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Abstract

With the success of computer algorithms to play games such
as chess and checkers, the ancient game of go has stood out
more and more prominently as the last remaining frontier
for artificial intelligence in deterministic zero-sum complete
knowledge games.
We present a method by which goals in a game of go can
used to prune the moves which are considered to those which
may lead toward the realization of a goal. We formulate these
goals in a form similar to prepositional logic, which allows us
to use a DPLL style solver for a minimax search algorithm,
as well as to potentially create heuristics for the search based
on an analysis of the formula.

Introduction
Current AI techniques have met with little success when ap-
plied to the game of go. The best computer players still
achieve only a novice level of play, and in large part resem-
ble expert systems designed to play the game, rather than
being able to play well from little more than the rules or
learn good play from data.

This stands in sharp contrast to other deterministic zero-
sum complete knowledge games such as Othello, checkers
and chess. In each of these games a respectable level of play
can be achieved by combining a simple evaluation function
with an alpha-beta minimax search. In the case of chess, the
most difficult of these games for computers to perform well
at, even this simple technique is sufficient to look 10 moves
ahead, which is significantly more than an average human
player.

These techniques have had far less success with playing
go. The most basic reasons for this are twofold, present-
ing problems both for performing a minimax search and for
creating an evaluation function.

In contrast to Othello, checkers, and chess, all of which
are played on an 8 × 8 board, a standard game of go takes
place on a 19 × 19 board (although the smaller sizes of
13 × 13 and 9 × 9 are sometimes used for beginners). Dur-
ing the game, pieces are allowed to be played at almost any
unoccupied intersection. This results in the average branch-
ing factor for a game of go being around 200, as opposed
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to about 35 for chess. Even in the case of a 9 × 9 board
the branching factor still greatly exceeds that of chess. This
problem is made even worse by the ability of human play-
ers to reliably read ahead on the order or 60 plies. Since
the stones do not move around, even beginners can reason
roughly about the effects that a play may have on board
states well over a hundred plies later.

Even if a computer program could read deeply in a game
of go, the evaluation function poses tremendous difficulties.
Since the pieces in games such as Othello, checkers, or chess
operate relatively independently, it is easy to create a sim-
ple evaluation heuristic which gives a reasonable analysis of
which player is ahead at a given point.

The situation in go is anything but this simple. The goal
in go is to control territory, which is a task that by its very
definition involves many pieces. Furthermore, pieces in go,
even early in play before any territory is solidly staked out,
rarely act independently. Rather pieces are either directly
connected (and thus inseparable from) a larger group of
stones, or are only meaningful within the context of other
stones on the board. The intricacies of these interactions are
subtle enough to make the creation of even a remotely rea-
sonable evaluation function a daunting task. The creation of
an evaluation function suitable for high level play remains a
problem with little prospect for solution in the near future.

In this paper we will not aim to solve all of these prob-
lems, but rather show a method by which the branching fac-
tor can be reduced by considering only moves which may
work toward the attainment of some goal. The goals are
further formulated in a manner which is general enough to
express a very wide variety of possible strategies, rather than
being limited to the expression of some small set of higher
level actions.

Using SAT Techniques
We guide the search for an optimal move by formulating the
problem in a form in which it possible to apply some of the
techniques that are used in satisfiability solvers. The basic
idea used is that only certain board configurations are useful
in achieving a goal, so we can create a logical formula de-
scribing these configurations. Finding an optimal move can
then be phrased in terms of the satisfiability of this formula
and the search restricted to moves which will aid in this. It
is worth mentioning that although many satisfiability tech-



niques are applicable to this formulation, our method does
not result in a standard satisfiability problem, and still more
closely resembles minimax (or a restricted form of QBF).

Motivation

A blind search in the game of go only allows a very shallow
search. In our implementation, we found that even on a 9 ×

9 board we could only search up to 3 ply in a reasonable
time. At a depth of 3 ply a blind search has to consider
over 511,000 moves, and at 4 ply this increases to nearly 40
million moves. On a full 19×19 board the number of moves
which must be considered at 3 and 4 ply are over 45 million
and over 16 billion respectively.

This level of search is far, far to low to be useful, even
with a good evaluation heuristic (which, of course, is itself
not known). The principal problem with the blind search al-
gorithm is the very fact that it is blind. Such an algorithm is
attempting to find tactical solutions by brute force, and has
no other means at its disposal. This method fails as miser-
ably when applied by programs to go as it does when applied
by humans (this is basically the strategy that many people
have their first time playing the game).

This hints at a deeper relationship between tactics and
large scale, longer term strategies in the game of go. This
relationship is well stated in a popular book on go problems
(Davies 1995):

The first principle in reading is to start with a definite
purpose. There is no better way to waste time than to
say to yourself, ‘I wonder what happens if I play here,’
and start tracing out sequences aimlessly. Tactics must
serve strategy. Start by asking yourself what you would
like to accomplish in the position in question, then start
hunting for the sequence that accomplishes it. Once
you have your goal clearly in mind the right move, if it
exists, will be much easier to find.

It is precisely this view of tactics as serving strategy that we
take to better guide our statical search.

Overview

In order to use strategy to guide the search for a tactical solu-
tion, it is first necessary to have a way to describe a strategic
goal, representing what we would like to accomplish in a
given situation. To the best of the authors’ knowledge, at-
tempts to achieve this have only been done in the context of
adversarial planning, where goals are formulated in terms of
higher level concepts, such as ‘connect groups A and B’ or
‘capture group A’ (Willmott et al. 1999). This sort of repre-
sentation for goals by its very nature greatly limits the types
of goals that can be represented. If one wishes to be able to
have a new king of goal, say ‘build a wall’ then the defini-
tion of this goal must be programmed by hand. Furthermore,
it may be difficult to learn such specific goals from data of
actual play between humans, so there must be essentially an
expert system to provide these goals.

Although we do not actually provide a system to learn
these goals from data, we do focus on a formulation of
goals which is flexible enough to cover many diverse cir-

cumstances, and for which it at least looks hopeful to be
able to learn goals from example games.

We think of a goal as a constraint on a future board state.
For example, if we wish to capture a piece then we would
formulate a goal of having a future board state in which
that piece is not on the board. This view captures all of
the essence of what a goal is, namely it is some set of con-
straints on the state of the board that we would like to be
able, through correct play, to bring the game into agreement
with. The sorts of goals which we are able to represent is
then merely determined by the expressiveness of how we
express hypothetical future board states.

Because of its simplicity and relatively powerful expres-
siveness, as well as its closeness to the actual game of go,
we choose a language very similar to prepositional logic to
formulate these goals in. Each square on the board can have
one of three states, either it can be black, white, or empty.
These states are similar to the values that true, false, and
unassigned might have in a standard satisfiability equation,
but it is useful to retain the notions of black and white since,
for example, only one player can place a piece of a given
color. At a square at coordinates x, y, we will represent the
constraints that black or white occupy that square as Bxy

and Wxy respectively.
A goal is a logical formula involving these sorts of vari-

ables. We express these logical formula in disjunctive nor-
mal form, because of its usefulness in specifying actual
goals in the game (note that since this is more closely re-
lated to QBF than to standard satisfiability, we cannot solve
a DNF equation in polynomial time). For example, if we
want a white piece at E5 to be captured or a white piece to
be at E4 and a black piece at F5, we would create the goal
(¬WE5) ∨ (WE4 ∨ BF5).

Merely having these goals is not, however, sufficient. We
must also be able to use them to find, if it exists, play which
will lead to the attainment of the goal. We do this in two
steps. First we create an expression denoting the ways in
which it is possible to achieve the given goal within some
set limit of moves, and then we attempt to find an adversarial
satisfiability solution to the resulting expression which will
give the correct play (or determine that none exists). In or-
der to simplify these parts, we we consider only a restricted
subset of go in which no captures (other than the one speci-
fied in the goal itself) are allowed. This is a major restriction
on the rules, but many of the routes of play in this form are
identical to in actual go. In any case, we suspect that, since
the assumption of no captures in go holds for most of the
moves in a game, the techniques described for this restricted
rule set will be applicable in largely their present form to the
full rules of go.

Generating Pruning Expressions
The first step in this algorithm, once a goal has been sup-
plied and we wish to determine if it is actually realizable,
is to generate an expression which gives the conditions un-
der which the goal can be satisfied. This serves to massively
prune the spaces which must be searched, and so we refer to
such an expression as a pruning expression Since there may
be arbitrarily complex and deep ways in which any partic-



ular goal can be satisfied, we set a limit maxDepth on the
number of plies we are willing to consider in a solution.

To aid in the discussion of this algorithm, we will define
the following terms:

string A group of stones of the same color where each piece
is connected to the others by being adjacent either hori-
zontally or vertically another piece in the group.

liberty An empty square which is either horizontally or ver-
tically adjacent to a string.

capture When all of the liberties of a string are filled with
pieces of the opposite color, it is removed from the board.

depth In this algorithm, the depth of a solution will refer to
the number of moves which the opponent makes before a
goal is achieved. Thus the ply of a solution is 2depth+1.

We will also adopt the convention that black is always the
player attempting to achieve a goal and white is always the
player attempting to prevent that goal from being realized.

Since blindly searching over the entire board is pro-
hibitively slow, we will prune the configurations which are
considered to those which have a potential of leading to a
realization of the goal within a depth less than or equal to
maxDepth.

This is achieved through a process similar to iterative
deepening. For each depth (starting at depth 0), we first
derive which conditions would need to obtain for black to
accomplish the goal, assuming white is not allowed to make
any further moves. This essentially gives the conditions that
need to obtain for black to immediately achieve its goal.

At each iteration, once black has created an expression
describing the conditions that would need to obtain for its
goal to be achieved in some depth, d, white then attempts to
find a move which will push the depth required to achieve
the goal to d + 1.

Once white has derived a way (if there is one) to push this
depth back to d + 1, we branch on all of the possible ways
white could thwart the goal at depth d and iterate the process
on each of these branches for depth d + 1.

To further prune the board configurations which we con-
sider, any ways of obtaining the goal which require too many
moves to be accomplished in depth maxDepth − d are not
considered. For each depth d this amounts to pruning those
configurations which require more than maxDepth− d + 1
moves by black or maxDepth − d moves by white.

During this process, we keep track of all configurations
which we have encountered by which the goal could be ob-
tained. These configurations are stored as a conjunction
of the states of the squares on the board (black, white, or
empty). If any one of these configurations actually obtains,
black’s goal will be accomplished, so we create a single dis-
junction of all of these configurations. Thus the ways of
accomplishing a goal can be stored as a expression in dis-
junctive normal form.

An example of how this process proceeds will be illustra-
tive of what is going on. Consider the board shown in figure
1.

Suppose that black formulates as a goal the capture of the
white piece at E5. This goal would be stated as the following
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Figure 1: black to capture white

constraint:

¬WE5 (1)

We will consider the steps taken by our program in
creating a pruning expression to satisfy this goal with
maxDepth = 1.

Since there is currently a white piece at E5, the only way
for black to achieve this goal in depth 0 (white makes no
moves) is to surround it by filling in its liberties as shown in
figure 2.
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Figure 2: an immediate capture

The expression corresponding to this capture is:

BE6 ∧ BF5 (2)
1

If white is to avoid being captured in depth 0, it must in-
validate this expression. Since it is taken to be an axiom that
a white piece cannot be on the same square as a black piece
(¬(Bxy ∧ Wxy)), and since we are not considering captures
by white, the only way for white to do this is to have either
WF5 or WE6.

1The actual expression is BE6∧BF5 ∧BD5 ∧BE4, but for the
sake of brevity we will omit the variables corresponding to pieces
which are already on the board in this initial state.



Our algorithm recurses on each of these terms. Let us con-
sider WF5 first. The board state ofter this move is illustrated
in figure 3
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Figure 3: white escapes

If black wants to capture white in this configuration, as
illustrated in figure 4, then black must be able to satisfy the
expression:

WF5 ∧ BE6 ∧ BG5 ∧ BF4 (3)
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Figure 4: requirement to capture in depth 1

The number of variables remaining to be set in this equa-
tion (equivalently the number of moves required to capture)
exceeds the limit set by maxDepth, so this state can be re-
moved from consideration.

At this point we have exhausted this branch and can now
consider white’s other option, WE6, as illustrated in figure
5.

In this case, to realize the goal of ¬WE5 black only has to
satisfy the formula:

WE6 ∧ BF5 ∧ BE7 (4)

This capture is shown in figure 6.
Since the number of unset variables in this equation is

only two (BF5 and BE7), it is attainable within maxDepth.
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Figure 5: white escapes depth 0 capture
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Figure 6: black captures

This exhausts all possibilities for attaining the goal within
depth 1, so the final expression indicating the possible ways
in which black can achieve this goal is returned as the dis-
junction of each of the configurations in which it could be
attained:

(BE6 ∧ BF5) ∨ (WE6 ∧ BF5 ∧ BE7) (5)

This expression is then given to an algorithm which at-
tempts to find a sequence of moves by the players in which
black can force it to be satisfied. In this case, it can be seen
the by black setting BF5 this can be done2. The algorithm
for determining this is described next.

Solving Pruning Expressions

Our algorithm for solving for satisfiability in go pruning ex-
pressions derives from the DPLL satisfiability algorithm and
the minimax adversarial search algorithm (Russell & Norvig
2003). We are aware of some concurrent research in apply-
ing adversarial search techniques to satisfiability problems
(Zhao & Mueller 2004); however, it is recent enough that

2It is worth mentioning that at 3 ply this example is essentially
the most difficult sort of problem that a blind minimax algorithm
could solve.



we have not been able to find the paper, and it has not been
applied to the game of go.

Our algorithm proceeds as follows. There are two players,
analogous to MAX and MIN in minimax; let us call them
TRUE and FALSE for clarity’s sake. The players are given
a pruning expression, and alternate turns assigning values to
variables in the expression by making moves. A move sets
a variable to true if it has the the same space and color as
the variable. A move sets a variable to false if has the same
space and a different color as the variable. TRUE attempts
to have the expression evaluate true, and FALSE attempts to
have the expression evaluate false.

We had initially planned to give the algorithm two expres-
sions: one which TRUE would try to set true and FALSE
would try to set false, and one which FALSE would try to
set to true. In this way we could constrain the moves TRUE
made by limiting them only to those which did not set the
second expression to true. As it turned out, for our restricted
rule set we only needed the first expression. As the players
take turns, the pruning expression is updated to reflect the
new state of the board.

In the computation we update by using DPLL on our ex-
pressions, which are in DNF. If a variable is set to true, it
is removed from its clause; if it is set to false, its whole
clause is removed from the expression. This continues un-
til all clauses are removed, in which case the expression has
become false, or there is an empty clause, in which case the
expression is true. In this way, the available moves for each
player are encoded in the expression as the turns progress. In
our implementation, we are able to prune the moves TRUE
considers to only moves which correspond to variables of if
its color. FALSE will consider all moves corresponding to
variables. Moves are considered in an arbitrary order; we
do not employ any heuristics to guide their expansion. It is
very likely that heuristics, such as looking for pure symbols,
would improve the performance of our algorithm.

Results
Because of their particular use in simply illustrating the sorts
of problems which out method can solve, we will focus pri-
marily on problems in which, through correct play, black
can capture a white piece. One simple example of such a re-
sult was given above in the description of the generation of
pruning expressions. Another standard problem involving a
capture is a net. The most simple form of a net is shown in
figure 7.

The goal for this capture is stated as ¬WE5.
The correct solution, as found by our program is shown in

figure 8.
Once black has moved here, white cannot escape and is

eventually doomed.
Two slightly more difficult net examples are illustrated in

figures 10 and 12, and the solutions found by our program
are shown in figures 11 and 13.

A substantially less easy to read solution to a capturing
problem found by our program is shown in figure 14.

The solution found by our program is somewhat surpris-
ing (particularly since we did not realize there was a solu-
tion), and is shown in figure 15
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Figure 7: black can capture white in a net
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Figure 8: the correct move

This solution does indeed work, if white attempts to jump
out at E5, our program caps at E6 and the white pieces have
no escape. See figures 16 and 17.

Since we represent goals in a language similar to prepo-
sitional logic, we are not limited to goals which simply in-
volve the capture of a single group of pieces. This is a very
useful trait as far as actual play in the game of go is con-
cerned. Even if we still restrict ourselves to goals involving
captures, it is not too uncommon to see cases where either
one of two white groups can be captured, but in which black
cannot choose which one. The most simple example of such
a case is when black can cause a double atari. Such a situa-
tion is shown in figure 18.

In this case we form a goal as any board state in which
either one of the two white pieces has been captured:

¬WE6 ∨ ¬WF5 (6)

Our program was easily able to find the solution to this,
after black moves at F6 white can save either piece, but not
both (see figures 19 and 20).
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Figure 9: white attempts to escape, but cannot
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Figure 10: a slightly harder net

As a final example of the ability to solve goals other than
captures, we consider the situation shown in figure 21.

The white piece at D5 is safe for the time being, but black
can do well by threatening a capture in order to build a wall
along the top. This goal can be expressed as the disjunction
of a state representing the capture, and another representing
the wall.

¬WD5 ∨ (BD6 ∧ BE6 ∧ BF6) (7)

White cannot prevent this goal from being attained once
black moves at D6, though two possible attempts to do so
are shown in figures 22 and 23.

All of the problems given here were not only solved by
our system, but the solution was always calculated in a frac-
tion of a second. We found that our program was able to
quickly solve problems with a depth of up to 9 ply, taking
about the same amount of time as a 2 ply blind minimax
search.

A B C D E F G H J

A B C D E F G H J
1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1

Figure 11: correct play
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Figure 12: another net example

Conclusion and Future Work

We have presented a method whereby goals in a game of
go can be specified and used to guide a tactical search. In
the examples we tested, we were able to increase the search
depth that can be done in under a second from 2 ply to 9 ply.
Furthermore we specify these goals in a simple, general, and
flexible form. Although our method is currently restricted to
a subset of the rules of go, we suspect that the ideas shown
can be applied without too much modification to the full rule
set.

There is a great deal of room for future work on this
method. It of course would be necessary to extend these
methods to the full rule set of go. In addition, goals must
currently be supplied by the user. It would be very desirable
to create a system which could propose goals for a given
board state by learning from examples of games played by
humans. Toward this end, it would also be useful to be able
to specify goals in a probabilistic manner, so that a goal rep-
resents a soft constraint on a future board state rather than
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Figure 13: black captures
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Figure 14: can black capture the white piece?

a hard constraint. Done correctly, this would allow goals to
be only partially achieved, and the utility of how well a goal
is achieved compared to others that could be achieved to be
expressed.

The current bottleneck in the execution of our program
is in solving the pruning expressions. We use a very sim-
ple algorithm based on DPLL, but methods derived from
other more advanced SAT solving procedures, or tailored to
work well in go, should be investigated. It may be particu-
larly fruitful to consider stochastic methods, such as walksat,
since even in experienced human play it is often the case
the all possible moves which could alter the outcome are
not considered, but only those which seem to have the best
chance of achieving the goal.
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Figure 17: a possible continuation

Appendix A
Work done by Seth Cooper3

• DPLL based pruning expression solver

• Minimax framework

• GUI for solving puzzles

Work done by Kevin Wampler4

• coding of the rules of go

• pruning expression generator

• Minimax plugin for go

Work done by both authors:

• General framework for game playing

• Discussion of algorithms

3Puny human number 1
4Puny human number 2
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Figure 18: black can capture one of the two white
pieces
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Figure 19: white saves the top piece
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Figure 20: white saves the other piece
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Figure 21: white cannot be easily captured
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Figure 22: white avoids capture, but black gets a wall
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Figure 23: white attempts to spoil the wall, but is cap-
tured.


