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Abstract

It is well known that stochastic search methods tend
to outperform systematic search approaches in solving
randomly generated SAT problems. Typically, stochas-
tic local search algorithms like GSAT and WalkSAT can
solve hard, randomly generated problems that are sig-
nificantly larger than those handled by traditional com-
plete search algorithms like DPLL. However, unlike
DPLL, local search algorithms are not complete and, as
a consequence, cannot prove unsatisfiability. Therefore
it is desirable to find a hybrid of these two approaches
that leverages the strength of both. First, we present a
set of initial experiments generated to find exploitable
areas in DPLL and WalkSAT. Second, we propose that
WalkSAT is a candidate for generating dynamic heuris-
tics for DPLL. Finally, we present a few novel hybrid
implementations of WalkSAT and DPLL.

Background
Propositional logic defines a simple logic for represent-
ing and reasoning about knowledge mathematically in
computation-based systems. It provides a syntax and de-
scribes its semantics, which establishes the allowable propo-
sitional sentences and the meaning of those sentences (i.e.
how the truth of a sentence can be determined). Sentences
are composed of symbols linked together using logical con-
nectives (like AND and OR). The symbols themselves rep-
resent a proposition that can either be TRUE or FALSE. The
simplest sentence, then, would consist of a single symbol
(e.g. Sentence = A). A slightly more complicated example
would be, Sentence = (A OR B).

Conjunctive normal form (CNF) defines a special for-
mat for propositional logic. Every sentence of propositional
logic can be equivalently expressed in CNF. It is therefore
used as a way to standardize logical formulas. A sentence in
CNF is expressed as a conjunction of disjunctions of liter-
als. Each disjunction of literals is called a clause. Formally,
a CNF sentence: (l1,1∨ . . .∨11,x)∧ . . .∧(1n,1∨ . . .∨1n,y).
This is the format used by satisfiability solvers.

We say a sentence is satisfied if its symbols can be set such
that the logic expressed in the sentence results to TRUE.
For example, a satisfiable solution to the following CNF
sentence (A OR B) AND (C OR B) would be A=TRUE,
C=TRUE. Satisfiability, then, is concerned with determining

if a given sentence is satisfiable and identifying a satisfy-
ing assignment for it. Many problems in computer science
are really satisfiability problems (Russell & Norvig 2003).
With appropriate transformations, for example, search prob-
lems can be solved by checking satisfiability. Other prob-
lems such as circuit verification, the graph coloring prob-
lem, planning problems, and scheduling problems can also
be encoded into SAT.

Unfortunately SAT is NP-Complete and therefore in-
tractable in the worst case. Despite this difficulty, much
research has been dedicated to solving hard SAT problems
efficiently1. Two distinct approaches have been developed:
stochastic local search algorithms like WalkSAT (Selman,
Kautz, & Cohen 1996) and systematic search algorithms like
DPLL (Davis, Logemann, & Loveland 1962). As in other
application domains, stochastic search is generally much
faster than its deterministic counterpart at finding a satisfi-
able solution. However, local search algorithms like Walk-
SAT are hindered by incompleteness. That is, if WalkSAT
does not find a satisfiable solution for a given problem, no
conclusion can be drawn about the satisfiability of that prob-
lem. DPLL, on the other hand, is a systematic, complete al-
gorithm and can therefore prove unsatisfiability. Simply put,
the algorithmic trade-off tends to be speed for completeness.

For this reason, successfully combining stochastic and
systematic search techniques is a luring proposition. In the
paper, Ten Challenges Redux: Recent Progress in Propo-
sitional Reasoning and Search, Henry Kautz and Bart Sel-
man (1997) present ten challenges for research on satisfia-
bility testing. In Challenge Seven, ”Randomized Systematic
Search,” the authors encourage researchers to investigate hy-
brid approaches to SAT solving.

Two specific approaches are cited in Ten Challenges as
examples of SAT solvers that integrate both local search and
DPLL search methods into one SAT algorithm (Habet et al.
2002; Mazure, Sas, & Grgoire 1998). The first example,
introduces WalkSatz, a combination of WalkSAT and Satz
(Li & Anbulagan 1997), a preexisting DPLL solver with im-
proved branching rules. WalkSatz begins by running Satz.

1Efficiently is used loosely here. Because SAT has been shown
to be NP-Complete, it’s unlikely that a polynomial time SAT solver
exists (unless P=NP). Instead, an efficient solver might perform
well on average, or with high probability, or on a class of interesting
inputs (Cook & Mitchell 1997).



At each node in Satz’s decision tree, a complete implica-
tion graph is constructed and minimized. A slightly modi-
fied version of WalkSAT is applied to this resulting graph.
WalkSAT terminates if either a satisfiable solution is found
or a maximal fixed constant is reached. In the latter case,
WalkSatz continues to the next node in the decision tree and
the process is repeated, otherwise WalkSatz returns true.

Conceptually, WalkSatz works by taking advantage of a
well known technique in local search algorithms that ex-
ploit variable dependencies. In this case, analysis of vari-
able dependencies is extended to implications and equiva-
lencies between literals. The implications themselves are
naturally performed by Satz during branching such that the
implication graph can be constructed in linear time. The
key to WalkSatzs success, and the underlying aspiration of
all hybrid approaches, is to intelligently combine complete-
ness with randomization such that the algorithm contains
the best of both worlds. As Habet states, whenever Satz
works well, WalkSatz takes advantage in robustness, and
when Satz works less well, there is a small improvement
in robustness at the expense of computation time. On ran-
dom SAT problems containing few variable dependencies,
Walksatz and Walksat essentially have the same behavior,
(Mazure, Sas, & Grgoire 1998).

Mazure et al. take a much different approach to building
a hybrid solver. While both begin by starting a version of
the DPLL algorithm and making consecutive calls to a local
search algorithm (in this case TSAT), Mazures algorithm,
called DP+TSAT, uses the unsatisfiable local search result
to build heuristic data for DPLL. More precisely, an instru-
mented version of TSAT (Mazure, Sas, & Grgoire 1997) is
run at each step in the decision tree to calculate the next lit-
eral to be assigned by DPLL. The literal selected by TSAT is
based on two trace records. The first trace counts the number
of times each clause is falsified where a step of time is one
flip. The second trace is recorded for each literal occurring
in the SAT instance, keeping track of the number of times the
literal appears in falsified clauses. Each time DPLL needs to
select a new variable, a call to TSAT can be performed with
respect to the remaining part of the SAT instance.

Essentially, the trace of TSAT is used as a heuristic for
selecting the next literal to be assigned by DPLL. If the
SAT instance is unsatisfiable, the most often false clauses
are likely to belong to an unsatisfiable subset of the SAT in-
stance. Similarly, the literals that receive the highest counts
should also be part of this unsatisfiable subset. DP+TSAT
was empirically shown to be effective. For satisfiable prob-
lems, DP+TSAT performed comparable to a stochastic lo-
cal search algorithm (as DP+TSAT begins with a call to
TSAT). For certain unsatisfiable problems, DP+TSAT was
also shown to perform very well. For example, it solved a
real-world circuit fault analysis problem in 32 seconds while
other solvers such as C-SAT and DP+FFIS failed to prove
this problem unsatisfiable within 73 hours and 17 hours CPU
time respectively (Mazure, Sas, & Grgoire 1997).

It should be noted that invoking randomization in system-
atic search does not necessarily require integrating stochas-
tic local search. Modern DPLL implementations have im-
proved dramatically by adding randomization and restart

strategies. Chaff (Moskewicz et al. 2001), for example, uses
clause learning, variable selection heuristics, and random-
ized restarts to search different spaces on different restarts
of the algorithm. For our purposes, however, WalkSatz and,
particularly, DP+TSAT are more relevant to our approach
here.

WalkSAT and DPLL
As mentioned above, WalkSAT and DPLL are in two differ-
ent classes of algorithmic SAT solvers. WalkSAT is a type
of stochastic local-search algorithm while DPLL is a com-
plete backtracking search algorithm. In this section, we will
explain these algorithms in more detail including an exposi-
tion of their comparative strengths and weaknesses and a de-
scription of our investigative experiments. We will start with
some background information on the hard random problems
in 3-SAT as this is an absolutely critical area for both Walk-
SAT and DPLL.

Hard Random Problems
According to Russel and Norvig, a problem is undercon-
strained if its solutions are very densely distributed in the
space of assignments, and any initial assignment is guaran-
teed to have a solution nearby. For example, suppose we
had the following 3-CNF sentence with five symbols and
five clauses:

(¬D ∨ ¬B ∨ C)∧

(B ∨ ¬A ∨ ¬C)∧

(¬C ∨ ¬B ∨E)∧

(E ∨ ¬D ∨B)∧

(B ∨E ∨ ¬C)

There are 16 possible assignments that result in a satisfi-
able solution out of a total of 32. This means that, on av-
erage, it would take two random guesses to find the model
[Russel and Norvig].

It turns out that we can easily identify underconstrained
problems in random 3-SAT by looking at the clause to sym-
bol ratio (C/S). In the example above there were five clauses
and five symbols, resulting in a C/S = 1. When C/S is very
low (<3.5), problems will generally be satisfiable and solved
in a tractable number of steps.

A problem is overconstrained if it has a large (>5.0)
C/S ratio. Like underconstrained problems, overconstrained
problems are likely to be resolved in a tractable number of
steps; however, unlike underconstrained problems, the solu-
tion here is typically unsatisfiable. In both of these extreme
cases, it’s likely that the computational cost will scale like a
low-order polynomial function of n (O’Donnel 2002). It is
possible, though unlikely, to have unsatisfiable problems in
the underconstrained area just as it is possible to have satis-
fiable problems in the overconstrained area.

For randomly generated SAT, the hard problems tend to
fall between 3.5 and 5.0. More precisely, they have a C/S
ratio of 4.3. As can be inferred from the Graph 2, CNF sen-
tences near this critical point are typically very difficult to
solve.
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Figure 1: Clause/Symbol Ratio SAT/UNSAT Breakdown in
DPLL

WalkSAT
Local-search algorithms are known for their speed and sim-
plicity. WalkSAT begins by randomly assigning every sym-
bol in its input CNF sentence to either TRUE or FALSE.
From there, it takes incremental steps in the space of com-
plete assignments, flipping the value of one symbol at a time
(Russell & Norvig 2003). The manner in which WalkSAT
selects the next symbol to flip and its subsequent truth value
assignment is the crux of the algorithm.

Like all local-search algorithms, WalkSAT suffers from
getting trapped in local-minima bounds. A popular strategy
to reducing this problem is to insert some randomness into
the search algorithm. Rather than always selecting the best
move (the greedy selection), WalkSAT alternates between
greedy moves and noisy moves - those moves which are ran-
domly selected from the variables that appear in unsatisfied
clauses (Selman, Kautz, & Cohen 1994). The WalkSAT al-
gorithm is based on the insight that such noisy moves could
be made the basis for local search. The WalkSAT algorithm
follows:

1. Randomly assign TRUE/FALSE to the symbols in the input
CNF sentence

2. On every iteration (up to MAX-FLIPS), pick an unsatisfied
clause C and pick a symbol in that clause to flip.

3. Choose randomly with probability p which of the following flip-
ping strategies to use

(a) Flip the value of a randomly selected symbol from C
(b) Flip whichever symbol in C maximizes the number of satis-

fied clauses in our input CNF sentence

4. If all clauses are satisfied, return true. If not, repeat at step 2.

The default implementation of WalkSAT contains three
variables that can be tuned according to the problem space:
MAX-RESTARTS, MAX-FLIPS, and flip probability p. In
the case of random SAT, we have found that, in general, the
best fixed value for p is approximately 0.5. We ran WalkSAT
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Figure 2: Random Flip Probability For Satisfiable Problems
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Figure 3: Random Flip Probability For Unsatisfiable Prob-
lems

on 1,068 problems with evenly distributed clause-symbol ra-
tios [from C/S=1 to C/S=10]. For each problem, WalkSAT
was executed ten times with ten different values of p:

Note that extreme values for p result in worst-case per-
formance. For example, a greedy implementation of Walk-
SAT (when p=0.01) is 4.4 times slower than the fastest av-
erage runtime (when p=0.6) for satisfiable problems. Some-
what surprisingly, for hard problems (those that WalkSAT
was unable to find a solution to) setting p=1.0 results in the
best-case performance. We believe that this is because of the
computational overhead involved in calculating which sym-
bol to flip in Step 3b of the algorithm. When p=1.0, Walk-
SAT simply fails faster for hard problems because it does
less work.

A main criticism of local-search algorithms is that they
are incomplete. Indeed, when WalkSAT is run on hard prob-
lems and is unable to find a satisfiable solution, we are un-
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able to conclusively say a problem is unsatisfiable; to do
that, we need a complete algorithm (like DPLL). To bet-
ter understand how often WalkSAT fails to find a satisfiable
solution when one exists, we conducted a series of simple
tests. The first test randomly generated 2,018 problems with
clause-symbol ratios evenly distributed over the range C/S
= [1,10]. Both WalkSAT and DPLL were run on the test
set and their results were compared (in terms of sat and un-
sat). Because DPLL is complete, a disagreement in solu-
tions implies that WalkSAT incorrectly identified a problem
as unsatisfiable. The second test generated 514 random hard
problems with a clause-symbol ratio evenly distributed over
the known difficult C/S range of [3.5, 4.5]. Again, their so-
lutions were compared to determine if WalkSAT returned
failure on a satisfiable problem. The results of these two
experiments are shown in Figure 4).

For an evenly distributed clause-symbol ratio problem set,
WalkSAT is unable to find a satisfiable solution when one
exists less than 1% of the time. This is, in most circum-
stances, a very acceptable percentage given the tradeoff of
speed vs. completeness. However, to contextualize this
optimism it should be noted that for hard problems (Fig-
ure 3 above), WalkSAT returned failure on satisfiable prob-
lems 17% of the time. Though this was expected, it is a
less encouraging result. It should be noted that proving un-
satisfiability is an important problem in comptuer science.
Proving unsatisfiability is the final objective in several prac-
tical CS applications, including automated theorem proving
in AI, circuit verification and circuit delay computation in
EDA (Lynce & Silva 2003). Clearly a complete solution is
needed in these cases.

DPLL

One of the oldest and surprisingly still relevant complete al-
gorithms for SAT solving is called DPLL (named after the
authors who invented it). The algorithm is essentially a re-
cursive, depth-first enumeration of all possible assignment
models in the problem space. DPLL uses a few tricks to re-
duce the search space but, overall, its efficiency is dependent
primarily on branching and symbol ordering. The algorithm
works as follows:

1: DPLL( clauses, symbols, model )
2: if every clause is true then
3: return true
4: end if
5: if some clause is false then
6: return false
7: end if
8: UnitLiteral() and PureLiteral() propagation
9: S← Next( symbols )

10: R← Rest( symbols )
11: for v in DomainValue(S) do
12: if DPLL(clauses, symbols, model) then
13: return true
14: end if
15: end for

DPLL is obviously a much more complicated algorithm
than WalkSAT; however, it’s not necessary for the purposes
of our discussion that specifics of the algorithm be under-
stood. Instead, note the following three key characteristics.
First, that DPLL is capable of detecting whether an input
CNF sentence is TRUE or FALSE with a partially completed
model. That is, DPLL can resolve clauses that do not have
truth assignments for all of its literals. For example, the sen-
tence (D ∨ ¬C) ∧ (E ∨ ¬C) can be resolved by setting C
to FALSE without inspecting D or E. This allows DPLL to
avoid examination of certain subtrees in the search space.
Second, that DPLL uses the two methods PureLiteral() and
UnitLiteral() to further restrain its search space by attempt-
ing to select the most critical symbols and clauses earlier on
in its search space. And finally, that truth assignments exist
as branches in the decision tree. Selecting the correct truth
assignment higher up in the decision tree is critical to finding
a solution efficiently, as it reduces needless backtracking.

Because DPLL is complete, in the worst case, it must enu-
merate all possible assignment models in the search space.
For hard problems, this tends to dramatically increase the
runtime of the algorithm (as can be seen in Figure 5). In this
figure, WalkSAT runtimes are plotted in black while DPLL
runtimes are plotted in red. Note the consistency in run-
time spikes between both algorithms on those problems with
a C/S of 4.3. Further, notice that WalkSATs runtimes be-
come increasingly longer after the 4.3 ratio. This is because
upon reaching an unsatisfiable solution, WalkSAT is unable
to conclude that the input problem itself is unsatisfiable. On
the contrary, because of its completeness, DPLL runtimes
steadily decrease after the 4.3 spike because it quickly de-
termines that the 3-CNF sentence is unsatisfiable.

Heuristics
As mentioned before, our exploration of SAT solver opti-
mizations is primarily inspired by one of the ten challenges
outlined by Kautz, et al (Selman, Kautz, & McAllester
1997). Specifically, we wish to combine the speed of local
search algorithms such as WalkSAT with the completeness
of DPLL. There are a variety of ways to approach this chal-
lenge, but we focus directly on the idea of using cumulative
statistics from partial executions of WalkSAT to inform the
DPLL search algorithm. Such a hybrid approach retains the
completeness of DPLL by using WalkSAT as a heuristic dur-
ing branching decisions, but ultimately still allows complete
exploration of the search space. We attempt a number of
possible WalkSAT-based heuristics.

Backbone Set Heuristic
A key concept in satisfiability problems is that of the back-
bone set (Slaney & Walsh 2001). The backbone set for a
given satisfiability problem is the set of all symbols whose
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Figure 5: DPLL/WalkSAT Runtime verus Clause/Symbol
Ratio

assignment does not change across all possible solutions to
the problem. We wish to answer a number of questions
about backbone sets. Can the backbone set be identified by
WalkSAT? Once identified, does knowledge of the backbone
set allow optimized execution of DPLL? In our exploration
of these two questions, we first attempt to characterize the
properties of the backbone set over a random problem space.

We empirically derived the backbone set by modifying
DPLL to follow all branches in order to produce all valid
solutions for a given problem. We then compared the size
of the produced backbone set with the ratio of clauses to
variables over a range of randomly generated problems.

Figure 6 illustrates the clause/symbol ratio versus back-
bone set size for the range of randomly generated prob-
lems. The graph shows that the size of the backbone set
approaches zero as the clause/symbol ratio approaches 4.3.
This relation raises an important concern about our proposed
heuristic. We know that generally that neither WalkSAT nor
DPLL are very fast when approaching the 4.3 ratio, mak-
ing this region a prime target for optimization. However, we
have observed that the backbone set does not constitute a
major subset of all symbols for problems in this region. In-
tuition suggests that there is little value in identifying what
is not there, so attempts to identify the backbone set do not
appear to be a worthwhile goal in the pursuit of runtime op-
timization.

Symbol-Ordering Heuristic

The initial dead-end of backbone sets explored, we stepped
back to reevaluate what a good heuristic for DPLL might
look like. DPLL in its simplest form identifies pure and unit
literals during the symbol selection phase at each iteration to
rapidly reduce the set of clauses needing to be satisfied. This
identification process is a specific form of a symbol order-
ing heuristic. We choose to focus then on symbol-ordering
heuristics as informed by WalkSAT for our next area of ex-
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Figure 7: RandomOrder

ploration.
We wish to first establish that symbol order does have a

major impact on the runtime of DPLL. Pure and unit literal
optimization aside, we hypothesize that an ideal symbol-
ordering exists for minimizing the runtime of DPLL. To test
this hypothesis, we modify DPLL to accept an ordered list of
symbols which is used to determine the order in which sym-
bols are selected when recursively exploring the assignment
space. We then explore a range of randomly generated SAT
problems, running DPLL on each problem with a variety of
randomly generated symbol orderings.

Figure 7 shows that the standard deviation in DPLL run-
time for random symbol-ordering is on the same order of
magnitude as average runtime, indicating that symbol-order
can produce large swings in runtime, with those swings
growing larger as problems grow more difficult.

We have shown that different symbol-orderings have pro-
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Figure 8: Best Order

nounced effects on the runtime characteristics of DPLL. We
also observe that there is no single symbol-ordering that pro-
duces an improved runtime, but instead often a collection of
orderings with improved runtimes. We now wish to general-
ize some optimal ordering for a given problem. We hypoth-
esize that, if a symbol often appears at the beginning of an
ordering for a low runtime or at the end of an ordering for
high runtime, the symbol should always be placed towards
the beginning of the ordering.

We formalize this notion in the following way. Given
some number of runs of DPLL on the same problem with
a randomized symbol-ordering for each run, we determine
a maximum and minimum runtime across all runs. We then
normalize each runtime by subtracting half the difference
between the max and min runtime, centering all runtimes
around the origin. We also number symbol positions such
that the center position is labeled zero, the first position is a
negative number and the last position is a large positive num-
ber. The normalization of both runtime and position cause
their product to be positive for beginning positions that re-
sult in low runtime and ending positions that result in high
runtime. Beginning positions that result in high runtime and
vice versa will have negative products. We can take the av-
erage product of runtime and position for each symbol in
a problem across all DPLL runs to get a score that, when
largely positive, indicates that a symbol should generally be
ordered first for DPLL. Given this ordering heuristic, we can
create an idealized symbol-ordering for comparison against
the average runtime of DPLL with random symbol ordering.

Figure 8 shows the ratio of the best-order runtime to av-
erage random-order runtime versus clause/symbol ratio. We
see that best-order to average random-order runtime ratio is
generally less than one, indicating that our constructed or-
dering improves on the average case. However, the increase
is not dramatic, suggesting that any optimization based on
our ordering heuristic will not result in drastic improve-
ments.

Thus far, we have only proven our hypothesis that symbol
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order does have a major impact on DPLL runtime and that
some ideal ordering does exist. We now wish to use Walk-
SAT to identify this ordering. Our general goal is to run
WalkSAT for some reduced period of time on a given SAT
problem. If WalkSAT is lucky enough to find a satisfiable so-
lution in this time period, then our task is already complete.
Otherwise, we wish to accrue statistics during that operation
of WalkSAT that will help us make an informed decision
about symbol-ordering for a subsequent run of WalkSAT.

There are a number of statistics that can be gathered dur-
ing the execution of WalkSAT, but we choose to primarily
track the number of times a symbol is flipped, both randomly
or because it satisfies a maximum number of clauses. Ad-
ditionally, we track the number of times a symbol appears
in a false clause during WalkSAT execution. These statistics
are both obvious and easy metrics to monitor during solver
execution.

Our initial examination of flip counts, both max-sat, ran-
dom and total flips, as well as false clause counts shows that
the three counters are roughly the same for a given symbol in
a given problem. Figure 9 shows the normalized counts for
each symbol in a given problem, demonstrating the strong
correlation between the four counters for each symbol. No-
tice for the graph that all four counts have roughly the same
magnitude for each symbol, as seen by the overlapping data
series. Since the counts are effectively the same, we can
simplify in accounting, allowing us to only consider total
flip counts for each symbol when performing our account-
ing and analysis.

Unfortunately, figure 10 demonstrates there is no real cor-
relation between flip counts and desired symbol ordering.
We generated this graph by running fifty instance of DPLL
with random symbol-orders and fifty instance of WalkSAT
on twenty randomly generated problems with a 4.0 clause to
symbol ratio. We used the instances of DPLL to generate
a best-order symbol-ordering per the previously described
method. The instances of WalkSAT were used to calculate
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average flip counts for the symbol space. The graph shows
the symbols in best-order from left to right, with each sym-
bols normalized flip count graphed for each problem. The
graph shows that there is no cross-problem correlation be-
tween best symbol-ordering and flip counts. Just to be cer-
tain we ran DPLL on symbol-orders of both increasing and
decreasing flip count and neither method did better than av-
erage runtime.

Value-Ordering Heuristic
Though symbol-ordering demonstrably plays a role in DPLL
runtime, it is not the only target for heuristic optimization.
Just as the order in which symbols are selected for assign-
ment is negotiable, so is the order in which domain values
for these symbols are assigned. Expanding the assigned-true
branch before the assigned-false branch for a given symbol
is a potential influence on DPLL runtime.

While value-ordering seems the obvious counterpart to
symbol-ordering when exploring DPLL branching, we were
especially motivated to explore value-ordering based on a
newly considered WalkSAT execution statistic. In addition
to flip counts, we can track the portion of time a value spends
with a given assignment during the course of solver exe-
cution. We record this as a percentage, where zero repre-
sents false and one represents true. Thus, a symbol which
is mainly valued as false during WalkSAT execution will
tend to zero, while symbols valued as true will tend to one.
We hypothesize the symbols with high flip counts will tend
towards 0.5, as they will alternate between true and false
throughout solver execution.

We wish to characterize this statistic for various classes
of SAT problems. Our intuition tells us that if a symbol is
valued consistently across WalkSAT execution, then the val-
uation might provide some hint to value-ordering for that
symbol in DPLL execution. We record the average value
statistic for each symbol in a SAT problem across multiple
runs of WalkSAT over a randomly generated problem set.
For multiple executions of WalkSAT on the same problem,
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we record the standard deviation of each symbols average
value. The standard deviation tells us roughly if each sym-
bol is assigned consistently across multiple WalkSAT runs,
as indicated by low standard deviation, or if the symbol is
instead assigned sporadically. We can average all these stan-
dard deviations across multiple symbols to get an idea of the
stability of assignments for a given problem.

Figure 11 shows the relationship between average assign-
ment stability and clause/symbol ratio for a randomly gen-
erated problem set. We know assignment stability is most
stable as it approaches zero, since this indicates the smallest
mean deviation in symbol assignment over time. We notice
that as we approach the 4.3 asymptotic region, assignments
become more stable than problems in the rest of the region.
This observation is important, since we’ve hypothesized that
a stable assignment might inform value-ordering in DPLL
and assignments are most stable in the difficult problem re-
gion.

Though we’ve shown stable average-value assignment for
WalkSAT approaching the 4.3 asymptote, how does the
average-value best inform DPLL? For a randomly gener-
ated problem set, we ran both WalkSAT and DPLL to re-
spectively accumulate average-value statistic and to find a
known solution for each problem. We then compared the
average-value of each symbol with its known solution value
and calculated a percentage of matching assignments out
of all assignments. The average percentage matching was
61.4 with a standard deviation of 4.21, indicating that the
average-assignment does only slightly better than average at
determining a symbols solution value.

A Framework for WalkSAT Heuristic
Application

Though none of our potential WalkSAT statistic heuristics
seem particularly promising, we still wish to follow through
on our goal of tying together DPLL and WalkSAT. Recall the
general form of DPLL we outline earlier. We extend DPLL
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by adding the following code before the unit and pure literal
propogation (line 8):

1: if some probability then
2: reduced← Reduce( clauses, model)
3: if WalkSAT( reduced, symbols ) then
4: return true
5: end if
6: Adjust Next(), DomainValues() from WalkSAT
7: end if

We essentially run WalkSAT on a reduced SAT prob-
lem and condition symbol-order and value-order branch-
ing based on cumulative WalkSAT statistics. As an added
bonus, if WalkSAT happens to solve the problem, we can
return immediately. Notice that the local search is not run
at each node in the DPLL search tree. Instead, WalkSAT
is run with some conditional probability factor, allowing us
to avoid the performance over head of WalkSAT being run
for every node in the DPLL search tree. Ideally this hybrid
algorithm will have the completeness of DPLL and the opti-
mized runtime of WalkSAT.

Application of Value-Ordering Heuristic

Of our available heuristics, value-ordering based on accrued
average-value WalkSAT statistics seems the most promis-
ing. Utilizing the framework above, we run WalkSAT and
adjust the order of DOMAIN-VALUES for each unassigned
symbol in the DPLL problem space. In theory, DPLL will
branch more often than not on correct symbol assignments,
speeding up the search time to find the average solution.

As figure 12 shows, the theory does not hold true in prac-
tice. Though the hybrid solver performs on-par with DPLL
and WalkSAT in the easy symbol/clause region, the runtime
is drastically worse as we pass through the 4.3 region. In
short, the hybrid approach offers no real speed benefits over
WalkSAT in the satisfiable region and degrades in the unsat-
isfiable region.

Conclusion
We have explored a number of different avenues involving
applying WalkSAT to generate a heuristic for DPLL. Our
initial focus was on the backbone set, but our results showed
that the backbone set tends towards zero as problems ap-
proach the 4.3 clause/symbol ratio. Intuitively, this relation
makes sense. For SAT problems with smaller clause/symbol
ratios, the symbols are less-constrained, allowing an in-
creased number of solutions and increasing the size of the
potential backbone set. Regardless, identifying the back-
bone set for randomly-generated SAT problems does not ap-
pear to be worthwhile.

Further exploration focused on informing symbol and
value ordering in DPLL using WalkSAT cumulative statis-
tics. Our experimentation showed that symbol-order does
play a key factor in DPLL runtime. We were not able to es-
tablish a linkage between flip counts in WalkSAT and sym-
bol ordering in DPLL to consistently decrease the runtime of
DPLL. Intuitively, we know that higher flip counts suggest
that the given symbols are highly constrained. We hypoth-
esized that branching on these symbols might allow DPLL
to discover and prune inconsistent assignments earlier in the
search tree. However, it seems that this rough-grained ap-
proach to symbol ordering is not enough to produce a reduc-
tion in runtime.

Our exploration of value ordering appeared more promis-
ing. Our results showed that symbols have increas-
ingly consistent assignments under WalkSAT as problem
clause/symbol ratios approach 4.3. We hoped this might
tell us something about assignments of a possible solu-
tion, though our results indicate such statistics were only
marginally better than average at predicting a problem solu-
tion. Intuitively, we can explain the increasingly consistent
assignments as a function of the level of constraint in a prob-
lem. We hypothesize that for highly constrained problems,
WalkSAT tends to get stuck in local maxima, flipping just a
few values while the remaining symbols remain largely un-
touched.

Lacking strong evidence of a worthwhile heuristic, we im-
plemented a hybrid DPLL-WalkSAT algorithm that, unfor-
tunately, did not perform well. For the most part, our hy-
brid algorithm performed on par with WalkSAT for lightly
constrained problems, as our hybrid algorithm effectively re-
duced to WalkSAT in that region. As problems became more
constrained, our internal WalkSAT had less luck finding so-
lutions straight off, turning over execution to our informed
value-ordering heuristic. Unfortunately, this heuristic does
not seem to produce valued results.

It is interesting to note the parallels between our approach
and another combining DPLL and WalkSAT (Mazure, Sas,
& Grgoire 1998). Their approach combined DPLL and
WalkSAT in much the same way, except that they used
WalkSAT to inform symbol ordering in DPLL by tracking
the symbol with the highest flip count. Their increased per-
formance seems contradictory to our results demonstrating
that flip count does not reliably inform symbol ordering.
However, closer examination of their approach reveals the
use of Tabu stochastic search, which keeps a history of re-
cently flipped symbols which are not immediately consid-



ered for subsequent flipping. Such an implementation avoids
repeated flip-flops in local maxima, which might inflate and
distort flip counts in regular WalkSAT. Unfortunately, we
lacked the time to verify the approach of Mazure, Sas, &
Grgoire.
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