [5] proposes an Othello playing
program, Bill, which is a direct descendant of
Iago [1]. Bill uses Bayesian learning techniques
for the suggested feature combinations in Iago.
[2] uses supervised learning to improve minimax
searching.

Though there has been a lot of prior work on
developing heuristic functions [13], the
interaction between heuristics and their
contribution to Othello game-play is unclear.
Our work concentrates on identifying fruitful
heuristic components and analyzing their
behavior. To aid us in this process of analysis,
various experiments were conducted.

3. Othello

Othello belongs to the family of board games that
were derived from Go. It consists of an 8 x 8
board with black and white coins. We name each
column from left to right with an alphabet
starting with ‘A’. Each row is numbered from
top to bottom starting with 1. This is the notation
that shall be followed throughout the rest of the
paper.

The initial configuration of the board is as shown
in Figure 1. Each player is associated with a coin
color, either white or black. A player owns the
squares in which his/her color coin is present.
White initially owns d4 and e5, while black owns
e4 and d5. Black always moves first.

The game progresses as each player makes
moves. A move is made by placing a coin in an
empty square. When a player does so, all of the
opponent’s coins bracketed between the newly
placed coin and another coin of the same color
get flanked into the color of the newly played
coin. The flanking of coins is shown in Figures
2a and 2b.

 A move is valid only if it flanks at least one of
the opponents’ coins. When such a move does
not exist, the player skips a turn and the opponent
makes a move.

The game ends when at least one of the following
conditions hold true:

1) The board is full, with no empty spaces
2) The board has coins of only one color
3) When no player has a valid move

4. Search Strategies
This section examines one of the two most vital
components of a game playing computer, the
search mechanism. The second component,
heuristics, is examined in the subsequent section.
The search technique allows the computer to look
ahead and explore different moves through a
systematic generation of next possible moves.
The heuristic function complements the search
process by evaluating the state of the game along
the various paths.

The efficiency of the search technique determines
the extent to which the game tree is explored.
The greater the efficiency of the search
technique, the greater the number of nodes that
can be searched, hence the farther the look ahead,

 and the greater the insight obtained. An ideal
search mechanism should be efficient and prune
irrelevant paths without loss of any important
information. We utilized three different search
strategies: (i) Minimax search (ii) Alpha-Beta

 A B C D E F G H
 1

 2

 3

 4

 5

 6

 7

 8

Figure 1: Board showing the starting game
configuration for Othello

 1

 2

 3

 4

 5

 6

 7

 8

Figure 2b : Blue highlighted squares show the flanked
coins once the black has been placed in (G, 5)

 A B C D E F G H
 1

 2

 3

 4

 5

 6

 7

 8

Figure 2a: Blue highlighted squares show valid moves for
black.

 A B C D E F G H

search and (iii) Alpha-Beta search with iterative
deepening. The following few subsections
examine each one in greater detail.

The game tree to be searched over is the tree of
all possible game states with the current state of
the game at the root. The search cannot explore
the entire game tree for a predominant portion of
the game, since that would require tremendous
amounts of time. Hence, the search is typically
done to a particular depth. If the search depth is
six, then that implies exploring all possible states
which are at most six moves away from the
current state. Towards the end of the game, the
search can be carried all the way to the end.

We have a database of predetermined moves,
which we refer to when possible. This avoids
any time wasted in searching when the next move
to make is an obvious one. For example, if a
corner could be captured, then that should be the
next move executed, hence searching would be
redundant in such cases.
4.1 Minimax Search

The minimax search [4,11] does a depth-first
exploration of the entire game tree. The heuristic
functions are utilized at the leaves to provide
utility values. The utility values are then backed
up all the way to the root. The manner in which
the values are backed up to a node depends on
whether the node is a min node or a max node.
The max player has to make a move while at a
max node, while the min player has to do so at
the min node. The max player is the player who
has to make the actual next move in the game,
and has to maximize his/her utility value, while
the min player does the reverse. A typical
minimax tree is such that the min player and max
player alternate. This need not necessarily hold
throughout, since turns may be skipped by
players in certain games, such as Othello.

4.2 Alpha-Beta Search

Alpha-beta search [4] is similar to minimax,
except that efficient pruning is done when a
branch is rendered useless. Such pruning tends
to be rather effective and the search can proceed
to great depths, allowing the computer to
implement a relatively more powerful look
ahead. Pruning is done when it becomes evident
that exploring a branch any further will not have
an impact on its ancestors.
4.3 Alpha-Beta Search With Iterative
Deepening

It becomes unclear as to the optimal depth to
search up to, if the depth is to be defined
statically. Hence, we implemented alpha-beta
with iterative deepening. The algorithm sets
depth to a reasonable initial value of three. Then
the depth is increased and the search is conducted
again. This is done till the timing constraints are
not violated. Before searching with an increased
depth, a naïve check is made to ensure that the
search about to be spawned will not violate
timing constraints. Using the time taken for the
previous depth, we approximately calculate a
new depth at which the next iteration can take
place. This new depth would be such that it
finishes, according to the approximation, before
the allotted time. If it doesn’t, the process is not
preempted, and the execution exceeds by a few
milliseconds.

5. Heuristics
The heuristic functions control the ability of the
computer to correctly determine how good a
particular state is for a player. A number of
factors determine whether a given state of the
game is good for a player. For Othello, factors
such as mobility, stability, corners and coin parity
determine how favorable a particular position is
for a player. The most intuitive way to calculate
a heuristic value is to create a linear combination

of the quantitative representation of the various
important factors.

We have two major functions that return the
utility value of a state. The first utility function
is a linear combination of several heuristic
components that are critical to the evaluation of
the state. The second utility function uses
statically assigned weights to squares on the
board to calculate the utility value. Both these
functions are discussed in greater detail in the
following subsections, and either one can be used
to return the utility value of a state.
5.1 Component-wise Heuristic Function

This methodology of calculating the utility value
uses various different heuristics and assigns
different weights to those heuristics. The state of
an Othello game is evaluated after determining
the mobility, coin parity, stability and corners-
captured aspect of the configuration. We have a
heuristic function to determine each one of these.
Each heuristic scales its return value from -100 to
100. We weigh these values appropriately to play
an optimal game.

5.1.1 Coin Parity

This component of the utility function captures
the difference in coins between the max player
and min player. The return value is determined
as follows:

Coin Parity Heuristic Value =

100* (Max Player Coins –Min Player Coins)/
(Max Player Coins + Min Player Coins)

The most natural strategy that many primitive
computer Othello players employed was to base
their move on a greedy strategy that tried to
maximize the number of coins of a player at any
point. Such strategies failed miserably, and
obviously so. A single move can flank at most
18 coins, which implies that games can swing
from the control of one player to another very
rapidly. Since a complete exploration of the
game tree would not be possible till the very end
stages of the game, such a strategy does not

incorporate the drastically dynamic nature of the
game. Neither does it account for the instability
of coins. A couple of stable coins might be better
than ten unstable ones.

5.1.2 Mobility

An interesting tactic to employ is to restrict your
opponent’s mobility and to mobilize yourself.
This ensures that the number of potential moves
that your opponent has would drastically
decrease, and your opponent would not get the
opportunity to place coins that might allow
him/her to gain control. Mobilizing yourself
would imply a vast number of moves to choose
from, hence indicating that you can exercise
power and control the proceeding of the game.

Mobility comes in two flavors [1], (i) actual
mobility and (ii) potential mobility. Actual
mobility is the number of next moves a player
has, given the current state of the game.
Potential mobility is the number of possible
moves the player might have over the next few
moves. Note that moves that are currently not
legal, but might become legal in the near future
are accounted for in the calculation of potential
mobility. Hence, potential mobility captures the
mobility of the player in the long term, while
actual mobility captures the immediate mobility
of the player. Potential mobility looks ahead on
its own without the help of searching strategies,
hence it can compensate for a small depth, when
quantifying the mobility aspect of the game.

Actual mobility is calculated by examining the
board and counting the number of legal moves
for the player. Potential mobility is calculated by
counting the number of empty spaces next to at
least one of the opponent’s coin. Note that
potential mobility is a rather crude measure but it
proved to be rather effective. There exists a
tradeoff between the complexity of the
calculation of potential mobility and its
effectiveness. The more effective it is required to
be, the more complex it would become because
looking ahead for mobility is a difficult task. If

the routine becomes too complex, then it would
take up a significant amount of processor time,
which could have been spent searching the game
tree. The actual mobility heuristic value is
calculated as follows and the potential mobility
heuristic value is calculated in an identical
fashion.

if((Max Player Actual Mobility Value + Min Player Actual Mobility
Value) !=0)

Actual Mobility Heuristic Value =
100* (Max Player Actual Mobility Value –Min Player Actual

Mobility Value)/
(Max Player Actual Mobility Value + Min Player Actual

Mobility Value)
else

Actual Mobility Heuristic Value = 0

5.1.3 Corners Captured

Corners are the four squares a1, a8, h1, and h8.
The specialty of these squares is that once
captured, they cannot be flanked by the opponent.
They also allow a player to build coins around
them and provide stability to the player’s coins in
the environment. Capturing these corners would
ensure stability in the region, and stability is what
determines the final outcome to quite a large
extent. There is a high correlation between the
number of corners captured by a player and the
player winning the game. Of course, it is not true
that capturing a majority of the corners would
lead to victory, since that clearly need not hold.
But capturing a majority of the corners, allows
for greater stability to be built.

We assigned weights to corners captured,
potential corners, and unlikely corners. A
player’s potential corner is one which could be
caught in the next move, while an unlikely corner
is poised such that it cannot be captured in the
near future. These factors weighed together give
rise to a player’s corner heuristic value. The
return value is calculated as follows:

if((Max Player Corner Value + Min Player Corner Value) !=0)

Corner Heuristic Value =
100* (Max Player Corner Heurisitc Value –Min Player Corner

Heuristic Value)/
(Max Player Corner Heuristic Value + Min Player Corner

Heurisitc Value)
else
 Corner Heuristic Value = 0

5.1.4 Stability

Stability of coins is a key factor in Othello. The
stability measure of a coin is a quantitative
representation of how vulnerable it is to being
flanked. We classify coins as belonging to one of
three categories: (i) stable, (ii) semi-stable and
(iii) unstable. Stable coins are coins which
cannot be flanked at any point of time in the
game from the given state. Unstable coins are
those that could be flanked in the very next
move. Semi-stable coins are those that could
potentially be flanked at some point in the future,
but they do not face the danger of being flanked
immediately in the next move. Corners are
always stable in nature, and as you build upon
corners, more coins become stable in the region.

Weights are associated to each of the three
categories, and we sum the weights up to give
rise to a final stability value for the player.
Typical weights could be 1 for stable coins, -1 for
unstable coins and 0 for semi-stable coins.

if((Max Player Stability Value+ Min Player Stability Value) !=0)

Stability Heuristic Value =
100* (Max Player Stability Value–Min Player Stability Value)/

(Max Player Stability Value+ Min Player Stability Value)
else

Stability Heuristic Value = 0

5.2 Static Weights Heuristic Function
4 -3 2 2 2 2 -3 4
-3 -4 -1 -1 -1 -1 -4 -3
2 -1 1 0 0 1 -1 2
2 -1 0 1 1 0 -1 2
2 -1 0 1 1 0 -1 2
2 -1 1 0 0 1 -1 2
-3 -4 -1 -1 -1 -1 -4 -3
4 -3 2 2 2 2 -3 4

An alternative to using the utility function
discussed in Section 5.1 is to have a static board
of weights associated to each coin position as
shown in Figure 3 [17]. The heuristic value for a
player is calculated by adding together the

Figure 3: Shows the static weights assigned to each
individual position in the board

Table 1b: Shows the number of coins won and lost by each of the
heuristics on the whole, when it played against other heuristics.

weights of the squares in which the player’s coins
are present.

The static board implicitly captures the
importance of each square on the board, and
encourages the game play to tend towards
capturing corners. Dynamically changing these
weights would mean that we would have to use
heuristics to calculate the weight of a position
based on its stability, offer of mobility and etc.
This would imply that the calculation of the
utility value would be similar to the one
discussed in Section 5.1.

Utility Value =
 Max Player Utility Value– Min Player Utility Value

6. Evaluation
We implemented the Othello game along with
the various heuristics and search strategies in the
Visual Studio .NET C++ framework. The entire
code base consisted of around 4000 lines of code.
The search strategies implemented were the ones
discussed in Section 4, while the heuristics
implemented were the ones explained in Section
5. We ran all tests on a system with 2 GB of
RAM, and 4 Intel Xeon processors, each clocked
at 2.8 GHz.

This section illustrates the relative importance of
the various heuristics. A series of experiments
were conducted with our Othello game, in which
we enabled different heuristics of varying

weights and activated computer versus computer
auto play. Though we implemented the three
different search strategies mentioned in Section
5, we use the alpha-beta search strategy with a
depth of 5, unless otherwise mentioned.
6.1 One-on-One Heuristic Comparison

Table 1(a) shows the results of the games that
were conducted. Table 1(b) represents the results
in Table 1(a) as the total number of coins won
and lost by each heuristic. We played each
heuristic against every other heuristic, and two
such games were played for each pair, one with a
different heuristic starting both times. The
games were arranged such that the heuristics
listed down column 1 played first.

It is evident from the tables that the corner
heuristic is the most powerful stand-alone
heuristic. The corner heuristic beats all heuristics.
Mobility and stability have a close competition
for second place, with both matching the other
almost equally.

The corner heuristic guides the game in a
direction that enhances the chances of capturing
corners. The greater the number of corners
captured, the more the control a player can
exercise over the middle portions of the board,
thus flanking a significant portion of the
opponent’s coins. Thus, irrespective of what the
other heuristics play, this heuristic ensures that
corners are not easily given up. This enables the
corner heuristic to nullify to a certain extent the

advantage of the other heuristics when playing
against them.

Stability, with its classification of stable, semi-
stable and unstable moves is able to guide the

 Coins Corners Stability Mobility
Coins N/A 27-37

Corners
26-38
Stability

14-50
Mobility

Corners 53-11
Corners

N/A 39-25
Corners

39-25
Corners

Stability 58-0
Stability

13-51
Corners

N/A 23-41
Mobility

Mobility 59-5
Mobility

29-35
Corners

0-42
Stability

N/A
 Coins Won Coins Lost
Corners 254 130
Mobility 204 158
Stability 199 157
Coins 83 295

Table 1a: Shows how each heuristic performed against the other heuristics.
Heuristics in column 1 played first and each cell specifies the score and the
heuristic that won. A cell x,y represents the results of the game between
heuristic x and heuristic y.

Figure 4: Board configurations in the match between Coin
parity (white) and Stability (black) heuristics

game in a good direction. It ensures that as many
coins as possible are captured and promoted
higher in the stability order. This strategy
minimizes the opportunity for the opponent to
flank coins and take over the game. Games

played with stability as the primary concern, tend
to play moves to capture corners and edges as
fast as possible, and build upon these regions.
This introduces stability in the region, which
pervades through the board subsequently. Figure
4 shows how the stability heuristic captures
corners and edges when it plays against the coin
parity heuristic. Though the greedy coin parity
heuristic starts well, by grabbing unstable coins,
the stability heuristic prevails as it grabs stable
coins and flanks the opponent’s coins. Stability
loses to the corner heuristic primarily because the
corner heuristic is more hungry for corners,
hence preventing the stability heuristic from
capturing them. This means that stability cannot
be built by the stability heuristic, because of the
lack of its ability to grab the most stable regions
of the board, the corners, against the corner
heuristic.

Mobility, on the other hand, is effective mainly
because it minimizes the number of moves the
opponent has, while maximizing the other
player’s moves. This implies that the opponent is
never able to take complete control over the

game due to the lack of available moves.
Mobility forces the opponent to choose from a
constrained set of moves. The player using the
mobility heuristic, on the other hand, would
enjoy a wide variety of moves.
As expected, the greedy strategy of maximizing
the number of coins does not perform too well.
In Othello, it is easy to gain a lot of unstable
coins in one move, but losing them is equally
easy. The player with the most stable coins in
the final stages of the game controls the board.
Hence, though the ultimate goal is to maximize
the number of coins, using that as a heuristic
fails.

6.2 Heuristic Contributions
 E-Coins E-Corners E-Stability E-Mobility
Everything 60-4

Everything

Everything 39-25
Everything

Everything 47-17

Everything

Everything 58-6
Everything

 Everything Everything Everything Everything
E-Coins 53-11 E-

Coins

E-Corners 14-50
Everything

E-
Stability

 4-60
Everything

E-
Mobility

 28-35
Everything

Tables 2a and 2b depict the results for the games
with a player with all heuristics enabled versus a
player with all but one heuristic enabled. Such
an experiment would depict the importance of
the omitted heuristic, and would give an
approximate idea of their impact on the game
play, with optimal weight settings. The weights
for the heuristics were as follows: the corner
heuristic had a weight of 30, the mobility
heuristic had a weight of 5, while the stability

Table 2a & 2b: These tables show the importance of a heuristic X
by playing all heuristics against everything with heuristic X
omitted. Heuristics in column 1 played first and each cell
specifies the score and the heuristic that won. A cell x,y
represents the results of the game between heuristic x and
heuristic y.

Table 2a

heuristic had a weight of 25 and the coin parity
heuristic also had a weight of 25. These weights
were chosen after a lot of experimentation
against online computer Othello players, such as
[15]. After varying them extensively, these were
found to provide maximum benefit. These are
the weights used for other experiments as well,
unless otherwise stated.

We use the term Everything to represent the
function that contains all the heuristic
components discussed in Section 5.1. E-x is used
to represent the function that calculates the
heuristic value using all the heuristics in
Everything except x. It is interesting to note the
results of the games between the Everything
heuristic Vs E-Coins heuristic. In one game,
Everything wins, and in the other E-Coins wins.
This fickle behaviour can be attributed to the
greedy nature of the coin parity heuristic. While
using the coin parity heuristic, it is very easy to
be caught in a local maxima trap, which is what
happened in the game in which E-Coins won.
Since the coin parity heuristic drove the
Everything heuristic to a local maxima, the E-
Coins heuristic was able to beat it easily. In the
other case, where Everything won, either no such
local maxima was encountered, or the rest of the
heuristics managed to maneuver the computation
safely away.
In Section 6.1, it was noted that the most
powerful standalone heuristic was the corners
heuristic. The results in tables 2a and 2b suggest
that when in a group, stability makes the greatest
impact. The main reason for this can be
attributed to the corners-stability heuristic
combination. The corners heuristic wins corners
and hence stable positions. The stability
heuristic builds upon these stable positions to
provide a strong position for the player. When E-
Stability is played with Everything, Everything is
defeated drastically both the times. This is
because without the help of stability, E-Stability
is not able to work up a strong hold on the game,
while Everything uses its stability heuristic to
take control.

To confirm the effect of the corner-stability
heuristic combination, we conducted a game
between the stability heuristic against the corner
and stability heuristics put together. The corner
and stability heuristics won both the times with
scores of 36-28 and 20-44. This proves that the
stability heuristic fares well in the presence of the
corners heuristic. In such a group setting of
heuristics, stability seems to have the most
impact.

Corners and mobility, as expected, cause a
degradation in game play quality when they are
removed from the Everything heuristic. This is
very obvious, since the corners heuristic ensures
that corners, as starting stable positions are
caught, and that the stability heuristic can build
upon this. Corners appear to be a less powerful
heuristic than stability when it is not a standalone
heuristic, primarily because stability is better
complemented by the mobility heuristic.
Capturing corners, from our experience,
increases mobility, hence the mobility heuristic
aids the stability heuristic to capture corners and
build stability. The mobility heuristic, however,
does not aid the corner heuristic to build stability
once the corners have been captured.

The mobility heuristic ensures that the opponent
does not have too many moves to choose from,
hence restricting the opponents control over the
board. Though mobility has a low weight, it has
such a great impact on the game play, as
demonstrated by the results. This suggests that
increasing the weight of the mobility heuristic
might enhance play quality, but that was not true
during our experimentation, because high
mobility downplayed other heuristics leading to
bad moves.

6.3 Component-wise Heuristic Vs Static Board
Heuristic

The component-wise heuristic is basically a mix
of the four heuristics mentioned in Section 5.1.
The static board heuristic is the one that was
discussed in Section 5.2, where board positions
are assigned certain static weights. Two games

were played between the two. The game with the
static board heuristic starting first had a result of
26-38 with the component-wise heuristic
winning. While the other game, with the
component-wise heuristic playing first, had a
score of 60-4 with the component-wise heuristic
winning again.

The main reason for the defeat of the static board
heuristic is due to its lack of ability to
dynamically change weights to represent the
current state of the game. The component-wise
heuristic captures that state of the game and
suitably modifies the weight in order to guide the
game in the right direction. For example, the
static board heuristic does not take into account
the stability of the current state of the game
before making the next move. The static board
heuristic takes a rather narrow-minded view of
the game by claiming that certain squares are
always good positions to play coins at,
irrespective of the current state of the game.

6.4 Component-wise Heuristic: Static Weights
Versus Dynamic Weights

The weights of the component-wise heuristic, if
made static, do not fulfill the need for different
strategies at different points in the game. Hence,
we changed the weights dynamically. During the
first few moves, stability and mobility were given
high weights. This was to ensure that we try to
curb the opponent’s ability to make moves early
on and we also try to build stability. As the game
progresses, corners and stability obtain a high
weight to ensure that they both play hand-in-hand
to build a stable position. When we are able to
search the tree to the end of the game, we give all
the weight to the coin parity heuristic. This
would be fine because there would be no local
maxima anymore since we can search till the end
and avoid any pitfalls. Two games were played
between the component-wise static weights and
component-wise dynamic weights. The game
with the dynamic weights starting first had a
score of 46-18 with the dynamic weights
winning. The other game with the static weights
starting first had a score of 16-48 with dynamic

weights winning. This proves the superiority of
the dynamically varying the weights.

6.5 Alpha-beta Search with Iterative Deepening

We conducted experiments to determine the
effectiveness of the alpha-beta search with iterative
deepening. We ran a few experiments with a time
limit set to three seconds. The experiments were run
with the optimal weights. The average depth searched
was 5.6, and the maximum time taken for any search
was 2.75 seconds. The time taken for an average
move was 2.69 seconds. This shows that our
approximation was well within the bounds. We used
an average branching factor of 10 to compute the
expected computation time for a particular game tree
for various depths. Changing the branching factor for
estimation purposes led to frequent timing violations,
hence we maintained it at 10. A feature like this is
required to enable a computer Othello player to enter
a tournament. It would also ensure less frustration
from the user who would not be required to wait for
tremendous amounts of time.

Summary

The results suggest that stability is a very
powerful heuristic when used in conjunction with
the corner, coin parity and mobility heuristics.
Currently, the implementation of a typical
stability heuristic provides an approximation to
the actual stability value. This is due to the
complexity involved. But allocating more
processor power for this task would definitely
prove to be profitable.

7. Conclusion and Future Work

Game playing has always been one of the most
attractive fields of artificial intelligence research,
and it will continue to be so. It is one of the parts
of artificial intelligence that the common man
observes and interacts with.

We evaluated the importance of a few heuristics
in enhancing Othello game play. This paper tried

to explain the interaction amongst the various
heuristics that are utilized to evaluate the state of
an Othello game. We also analyzed their
importance. We found that increasing the
accuracy of the stability heuristic would enhance
game play greatly. It was also interesting to note
that though corners was the most powerful
standalone heuristic, stability played a major role
in the component-wise heuristic function. This
study would allow one to identify the most
important aspects, and enable more processor
power to be thrown into it in order to increase the
accuracy of the heuristic.

Future work would include the incorporation of
learning strategies into the system. Such
strategies tend to be very powerful, since they
could make use of vast amounts of already
existing data and can avoid pitfalls that
deterministic algorithms can suffer from. We
can also build more upon our framework to give
rise to an extremely good Othello player, that can
then go on to participate in tournaments. That
would require careful weight modification,
optimized lookup tables, and powerful learning
strategies.

References
[1] Rosenbloom, P., A world-championship-level Othello
program, Artificial Intelligence, 19, pp 279-320, 1982.

[2] Buro, M., Improving heurisitic minimax search by
supervised learning, Artificial Intelligence, 134, pp 85-99,
2002.

[3] Utgoff, E. P. Feature Construction for Game Playing,
Technical Report, University of Massachutes, Amherst,
MA.

[4] Russell S., Norvig P., AI: A Modern Approach,
(Prentice Hall) 2nd edition, 2003.

[5] Lee, K.; Mahajan, S.: The Development of a World
Class Othello Program, Artificial Intelligence, 43, pp. 21 –
36, 1990.

[6] M. Buro, How Machines have Learned to Play Othello,
IEEE Intelligent Systems J. 14(6) 1999, 12-14

[7] M. Buro, Experiments with Multi-ProbCut and a New
High-Quality Evaluation Function for Othello, Workshop
on game-tree search, NECI, 1997.

[8] M. Buro, ProbCut: An Effective Selective Extension of
the Alpha-Beta Algorithm, ICCA Journal 18(2), pp 71-76,
1995.

[9] M. Buro, The Othello Match of the Year: Takeshi
Murakami vs. Logistello , ICCA Journal 20(3), pp 189-193,
1997.

[10] M. Buro, The Evolution of Strong Othello Programs,
in: Entertainment Computing - Technology and
Applications, R. Nakatsu and J. Hoshino (ed.), Kluwer, pp.
81-88, 2003.
[11] Campbell, Murray S. and Marsland T.A. A
Comparison of Minimax Tree Search Algorithms Artificial
Intelligence 20, pp 347-367, 1983.

[12] Hewlett C., Hardware Help in an Othello Endgame
Analyzer, Heuristic Programming in Artificial Intelligence,
the first computer Olympiad, pp. 219-224, 1989.

[13] Abramson B., and Korf R.E., A model of two-player
evaluation functions, Proceedings of the Sixth National
Conference on Artificial Intelligence, pp 90-94, 1987.

[14] History and Basic rules of Othello:
http://www.othello.org.hk/tutorials/eng-tu1.html,

[15]http://home.tiscalinet.ch/t_wolf/tw/misc/reversi/html/in
dex.html

[16] http://www.game-club.com/gohis/go.htm

[17] http://www.cs.rochester.edu/~anustup/othello.html

Acknowledgements
We would like to thank Dan Weld for his help in guiding the
project in the right direction. We would also like to thank Parag,
for his initial advice on an appropriate AI project, and what that
means.

Appendix
All the code was written by us, and we did not download any
code from anywhere. We both worked on everything together,
and did not split the tasks, as we felt the given time was
sufficient, and that two brains at a task is much better than one.
Please refer to the user guide to play the Othello game.

