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Abstract 
Othello is a two player strategy board game established in 
England in the 1880s. It is also known as Reversi. The 
motivation to implement this game as an AI project comes 
from adversial search strategies, applying a minimax 
algorithm with an alpha-beta pruning not taking branches 
into account that cannot possibly influence the final 
decision. By adding various heuristic evaluation functions, 
the search problem can be solved in a more effective way, 
thus yielding better moves compared to a simple greedy 
method.  

Introduction   
This Othello implementation covers various aspects of the 
game. Firstly, we implemented it as a Java application to be 
more user-friendly and secondly, we focused on a 
reasonable level of intelligence by taking only valid moves 
and rules into account.  
 The final version only allows one player-mode, i.e. 
human versus computer.  
 This paper focuses on an overview of the Othello game 
including some general strategies, its implementation in 
Java, and finally adversial search strategies with a short 
outline of the minimax algorithm with an alpha-beta 
pruning. The real focus lies on the heuristics optimizing the 
AI. Up to date computer programs of Othello are able to 
beat humans easily, as Logistello did in 1997 with the then 
current world champion Takeshi Murakami. That program's 
considerable playing strength is mainly due to several (by 
the time) new approaches for the construction of evaluation 
features, their combination, selective search, and learning 
from previous games.  

Overview of the Othello Game 
Othello is now a popular two player strategy board game in 
many countries - though it is not as popular as chess or 
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backgammon, there are numerous players around the world 
(although most are in Asia). In a regular Othello game, on 
which we are focusing, there is a green 8-by-8-board with 
64 squares. The discs are black and white.  
 

Rules of the Game 
The game starts with fixed board positions (Figure 1), with 
black taking the first move. When it is the turn of the white 
player, he can place a disc of his color onto one of the 
empty squares on the board, provided that this move flips 
at least one of the opponent's discs.  
 Flipping is done by evaluating the surrounding squares; 
vertically, horizontally and diagonally (totally 8 directions, 
except for in corners and edges, where the board limits the 
options). If this evaluation finds an unbroken line of the 
opponent’s discs, followed by a disc of the player’s own 
color, then a flip of all intermediate discs is done in this 
direction. This procedure alternates between the two 
players. If there is no legal move, the player has to pass.  
 The game ends if all squares are occupied or if none of 
the players can take a legal move on the remaining empty 
board squares.  The winner of the game is the one that 
possesses more discs in such a situation.  
 

 
Figure 1 – Starting position of every game. 
 



General Strategies 
There are three basic ideas to accomplish a winning game. 
But before throwing ourselves at them, let us just start with 
a surprising fact: having a lot of discs at a certain time does 
not guarantee to win the game eventually, even it is very 
close to the end of the game.  
 First, let us consider the importance of corners. A disc 
placed in a corner can never be re-flipped, because it faces 
two adjacent edges.  
 By gradually placing more discs around the corner, this 
area cannot be flipped by the opponent, thus creating the 
second general idea of stable discs. But taking the corners 
is not the only way to create stable discs. To avoid your 
opponent taking the corners, you should avoid playing the 
squares diagonally next to the corner squares and the 
squares next to corners (although the latter are less 
dangerous).  
 
 Third, there is the concept of mobility, i.e. the number of 
legal moves of a player in the game at a certain time. 
Obviously, it is a good idea to maintain high mobility 
whenever possible. This can be achieved by only having a 
few discs, that are packed and that are surrounded by the 
opponent at the same time.  
 On the other hand, a player should avoid creating empty 
squares that are not possible to enter anymore and building 
long thick “walls”.  
 

 
Figure 2 – The board 

The Othello Implementation 
Our O-thell-us implementation is written in Java. Our aim 
was to implement a user-friendly, i.e. readable, code 
consisting of various classes. Their names refer to their 
purpose. Worth mentioning, we started to work from 
scratch on our program and built it all on that.  
 In the following, we will give the reader a short 
introduction and explanation to our user interface and the 
important parts of the source code. For more details that 
are not covered in this outline, please take a closer look in 
Appendix B. 

 

The User Interface 
As mentioned above, our GUI was designed and created for 
simplicity and to be able to transmit vital information to the 
user in a pleasant and non-disruptive way.  
 The interface consists of two main parts: the board 
(represented by a self-designed picture, as viewed in Figure 
2 and the user information and control panel (presented in 
Figure 3) The board (placed to the left in our GUI) is 
combined with an overlying mouseListener that catches 
clicks within the picture. Only legal moves are executed, 
and the turn switch back and forth after taken move, 
flipping the appropriate disc between moves.  

 
Figure 3 – The user information and control panel 
 
 For the user information and control panel, this is further 
subdivided into a statistics box for white, another one for 
black, a message printing window and a Quit-button.  
 The statistics boxes hold elapsed time for each user 
(using our very own StopWatch class) and each player’s 
current score (how many discs he has on the board). 
 For the message box, this part is used to print 
information and status messages, and it can also be 
effectively used for debugging. 
 Of course there are third party applications such as 
JBuilder from Borland and Visual Café from Symantec, 
which provide GUI builders. They provide a palette of 
elements in a manner made popular by Visual Basic, and 
allow us to draw our widgets directly on the screen. We felt 
that it would be good experience to hand code the interface 
however, and writing it yourself allows greater control and 
flexibility. 



Classes and functions 
Othellus This is our main class. It extends a JFrame 
(providing the container for the GUI) and also extends an 
ActionListener. It handles all initializations, painting, 
window handling, message printing and the actual game 
process. The latter is controlled by a method called 
boardPictureMouseClicked(), which is the starting routine 
for method getPosition(). This method takes care of the 
current “click” and does all the work regarding flipping, 
clock-handling, score-counting and switching turns.  
 Othellus furthermore also calls miniMaxAB() for the 
computer player(s), which is the “engine” behind the AI. 
The method compares the available moves, and by using 
minimax search with alpha-beta pruning together with 
some nice heuristics, it will choose a move to make, which 
maximizes it current underlying utility function (more on 
this algorithm in the Adversarial Search Strategies section 
below). We also consider the fact when a player has to 
pass, i.e. the number of possible moves is zero and if the 
game has reached an end-state.  
 
Generator The class Generator consists of both the utility 
function and the heuristics. This class is accessed from the 
outside by using the getUtility() method with parameters 
describing the current world (board) status; the active 
player, the underlying board matrix, the moves available 
currently, the position of a suggested move and the current 
turn number. These parameters are used in different ways 
in the used heuristic, to calculate a utility score to return to 
the minimax search. 
 Depending on the choice made by the user at 
initialization time, one heuristic (or, more often, a 
combination of several) is used to give an estimation of just 
how good a suggested move is. The heuristics are described 
at some length in the Adversarial Search Strategies section 
below. 
 
Matrix() This class initializes the board matrix (placing the 
two black and the two white discs in the starting position) 
and controls its access and storage. It also includes a 
routine for counting and updating the white and black 
scores, by simply going through the underlying board 
matrix and counting the occupied squares. The 
printMatrix() method included here is used for debugging 
activities. 
 
Moves() The possibleMoves() method is used to calculate 
and store all the possible moves that the current player can 
take, and also returning their number. It is used extensively, 
also by controlling the access to the matrix of possible 
moves. The calculating routine consists of 8 sub-checks for 
vertical, horizontal and diagonal testing, while imposing 
restrictions to edges. All sub-checks follow a certain 
(simple) algorithm: 
 

1.      Check if the current position in the board matrix is 
empty 
 
2.      If so, then check for adjacent fields that belong to the 
opponent 
 
3.      If there are some, then check the fields next to the 
opponent’s square, on a line through both the opponent’s 
one and the one being checked as a possible move. 
 
4.      If we hit a player’s square on our way along the line, 
directly after an opponent’s one (without passing an empty 
square), we are done. We can then return the current 
position as a possible move. Otherwise, the current square 
we are checking cannot be considered as a possible move. 
The figure 4 below shows a possible move in filled grey. 
 

Figure 4 – Possible move 
 
The other important method in this class is flip(). Flip 
works similar to possibleMoves(), but instead of returning 
possible moves, it flips the discs between a taken move and 
the one(s) that are already on the board (according to the 
rules of the game). Therefore, all adjacent fields have to be 
checked. Since this is done quite similarly to the possible 
moves, we thought about combining these to methods into 
a general one. However, we dropped this for the sake of 
small time savings available in a less general method. 
 
Player For managing attributes like player color and which 
player is active, we maintain a small class called Player. 
Grouping this information together enables much easier 
use, debugging and a more readable code. 
 
Position This is just another grouping together-class, this 
time to keep track of the current x and y position as well as 
the current board value of a move under evaluation by the 
minimax algorithm. 
 
Stopwatch and TargetsTimer These classes work closely 
together to do an exact measuring of the elapsed time for 
each player. The TargetsTimer will correct itself by using a 
method called fireActionPerformed(). This method 
overrides the very inaccurate one in javax.swing.Timer. It 
does that by basically keeping track of the previous time 



and then determining how inaccurate the update was. 
Stopwatch uses an instance of the TargetsTimer, and adds 
accessor functions and formatting options on top of the 
accurate time-keeping. 
 
Tuple This small class is just a grouping of two values, e.g. 
used for sending calculated scores together in a packet. 
 
Evaluator For doing the important job of evaluating all of 
our different combinations of minimax and heuristics, we 
have this special class to do the trick. It evaluates the 
success of a move (and also a game and the average move) 
according to our own, modified version of  four of the 
suggested parameters by William A. Greene in [Greene 
91]. These parameters are used in the context of an Othello 
game using learning algorithms, but works after our 
changes equally well on evaluating O-thell-us also. More to 
come on this special chosen type of evaluation, and how we 
implemented it, in the Evaluation section. 
 

Adversarial Search Strategies 
To decide on the right move can be quite exhaustive and/or 
misleading if the wrong search strategy is used. This is 
partly due to the search depth used, but also to other 
circumstances, e.g. the horizon effect.  
 To make the computer a challenging opponent, while 
still upholding an even pace in the game, we need to 
consider the above mentioned parameters and also include 
some interesting heuristics. 
 First, however, let us get a brief reminder of what game 
theory and adversial search strategies actually is. 

Game Theory and Adversarial Search 
This project is concerned with a specific area of AI, namely 
that of game theory. Game theory is one of the most useful 
branches of modern mathematics. It was actually 
anticipated by French mathematician Emile Boel in the 
early 1920's, but it was John von Neumann who published 
his proof of the for us highly useful minimax theorem in 
1926. It was further developed in the 1940's by von 
Neumann, with the help of Oskar Morgenstern, in his work 
Theory of Games and Economic Behaviour. [Walker 95] 

In this context, the word 'game' does not simply apply to 
board or video games. A game is "any set of interactions 
governed by a set of rules specifying the moves that each 
participant may make and a set of outcomes for each 
possible set of moves." [Bullock 99]  

In this way it can apply to many areas and is used in such 
diverse fields as economics, political science, marketing 
and even warfare. Anything that involves conflict of some 
kind is a possible area for game theory. 

The idea is to make intelligent moves based on the 
current game state, a set of predefined rules, potential 
moves the opposition will make and the game objectives. 

Here, game theory will be applied to a set of rules we 
defined earlier - that of the board game Othello. 
 
Adversarial search is used in problems such as games, 
where one player’s attempts to maximize their fitness (win) 
is opposed by another player.  

The search tree used in adversarial games such as 
Othello consist of alternating levels where the moving 
(MAX) player tries to maximize fitness and then the 
opposing (MIN) player tries to minimize it. To find the best 
move the system first generates all possible legal moves, 
and applies them to the current board. Depending on how 
many levels of lookahead an adversarial search uses, the 
amount of legal moves (nodes) can be huge. 

The Othellus Minimax search with ��-pruning  
Now let us turn our attention for a while to the algorithm 
that does all the actual “dirty work” of searching through 
this often very large search space, and how we 
implemented it in our game. To first get a feel what the 
algorithm does, let us have a look on the pseudo code: 
 
Alpha-Beta-Search(state) { 

if (depth = 0) {return board's estimated 
score;} 

successors = valid moves from state; 
if (successors is empty) {return board's 

estimated score;} 
if (is a Minimising node) { 

for each successor in successors { 
set Beta to min( Beta, 

miniMax(successor, Depth - 1, 
Alpha, Beta)); 

if (Alpha >= Beta) {return Alpha;} 
} 
return Beta; 

} else { 
for each successor in successors { 

set Alpha to max( Alpha, 
miniMax(successor, Depth -1, Alpha, 

Beta )); 
if (Alpha >= Beta) {return Beta;} 

} 
return Alpha; 
} 

} 
 

Figure 5 – Our alpha-beta search pseudo code 
 
The minimax algorithm with alpha-beta pruning is, as can 
clearly be seen, a fairly simple recursive algorithm. Yet it is 
very powerful. By reducing the search space by pruning 
away the nodes that cannot possibly be chosen by either 
MIN or MAX, we are able to easily treat games in Othello 
with a lookahead of as much as 9 plys. After this it still 
works, but slows down to in some cases as much as 2 
minutes of evaluation time for the computer. Given that the 
branching factor of Othello is between 5 and 15, a 10 ply 
lookahead gives us a search space (before pruning) of 
between about 107 and 1012 nodes. For our search 
algorithm with pruning and heuristics to be able to handle 
this as well as it does, is well over our expectations at the 
beginning of this project. 



The Othellus Heuristics 
Finally we arrive to the part we all have been waiting for: 
the heuristics. What is then a heuristic and how do we use 
it? A heuristic involves or serves “as an aid to learning, 
discovery, or problem-solving by experimental and 
especially trial-and-error methods”1. In this section, we 
focus on the (in our game) implemented heuristics.  
Intuitively, it is likely that not all features have a consistent 
importance throughout the game. For example, mobility is 
very important in the middle of the game while it is less 
significantly at the beginning and the end. But more on this 
and other small details later. 
We have implemented and tested a fairly big number of 
different heuristics. Most of them are complements to each 
other and to our own two base ones, which uses position 
and mobility together with a (in the basic version) static 
board weight matrix to calculate the current utility. 
 
Random move Before turning our attention to the more 
advanced heuristics, we would like to start with a very 
simple method that almost can’t even be considered as a 
real heuristic – taking a random move without doing any 
evaluation. The move is in the most basic version chosen 
among all possible legal moves available to a player; each 
one is equally weighted with the same probabilistic value, 
i.e. every move is a likely to be taken as the next. This can 
be considered as the play of a very (!) inexperienced human 
player or as an AI without an implemented intelligence, and 
our testing of this purely random player gave us an terribly 
bad computer opponent. 
 Why do we then even spend time thinking about this 
seemingly useless heuristic? Well, a random element is 
useful in as we found at least one situation: to avoid having 
the same games played over and over again. Playing as 
human vs. computer (or for testing purposes, computer vs. 
computer) often leads to an repetitive game with a clear 
pattern, or a game that ends in a sort of playing deadlock 
(both computer players doing the same series of moves 
over and over again).  To be able to test our other heuristics 
in many different situations, a random element therefore 
needs to be introduced in the test games, and therefore we 
chose to play human vs. computer for testing, while 
measuring the heuristics proficiency with an independent 
statistics evaluator (described in the Evaluation section 
below). 
 
Board Weights Next step towards building a more complex 
heuristic, is our simple strategy idea of assigning weights to 
the board squares according to their position and choose on 
each turn to play on a square of best weight.  
 The basic underlying idea is a board matrix containing 
the weights. But how does one come up with a correctly 
balanced set of weights for the board weight matrix? Well, 
combining together some basic game playing strategies we 
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could come up with a good starting position for the weights 
and then adjusting them as we went along with playing. 
Ideally, to come up with a near-optimal distribution of 
board weights, one would like to train the matrix 
successively by using machine learning. In this case, there 
just was not time enough for that. 
 As soon realized by any player (even at the lowest level), 
having the corners is always good. These discs cannot be 
re-flipped, as argued earlier. By the same argument, the 
fields directly adjacent to the corners are usually bad to be 
the first to take, since this gives your opponent a good 
chance of taking the corner, while shrinking your options of 
taking it yourself. Furthermore, the squares even one step 
further out from the corner are good to take, to gain a good 
striking position for the corner. These ideas are 
summarized in Figure 6. 
 

 
Figure 6 – The board estimation 
 
As can be seen from the above figure, this reasoning still 
leaves us with 28 fields without any relative value, and the 
classified ones are only just that; relative to each other 
without any more precise measure. 
 So, how to proceed? As the next general advantage rule, 
we turn our attention to the edges. After the corners (which 
has protection from flipping in all directions), the edges are 
second in value to take, since the can only be flipped from 
two separate directions. Also, they provide a great basis for 
future moves of flipping discs towards the interior of the 
board. Therefore, they should be given a higher score than 
the interior of the field (the center 16 squares). For fields 
affected both by the corner rule and the edge rule (lying on 
the edge between those two areas), the scores are higher 
than for fields just belonging to one rule. 
 Finally, the interior of the board can be seen as a 
miniature board of itself. The argument supporting this 
declaration is given to the reader in the following section, 
on our Several Stages principle. Of course, being nowhere 
close to the value of having the “real” corners and edges, 
this interior “board” has lower scores relative to the more 
permanently advantageous positions of the field.  
 Our final board weights are presented in Figure 7. The 
exact values for each square are a combination of the above 
reasoning, and evaluation of the extensive testing we have 
done. 
 



 
Figure 7 – Board weights matrix 
 
Several Stages The next idea divides the whole game into 
several stages; three to be more precise. The parts 
identified on the subject are the beginning, the middle and 
the end phase. The three phases are characterized by 
interior stability, mobility and greediness, respectively. 
 This is done by various mobility weights that simulate a 
Gaussian distribution. (Figure 8 – simulation of the 
Gaussian distribution). The advantage of taking mobility 
into account is to force the opponent to very few possible 
moves, thus enforcing bad choices on the opponent, while 
keeping as many possible next moves for oneself. This is 
done by giving an extra score for every square controlled 
by our agent and a negative score for every square 
controlled by the opponent. In the first phase, mobility can 
be disregarded because the major aim is to gain control of 
the underlying 4 x 4 sub-board in the middle. This because 
it gives you a strong base for later expansion, and the 
beginning phase is identified empirically by us to last for 
about the first 12 moves. Concluding the discussion on the 
first phase, this tells us that only small values or even 
negative values are taken into account as a mobility weight 
as a beginning.  
 The second phase considers the whole board, implying 
high mobility weights so that the player can spread as far as 
possible over the board, thus gaining as many corners and 
favorable edge squares as possible. Mobility score for this 
part is therefore relatively high.  
The third and last phase aims for the goal of gaining as 
many squares as possible thus simulating a greedy behavior 
(or cruelly, going in for the kill). This is implemented by 
decreased mobility weights, giving more power to the 
constantly underlying position gaining heuristic. This 
whole procedure is implemented in a heuristic called 
mobPos() that is an extension of position().  
 position() uses the board weight to calculate the gain of a 
possible move compared to another. The sum of the 
weights is used as the utility value for a possible move, as 
requested by the minimax algorithm. 
 
mostFlipped This heuristic aims to take as many pieces of 
the opponent as possible and is therefore purely greedy for 
all plys of lookahead. The standalone version does not take 
any other values like the current game situation or the 
importance of various squares into account (cp. the board 
matrix). But on the other hand, it can be easily combined 
with functions like positions() or mobPos() forcing them to 
be more greedy in the second phase without changing any  

Figure 8 - simulation of the Gaussian distribution 
 
parameter settings. This method works similar to the flip() 
function, but of course instead of flipping the values, it 
returns an utility value as measured in the number of 
flipped pieces. 
 
lowSurroundings This method designed by us returns the 
square with the lowest sum of board weights of surrounding 
squares as the optimal move. By using this strategy, the 
agent reduces the opponent’s chance to gain a very good 
square because it only chooses squares that are surrounded 
by less attractive ones. Since the rule for the opponent is 
that it must make a move on a square adjacent to one of the 
other player’s discs, this strategy works extraordinarily 
well. Success is especially apparent when we are in phases 
of the game which only has few possible moves (like in the 
beginning or the end). 
  
Corners As already mentioned before, corners are very 
important in the game because they face two edges and 
therefore prohibiting a changing occupancy. We classify 
such a disc as stable (unflippable, if you want). Expanding 
this area leads to more stable discs and therefore to a 
favorable situation in the current game. This process is 
simulated in the heuristic enlargeCornerArea() that 
modifies the current board weight matrix dynamically, 
before one of the two heuristics positions() or mobPos() is 
called. Changes are only applied to edges and with a 
constant, non-optimized changing value, due to a lack of 
time for this project. Further explored, this heuristic allows 
a more dynamic and updated view of the value of taking 
different board fields that from the beginning was classified 
as bad. As an example of this, consider the squares 
adjacent to a corner. Before you own the corner, these are 
really bad to take, but following the discussion in the 
lowSurroundings heuristic, growing the corner area can be 
a good strategy. 
 
Edges Another of our own heuristics is called 
checkNeighbours. It basically tries to increase the number 
of the agent’s pieces on an edge, thus running danger of 
loosing all of them, but on the other hand increasing the 
opportunity to catch more discs towards the interior of the 
board. It can be considered as a preceding method or 
complement to positions() or mobPos(); increasing their 
playing ability. 
 



Opening strategy While playing the game, we figured out 
that it is always desirable to play a perpendicular or a 
diagonal opening. This simple heuristic reduces the number 
of pieces that could me flipped in the next move by the 
opponent, i.e. from at most two to at most one. (Figure 9 – 
The opening, where the upper discs are the new possible 
ones) 

 
 
Figure 9 – The opening 

Evaluation 
Since we were testing the game by playing it human vs. 
computer (we had human vs. human enabled at an early 
stage, and also computer vs. computer for testing), we 
needed a independent way of measuring the performance of 
the different combinations or standalone heuristics applied 
to our minimax search with ��-pruning.  
 For this purpose, the paper Machine Learning of Othello 
Heuristics by William A. Greene (1991), presents some 
interesting parameters for measure (even though we in fact 
do not use machine learning). 
 The theory behind Green’s suggested evaluation is the 
use of six different parameters; (1) corner strength and 
potential, (2) corner stability, (3) edge stability, (4) interior 
stability, (5) mobility, and (6) square advantage. Let us 
have a short overview of what these parameters mean, 
before we go into why they are important to us, and how 
we implemented them. 
 The corner strength and potential is intended to be 
helpful for steering play early in a game, when the corner 
regions are thinly filled. The heuristic gives an assessment 
of the degree to which a corner region is already 
advantageous, offers positive opportunities or poses risks 
to the player at hand. This is implemented in our program 
by checking if a corner was lost or won during the 
evaluated move, and if the player or his opponent holds 
new, potentially advantageous squares for taking the 
corners. 
 The idea for the corner strength is basically to give a 
measurement on how big a corner-based right triangle is 
owned by the given player. We chose not to implement this 

measuring parameter, since it is a bit complex, requires 
much calculation and therefore slows down the fluency of 
moves generated and evaluated by the computer. The same 
goes for interior stability, where the idea is to calculate how 
many stable (unlikely to be taken by the opponent), 
unstable (likely to be taken by the opponent) and semi-
stable (too close to call) squares there are in the centre of 
the board. 
 For edge stability, we evaluate the same parameters as 
with the interior stability; stable, unstable and semi-stable 
squares. Implementation of this is done by successively 
checking all four edges for empty squares. If we find one of 
those, we check all the adjacent board squares to see if they 
are dominated by our own discs, the opponent’s discs or if 
it is too close to call. Using this measure, we keep a score 
of how stable the edges are, by punishing the player’s 
utility for empty squares surrounded by his own discs and 
vice versa. This process is easily extended to also include 
interior stability. 
 The last two parameters, mobility and square advantage, 
are the easiest ones to implement. The current mobility is 
just a measure of how many opportunities a player has to 
place a disc right now, and the future mobility says the 
same about currently unplayable ones (but at least adjacent 
to one of the opponent’s discs, and therefore potentially 
good later on). This is calculated by weighting the mobility 
calculated for our mobPos heuristic by a factor of 2 
(suggested by Graves), and simply adding to this the 
number of empty squares that borders to an opponent’s 
square. 
 Finally, the square advantage is simply calculated as the 
difference between the number of gained squares for the 
player and the number of gained squares by the opponent. 
 The four parameters we chose to implement of these six 
are implemented in our Evaluator class, together with a 
simple printout method for statistics such as the four 
separate scores, the total score and the average score per 
made move. 

Discussion  
Certainly, a lot of improvements can be implemented due 
to the pure facts that, we are not using any knowledge base 
or endgame databases and no machine learning, to further 
improve performance. These facts taken together with the 
fact that we lacked the sufficient time to optimize our 
variables for heuristics, such as checkNeighbours, leaves us 
with a wish to continue this development process even 
further. 
 
One idea to alter our interface is to highlight all possible 
moves a player or an agent can take (as some kind of 
hinting system). But this increases the complexity of the 
board so that it is difficult for the player to negotiate its 
way, although it is easily implemented as a fourth graphical 



square option. As we implemented a classical board game 
without this feature, it is also largely irrelevant for us.  
 
Another nice feature would be to add an undo option for 
the last move. But this can also be seen as a gadget and is 
therefore omitted. 
 
In the beginning of this project, we aimed in implementing 
more advanced user options, such as being able to select a 
12 times 12 or a 16 times 16 board, instead of the 
conventional 8 times 8. The code for this is still largely 
present in our source code, and we also designed the two 
bigger versions of our board picture (see Appendix B for 
screenshots). The reason for leaving this option out is 
mostly practical ones; all the different paddings for the 
different board sizes made our code hard to get an 
overview of.  
 
We could also have included the option in the interface to 
choose between both human vs. human and computer vs. 
computer (which were available at a testing phase of our 
interface and heuristics), but since we did not want the 
interface to be too complex, we left these out as an option 
for the ordinary user. 
 
As a last point, we want to mention a few facts that would 
improve our AI. First, adding an opening and an endgame 
book that are continuously updated. Furthermore, instead 
of having a fixed deepening factor, one could replace it by 
an automatic iterative deepening that adapts to game 
situations and progress. Another idea might be the 
implementation of responses to certain moves done by the 
opponent.  

Test results and conclusion 
After evaluating our results from the evaluation class, we 
now want to present the major results including the major 
drawbacks. 
 
First, our program’s playing level corresponds to the one of 
an average human player. This can be revealed by the fact 
that the human player wins 3 out of 5 games with an 
average winning margin of 22 points while the agent wins 
by averagely 18 points. These results take all lookaheads 
and all heuristics into account. But as soon as one only 
considers the individual lookaheads more differences 
become obvious. An increasing lookahead implies an 
increasing computing time but also a better play  - low 
lookaheads like 3 or 4 usually lead to a loss, but as soon as 
they take values of more or equal to 6 the agent increases 
its chances to win enormously. 
 
 Second, there is a strong connection between a high 
mobility, square advantage, high heuristic and a high 
average scoring move leading to a win with a fairly high 

winning margin. This should be totally clear because they 
simulate the ideal play. 
 
 Third, a positive number in corner stability and potential 
usually leads to a win by the agent as a cause of a stable 
disc. 
 
 Fourth, our fastest and best method is low surroundings 
yielding the highest winning margins for the agent. 
 
On the other hand, very low corner stability often leads to a 
low average score per move and to a loss because it is more 
difficult to build stable discs. But this cannot be 
generalized because it can happen that corners are gained 
in the end game which is connected to a low score. The 
same is true for edge stability. 
 
A problem we are still facing is that our agent sometimes 
takes good moves while sometimes not recognizing them at 
all. This can be traced back to the fact of required 
adjustment of values that can be set like the ones for 
mobility, mostflipped, enlargeCornerArea and 
checkNeighbours. It is extremely difficult to adjust values 
simulating the Gaussian distribution that is used in the 
mobPos method simulating the importance of various game 
stages. 

References 
Wolf, T. (published Aug ‘02). The Anatomy of a Game Program. 
Retrieved 11/01/04, from: 
   http://home.tiscalinet.ch/t_wolf/tw/misc/reversi/html/index.html 
 
java.sun.com (published Mar ‘04). The Java Tutorial. 
 Retrieved 10/25/04, from: 
   http://java.sun.com/docs/books/tutorial/index.html 
 
Walker, P. (published Apr ‘95). History of Game Theory. 
Retrieved 11/01/04, from: 
  http://william-king.www.drexel.edu/top/class/histf.html 
 
Greene, W. A. (1991) Parameters for machine learning in 
Othello. Machine Learning of Othello Heuristics.  
 
Abramson, B. (1989) Computer games and control strategies. 
Control Strategies for Two-Player Games. 
 
Epstein, S. (1998) Heuristics. Learning Game-Specific Spatially-
Oriented Heuristics 
.  
Bullock, A. & Trombley S. (1999) Philosophical definitions, 
amongst other. The New Fontana Dictionary of Modern Thought 
3rd Edition, Fontana 
 
Russell, S. & Norvig, P. (2003) Course book in CSE 573.. 
Artificial Intelligence: A Modern Approach 2nd Edition, Prentice 
Hall 
 



Appendix A – Who did what? 
Basically, the whole project was done by the both of us in 
equally parts thus spending many days and nights together. 
But one can clearly state that the main class Othellus() with 
the alpha-beta, minimax, evaluation and fine tuning of the 
graphical interface was basically implemented by Jonas.  
 
The Generator() class and the Moves() class was basically 
implemented by Mathias, although the ideas came for 
different heuristics from different persons in the group. 
 
Worth mentioning, debugging and implementing 
discussions were usually done by the two group members 
together. 

Appendix B – Screenshots 
A draw game. 

A big loss for black. 

 


