Genetic Programming for Robocode Strategy

Danny Wyatt and Dan Klein
CSE573 Autumn 2003

December 18, 2003

Abstract

We present an approach to learning Robocode controller strategy. Robocode strategies are represented as
trees of atomic elements corresponding to actions and observations in a Robocode battle. Genetic programming
is used to search the space of such representations. Through this approach, we were able to induce stategies
capable of defeating many hand-coded tanks.

1 Approach

Our goal for the project was to induce a strategy of action for a Robocode controller. We did not want to learn
basic Robocode actions—exactly how many degrees to turn the gun, exactly how far to advance forward—rather
we wanted to learn a “higher level” behavior built from sequences of such actions. Our guiding principal was
that the tank controller would only have to learn to make logical decisions over abstract, boolean features of
its environment, and that it would have access to a menu of predefined actions. While the actions themselves
might need to make use of continuos features of the environment or have access to trigonometric functions all of
these underlying complexities would be hidden from the learned part of the agent. (This is in contrast to Jacob
Eisenstein’s [2] attempt at learning all of the math needed for each turn of the tank.)

2 Tank Representation

2.1 Atoms

The three fundamental pieces of our representation are actions, tests, and conditionals. Actions (as one would
expect) cause the tank to perform some action in the game. Tests are boolean features of the battle environment.
Conditionals perform actions based on the results of a test. We refer to the collection of all actions, tests, and
conditionals as “atoms”. Our tank is a collection of these atoms.

Example action atoms are TurnParallelToNearestWall, AheadDistanceToEnemy, TurnGunToEnemy, Fire2,
and TurnRadarRightLeft60. Example test atoms are Testenergybelowl0O, TestEnergyLessThanEnemys, and
TestEnemyWithin10TicksOfFirel. A complete listing of atoms appears in appendix A.

2.2 Collections of Atoms

At first, we considered collecting atoms in an ordered list similar to a sequential program. Conditionals (corre-
sponding to if statements) would have an associated integer n and would execute the next n actions based on
the result of the test. We would generate conditionals with different values n for each test and the negation of
each test ahead of time. The conjunction of tests could be achieved by nesting conditionals. Given conjunction
and negation, disjunction could also be achieved—but only if the program independently learned the application
of DeMorgan’s law. Since we wanted our tanks to learn strategy from precomposed actions, it made sense to
also provide precomposed logic. They did not have to learn the fundamentals of Robocode, so they should not
have to learn the fundamentals of logic.

Instead, we chose the traditional representation for genetic programming: trees [5]. The above representation
is equivalent to trees that branch at each conditional and are rooted at an implicit conditional that always
evaluates to true. Similarly, Eisenstein’s TableREX controllers can be represented as trees with duplicate
subtrees for rows whose outputs are reused (which actually makes them branching programs, but they are
expressible as trees nonetheless). The fundamental property that all of these share is that they are acyclic:
execution never loops.

Our trees branch at one of three provided conditionals: And, Or, and If. And and Or each have two children.
They have short-circuit execution, so And only executes its second child if its first child evaluates to true, and
Or only executes its second child if its first child evaluates to false. If has three children: it either executes its
second child if its first child evaluates to true, or it executes its third child if its first child evaluates to false.
When a test is executed it returns its value. When an action is executed it returns whether or not it completed
successfully—our current action atoms always complete successfully. To fit the event-driven architecture of
Robocode tanks, we use five such trees for a tank controller. There is one tree for the main execution loop, and
one tree for each the following event handlers: onScannedRobot, onHitByBullet, onHitRobot, and onHitWall.
The trees are serialized into a traditional LISP-like representation corresponding to a preorder traversal which
can be loaded and interpreted by the core tank program.

The observed state of the battle environment is saved in a global table that is automatically updated when
any information arrives via an event. Information that is inferable from the event (such as the angle to the
enemy given the x and y location of the bullet that just hit him) is also filled in automatically. The learned
tank controller, as defined by our trees, only has access to this state information through the test atoms. That
is, the only features of the battle environment that can be learned to be used or not used explicitly are those
exposed through tests. Action atoms make use of other data in the table, but this data is not fully exposed to
the decision making of the conditionals. Since the table is global, and all event trees have access to the same
state information. Data in the table can go out of date, and actions that rely on state information will continue
using the old data until new data arrives.

3 Search Space

Given this representation, our search space is the space of all tanks representable as trees of our atoms. Since
we have two binary branching nodes and one tertiary branching node, the average branching factor for our trees
is 7/3. The trees also have some fixed maximum depth d, where d is between 4 and 10 (see Section 4.3.4). This
means that our search space contains O((7/3)%*!) tanks. It is a discrete space, and each point in the space
(each tank) does not have a well-defined set of neighboring points. The relief of our search space is determined
by each tanks competitiveness in Robocode, which is explained more in Section 4.2.

4 Genetic Programming

To search this space we use genetic programming. Genetic programming (GP) is an optimization technique
based on biological evolution[5]. Its goal is to produce a computer program that maximizes a given fitness
function. This section outlines the basics of GP, explains how GP was used to optimize our tank, and examines
GP parameter selection. If you are an expert at GP, please feel free to skip to section 4.2

4.1 The Basics of Genetic Programming

There are three main components of GP: the fitness function, the selection process, and the genetic operators.
The fitness function determines how close to optimal a program is a returns an associated fitness value for that
program. The selection chooses among programs based on the fitness functions evaluation of them. The genetic
operators transform one or more programs into new programs. There are the three genetic operators: cross-over,
copy, and mutation.

The entire GP process is stochastic search through the space of all possible programs. A state in the search
space is a set (or population) of individual programs. The transition between states is the transformation of one
set of individuals into a new set through the three genetic operators, guided by the selection process based on
individuals’ fitness values. The initial state is a set of randomly generated programs. The search ends for any
number of reasons: a certain number of generations have been examined, a fitness goal is attained, or a time
limit is met.

The process of selecting individuals from a population based on their fitness is well studied [3, 4, 5]. A
common approach is to weight each individual’s chance of selection according to its fitness and then choose
uniformly over the weighted individuals. This “weighted roulette wheel” approach has many drawbacks. The
biggest is that individuals’ fitness values converge as the search proceeds, and this selection algorithm then has
difficulty choosing accurately between close fitness values. This is the selection method Eisenstein employed.

A Dbetter selection method is n-Tournament selection [1]. This method works by randomly choosing n
individuals from the population and returning the one with the highest fitness value. Note that this is based on
relative fitness and thus continues selecting effectively even as the population’s fitness values converge.

Once individuals have been selected from the population, one of the three genetic operators is applied to
the selected individuals. Since our programs are represented as trees, these operations transform the program
trees. Crossover, the primary state change operation for GP, takes two individuals and swaps subtrees between
them at randomly chosen positions. Copy is as simple as it sounds: an individual is copied unchanged into the
next generation. Mutation works on a single individual by substituting a newly generated random subtree for
a randomly chosen node in an individual. Mutation maintains diversity of tree contents against the converging
effects of selection and helps to push the search out of local maxima.

4.2 Our GP Implementation

Since each of our tanks is actually represented as five separate trees, the transition operations are performed
within each tree category only. That is, an onScannedRobot tree is only crossed over with another onScannedRobot
tree, an onHitWall with an onHitWall and so on. But, the entire individual—all five trees—is assigned a single
fitness value.

To evaluate the fitness of each individual, we ran multiple Robocode rounds against an opponent. As detailed
in the results section, the choice of an opponent has a large influence on the learned strategy. It is necessary to
run multiple rounds per individual because the random initial conditions have a strong affect on score. Following
Eisenstein and the default number of rounds per battle in Robocode, we ran ten rounds per individual.

The Fitness Function

We experimented with three different fitness functions. Initially, we used the raw Robocode score of our tank
as the fitness function. As expected, it proved ineffective for producing winning tanks since it does not consider
the enemy’s score. It was often the case that the behavior that maximized our Robocode score also maximized
the enemy’s score, and our tank still lost the battle.

We soon changed to a fitness function that was the difference between our tank’s Robocode score and the
opponent’s score. As described in section 5.3.2, the immediate result of this fitness function was suicidal tanks.
After correcting for suicides, the tanks evolved successful dodging strategies. Dodging is a local maximum on
the fitness landscape with a peak fitness of a mere 60 points per round. Dodging is not the global maximum.
Higher scores can be attained by shooting the enemy. Thus, to guide the search toward shooting tanks, we
added (or re-added since the Robocode score does add them once already) the assigned bullet damage points
and bullet damage bonus points to the score difference. This fitness function proved successful and resulted in
competitive fighting machines.

It should be kept in mind that the raw Robocode score is always in some sense our fundamental fitness
measure or utility, inasmuchas tanks that score well also tend to survive their battles. However, the Robocode
score did not always make for the best fitness function. By changing the fitness function we change the relief
of our search space, but always with the hope that the new elevations correspond to genuine elevations in the
“underlying” utility.

4.3 GP Parameters

The performance of GP is largely determined by problem specific parameters including population size, selection
intensity, crossover rate, mutation rate, and maximum program size. The problem specific nature of these
parameters comes from the relative smoothness of the fitness landscape. This section highlights the challenges
of parameter selection and explains the parameters we chose.

4.3.1 Population Size

The size of the population is related to the genetic diversity of the population. Because genetic diversity is
associated with the “takeover time”—the time it takes for a population to become mainly copies of a few
similarly fit individuals—a population of about 5,000 members is typically used for GP. However, the larger the
population the longer it takes to evaluate all individuals between each state transition. For our tanks, this was a
nontrivial task requiring approximately 500 milliseconds per evaluation. The question becomes, given a limited
amount of time to reach a solution, is it better to have a large population and evaluate only a few generations
or have a small population and evaluate many generations? The population size parameter is directly related to
the tradeoff between a small, hill-climbing search and a broader, more complete search. In the end, we decided
a population size of 150 gave a good tradeoff between genetic diversity and time.

4.3.2 Selection Intensity

Tournament selection was used in our implementation to avoid the problems associated with the roulette wheel
method. The tournament size parameter determines the selection intensity, which can be measured by the
takeover time [1, 5]. A larger tournament size results in a greater selection intensity, shorter takeover time, and
greater loss of genetic diversity. Because our fitness landscape has many local peaks, it was necessary to keep
the tournament size to its minimum: 2 individuals per tournament.

4.3.3 Rates for Genetic Operators

The rate of each genetic operator is the percentage of the population (chosen via the selection method) to which
each operator is applied in order to transition to the next generation.

Crossover Typical crossover rates range from 75% to 95%. We choose a cross-over rate of 87% based on
Koza [5] and Eisenstein [2].

Mutation Mutation rate must be chosen carefully because a value that is too large risks losing fit members.
We choose a moderate rate of 3%. As with crossover, this value is in accordance with Koza [5].

Copying Copying’s purpose is to carry on a small portion of the population. All remaining individuals, (the
last 10%) were copied to the next generation. We learned that elitism—copying the absolute fittest members
of a generation into the next generation—should not be used with a small population. Copying even just the
single fittest member into the next generation resulted in more of a short, steep hill-climb than a broad search.

4.3.4 Tree Depth

The final parameter for our search is the maximum depth of the program trees in our tanks and the depth of
the trees generated for mutations. The larger the program trees, the more tanks there are in the search space.
We experimented with values between 4 and 10 and found 10 to provide enough diversity at first to produce
competitive tanks. As the search proceeds, the trees can get shorter and they frequently do.

For subtrees produced for mutation, the larger the tree the more of the original program it replaces. Since a
random subtree is likely to be less fit that than an evolved subtree, mutations are kept small to keep a mutated
individual from losing too much fitness and falling out of selection for the next generation. Our mutation subtree
depth was set at 3 when maximum program tree depth was 10.

5 Results

Our experimental setup consisted of a 2.4GHz server with 2GB RAM running the GP and up to six! 2.4GHz
clients running Robocode battles to obtain fitness values. This parallel setup allowed us to run 15 Robocode
battles per second, corresponding to about two individuals per second (each individual’s fitness was based on
ten rounds). Over the course of a month of evolution, we performed nearly 5 million Robocode battles. This
section highlights results of these battles and demonstrates our design evolution by describing the motivation
for, results of, and analysis of each trial.

5.1 A Typical Training Result

All of the training trials presented later in this section resulted in a common trend of fitness over generations, as
shown in Figure 1. This figure displays several important features that will be used in the analysis of our data.
As one would expect, the first generation has a very low fitness corresponding to its completely random make-up.
Fitness then improves rapidly over the first few generations as improvements are made to the trees. Physically,
this rapid increase in fitness corresponds to changes in strategy. Once a local maximum fitness is attained, the
slope rapidly decreases. This corresponds to one strategy taking over the population. The generation at this
slope reduction point is commonly referred to as the takeover time.

After the takeover time, the GP algorithm continues to improve the best and average fitness values, just at a
slower rate. This period corresponds to enhancement of the converged behavior. Typical enhancements include
pruning unused atoms and exchanging other atoms.

'We wish to thank Professor Kristi Morgansen for the use of the computers in her Autonomous Underwater Vehicles Lab.

Fitness vs. Generation
1500 T T T T T T T T T

+

1000

500

Fitness
o

-500

-1000 -
Max +
Average >
_1500 1 1 1 1 1 1 1 1 1
(o] 50 100 150 200 250 300 350 400 450 500

Generation

Figure 1: Maximum and average fitness values vs. generation for a typical training example.

5.2 Training Trials

b=
A
= g E =] %
: 7 58 8 &z 5 < &
— Q . Q =]) > < >) .
- s £ Z::E S 2 B B o|E
E O A E & 5 B W =2 O O <
1 Crazy 100 A 1 4 Yes 70% 4% 10% 57 11.4
2 Crazy 50 A 2 5 Yes 70% 4% 10% 250 16.9
3 Crazy 50 A 3 10 Yes 70% 4% 10% 109 | 47.7
4 TrackFire 50 B 5 5 Yes 70% 4% 10% 3 N/A
5 TrackFire 50 B 5 5 Yes 0% 4% 10% 7 N/A
6 Crazy 100 B 10 10 No 8% 3% 10% 456 78.7
7 SquigBot2.8 150 C 10 10 No 8% 3% 10% 304 | -21.9
8 SandBoxDT 150 C 10 10 No 8™ 3% 10% 1007 | -118.3
9 SquigBot2.8 150 C 10 10 No 8™ 3% 10% 1357 | -3.0

Table 1: Fitness functions are (A) raw Robocode score, (B) score difference, (C) score difference + bullet damage + bullet damage

bonus.

The specific trials in Table 1 were chosen to show our design evolution and illustrate the results of our
approach. Many other trials were run, but their results were not unique or otherwise substantial. The tanks we
submitted for all three class tournaments came from trial 7.

5.3 Trial Motivation, Results, and Analysis
5.3.1 Trials 1-3: Initial Tests

Motivation Our first trials were run simply to test the GP, battle manager, and tank. The trials were run
with extremely constrained population size, maximum tree depths, and number of rounds.

Results To our surprise, within 20 generations our algorithm evolved a tank similar to sample.TrackFire and
sample.SpinBot that was able to beat sample.Crazy consistently despite never moving. Specifically, it turns the
gun to the left constantly during the main loop. When it scans the opponent, it fires and then jerks the gun
back 10 degrees to the right. The gun then begins moving to left again, and the behavior repeats. In this way,

the gun is kept aimed at the opponent. When the opponent runs into the tank—as sample.Crazy is wont to
do—the tank shoots. Since the gun is already aimed at the opponent and the opponent is always next to the
gun these shots always hit.

Analysis These results were very promising in that they proved our concept. The co-evolution of the main
loop and the onScannedRobot events allowed target tracking. The fact that the algorithm converged very quickly
shows that elitism on a small population results in a near hill-climb.

5.3.2 Trials 4-5: Suicide Elimination

Motivation At this point, we wanted to evolve a tank that moved. To accomplish this, we trained against
a new opponent, sample.TrackFire, who remains stationary and fires at his opponent. Any tank that does not
move when fighting against sample. TrackFire will be quickly defeated. In the same trials, we switched to the
score difference fitness function. We felt comfortable changing two parameters at once because others have used
this same fitness evaluation function [5].

Results The GP surprised us again. We evolved suicidal tanks.

Analysis If a tank does not perform any action within 600 milliseconds of the start of a round, Robocode
sets the tanks energy to zero (thus disabling it). A tank with zero energy can be shot at most one time before
being destroyed, and the opponent earns no points since no energy is lost. Our tanks learned to allow themselves
to be disabled, thus minimizing the opponent’s score by not allowing him to score any points. To correct this,
we modified our tanks to perform the equivalent of a no-op once in each main loop. After this correction, idle
tanks took full damage and were accordingly selected out of the population.

5.3.3 Trial 6: Elimination of Elitism

Motivation With suicidal tanks out of the way, we wanted to see how the modified algorithm would do
against sample.Crazy, our baseline opponent. At this same time, we discovered that elitism was causing the GP
to act like a hill-climb. The primary motivation of this trial was to evaluate the non-elitist GP parameters.

Results We evolved a left-wall following behavior. When the top corner of the left wall is reached, the tank
turns 180 degrees to the right. Similarly, when the bottom corner is reached, the tank turns 180 degrees to the
left. In other words, the tank always turns facing into the battlefield. This allows the radar, which is fixed to
the gun, to pan across the battlefield. When the enemy is scanned by the radar, a Fire3 is executed.

Analysis This was a great success. We knew that the tank was capable of wall following so it was exciting to
see this behavior in an evolved optimized form. It is important to note that we did not need to fix the starting
position like Eisenstein did. This behavior took longer to evolve, because of the lack of elitism, but the tank
attained a higher overall fitness. In general, learning slower results in more fit behaviors.

5.3.4 Trial 7: SquigBot

Motivation We wanted to test the algorithm against one of the better (or so we believed) hand-coded tanks
in the world. We also increased the population size to 150 to further slow the learning process in hopes of
increasing the ultimate fitness.

After restarting this trial several times, it was determined that a firing bonus should be added to the fitness
score to prevent evolution of an entirely defensive behavior. This trial was the first with the fitness function
labeled C in Table 1.

Results The peak behavior for this trial was a wall following bot much like sample.Walls. Again, the
onScannedRobot event handler has a fire action. This simple behavior was able to beat SquigBot and all of
the sample tanks on nearly every round from random starting spots. This is a great improvement over Eisen-
stein’s accomplishments.

Analysis This was also a success. One interesting aspect of the evolved behavior is that, once the bot makes
a 90° right turn at a corner, it learned to rotate the gun back left 90°. This co-evolved action always keeps
the gun pointed into the arena resulting in a better chance of scanning and shooting the enemy. Without
the added bonus for shooting, the bot would have evolved a defensive strategy that would have worked well
against SquigBot, but poorly against other tanks. This is the tank we submitted for all three CSE573 Robocode
tournaments.

5.3.5 Trial 8: Better Opponents

Motivation Because we were able to easily beat SquigBot, we wanted a real challenge. SandBoxDT the bot
of the year, consistently placing in the top three in all major competitions.

Results SandboxDT is very, very good. Our tank had no chance against his near-perfect aim and dodging
skills. After more than 1000 generations, we converged on an oscillating behavior similar to sample.MyFirstRobot.
This behavior was not very successful against the sample set and did not come close to beating SandboxDT.

Analysis We had no chance against SandboxDT because no controller existed in our search space capable of
beating him. This is discussed in detail in Section 6.2

5.3.6 Trial 9: New Atoms

Motivation We knew what we needed new actions. This trial was conducted with many new action atoms in-
cluding AheadArcRight100x90, BackArcLeft200x45, MoveToUpperLeft and other curvilinear and simultaneous
turning and moving actions.

Results This result was incredibly surprising: we evolved a teleporting wall follower. The tank learned to use
the new MoveToCorner atoms to create a new type of wall follower. In doing so it found and exploited a bug
in Robocode that allowed it to jump from the lower left corner to the upper left corner. Obviously, this was a
superb dodging strategy. It left the opponent spinning his radar with no idea where our tank was.

Analysis GP finds the oddest peaks. The tank used the new atoms to enhance dodging, but still fire power
was weak. Additional atoms for radar and firing will be necessary to make a more competitive tank. We
determined that this tank was no better than the wall following tank we evolved against SquigBot on Trial 7,
so we did not submit this tank.

6 Conclusions

6.1 Successes

We were able to evolve a general tank capable of beating all of the sample tanks (including sample.Walls and
sample.Tracker) and SquigBot using random starting positions. This is more than Eisenstein’s evolved tanks
could do, and attribute that success to our higher level representation of actions. Searching over a space of
strategies rather than over a space of minute, low level actions seems to provide more success at evolving
Robocode tanks.

6.2 Extending the Limits of our Representation

As the last two experiments show, there are opponents against which we cannot learn winning behavior. This is
attributable not to our search or overall representation scheme, but to the specific atoms that we have included
in our representation. It is easy to extend our representation with new atoms, and we believe new atoms could
significantly improve our tank’s competitiveness.

Movement

The rectilinear movements available to our tanks in the first 8 trials is very unsuited for battle against opponents
with predictive targeting ability. In trial 9 we attempted to fix this. We added curvilinear motion atoms and
atoms that turn and move to fixed points on the battlefield. The move-to-point atoms were favored in subsequent

learned behaviors, but only the ones for moving to the corners—so the tanks are still wall-followers and do not
fare well.

For a larger impact we plan to add “wiggle” atoms corresponding to each motion atom. These would move
the tank the same distance and in the same general direction but would randomly change headings along the
way. More generally, we need more random motion atoms altogether. A sufficiently random tank should be
completely unpredictable, but it would also be completely unstrategic. We would like to use our search to learn
a balance between the two.

Targeting

Given the targeting and firing atoms available to our tank, there is not much hope it can learn advanced shooting
strategies. However, we still believe that there are atoms that can be dropped in to the representation to correct
for this. Many hand-coded tanks use variations of a few targeting schemes (linear, circular, virtual bullet/wave)
and corresponding atoms such as TurnGunToCircularTargetingAngle could be added.

6.3 Comparison to our Classmates’ Tanks

Adding atoms for existing targeting strategies will pull our tank in the direction of Lincoln Ritter and Lucas
Kreger-Stickles’ Chimera: we would assemble behavior from actions taken whole from other tanks. Unlike
Chimera however, our more granular approach to behavior would allow for a strategy comprising actions mixed
from many different tanks simultaneously—mnot a strategy that must adopt all of one tank’s actions at one time.

There seem to be two general axes along which to consider the learning approaches of the tanks made for
the course: online vs. offline and holistic vs. modular. Our tank is offline and holistic. Holistic tanks learn their
entire behavior at once, where modular tanks separate the learning tasks into subproblems (most commonly
targeting and moving). The results of the class tournaments suggest that modular, online learners are the most
competitive. However, these tanks have a strategy that is fixed according to their initial modular composition.
In other words, they have a fixed behavior of flexible actions, while we have a flexible behavior of fixed actions.

The obvious next step is to try flexible behaviors of flexible actions. If we added, for example, a neural net
targeting mechanism and corresponding atoms, could our tanks learn to use that when appropriate? Could the
targeting mechanism learn to cooperate inside the larger strategy? Would the two be able to overcome their
initial low fitness values together, or would one dominate the learning and simply learn around the shortcomings
of the other?

6.4 Alternative Search Techniques

We have previously mentioned the size of our search space in terms of the number of tanks within it. But there
are also implicit states (call them battle states) observable by one of these tanks during a battle. Since we have
24 test atoms there are 24 boolean state features, and thus 224 battle states. Our search implicitly tries to factor
battle state space according to the most valuable features, where valuable means a feature’s appearance in a
tree increases the fitness of the tank. Of course, tests and actions are treated indistinguishably in our current
representation.

We could separate tests and actions (as our first considered representation did) and use an alternative search
technique to map from battle states to actions. Such a representation would be amenable to use with an MDP
or reinforcement learning. Indeed, if the tests and actions were kept identical while the larger tank controller
structure changed different searches could be performed over a (mostly) equivalent controller space. Evaluating
the controllers found by each search would provide a way to comparatively rating different search techniques for
this problem.

6.5 Team Member Responsibilities

Overall, we shared the work load 50/50 and worked well as a team. We both discussed all of our projects
design and implementation details, and then we split the implementation chores. Danny Wyatt focused on
the representation and coded the associated Robocode tank, atoms, and tree parser and interpreter. He also
coded the battle manager. He wrote the sections of this paper on our approach, representation, search, and
conclusions. Dan Klein focused on the genetic programming algorithm and coded the associated GP server with
its population manager, selection method, fitness function and genetic operators. He wrote the GP and results
section of this paper.

References

[1] Tobias Blickle and Lothar Thiele. A mathematical analysis of tournament selection. In Larry Eshelman,
editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 9-16, San Francisco,
CA, 1995. Morgan Kaufmann.

[2] Jacob Eisenstein. Evolving robocode tank fighters. Technical report, MIT AI Lab, May 2003.

[3] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley,
1989.

[4] Frank Hoffmeister and Thomas Back. Genetic algorithms and evolution strategies: Similarities and differ-
ences. 1990.

[5] John R. Koza. Genetic programming: On the programming of computers by means of natural selection.
Statistics and Computing, 4(2), 1994.

A Atoms

Where no description is given, each atom does exactly what its name suggests.

A.1 Logic

And Executes its first argument, if it returns true, it executes the second argument and then returns the con-
junction of both results.

Or Executes its first argument, if the first argument returns true, it returns true. Otherwise, it executes the
second argument and then returns the disjunction of both results.

If Executes its first argument, and then the second if the first returned true, the third otherwise.

Not Executes its argument and inverts its result.

False Simply returns false.

True Simply returns true.

A.2 Actions

A.2.1 Moving

Aheadb0

AheadDistanceToCenter Moves forward the distance between the tank and center of the battlefield, regardless
of the direction the tank is facing.

AheadDistanceToEnemy

AheadDistanceToWall

AheadHalfDistanceToEnemy

Backb0

BackDistanceToCenter

BackDistanceToEnemy

A.2.2 Turning

TurnToCenter Turns the tank so it is directly facing the center of the battlefield.

TurnAwayFromCenter Turns the tank so it is directly facing 180° away from the center of the battlefield.

TurnAwayFromEnemy Turns the tank so it is directly facing 180° away from the last observed position of the
opponent.

TurnPerpendicularToEnemy Turns the tank so it is directly facing 90° away from the last observed position of
the opponent. It chooses the shorter direction to turn.

TurnParallelToNearestWall Turns the tank so it is parallel to the nearest wall and facing towards the longest
stretch of that wall (facing into the battlefield).

TurnPerpendicularToNearestWall Turns the tank perpendicular to the nearest wall, facing into the battlefield.

TurnLeft10

TurnLeft90

TurnRight10

TurnRight90

TurnToEnemy Turns the tank so it is facing the last observed position of the enemy.

A.2.3 Simultaneous Moving and Turning

These atoms were added only for our last experiments against SandboxDT and Marvin.

MoveToCenter Turns the tank to either face towards or away from the center—whichever is faster—and then
moves either ahead or back until the tank is at the center of the battlefield.

MoveToLowerLeft Turns and moves similarly to only to the lower left corner of the battlefield.

MoveToLowerright

MoveToUpperleft

MoveToUpperright

AheadArcLeft100x45 Moves forward 100 pixels while turning left 45°.

AheadArcLeft100x90 Moves forward 100 pixels while turning left 90°.

AheadArcLeft200x45 Forward 200, turning left 45°.

AheadArcLeft200x90 Forward 200 pixels, turning left 90°.

AheadArcRight100x45 Forward 100 pixels, turning right 45°.

AheadArcRight100x90 Forward 100 pixels, turning right 90°.

AheadArcRight200x45 Forward 200 pixels, turning right 45°.

AheadArcRight200x90 Forward 200 pixels, turning right 90°.

BackArcLeft100x45 Back 100 pixels, turning left 45°.

BackArcLeft100x90 Back 100 pixels, turning left 90°.

BackArcLeft200x45 Back 200 pixels, turning left 45°.

BackArcLeft200x90 Back 200 pixels, turning left 90°.

BackArcRight100x45 Back 100 pixels, turning right 45°.

BackArcRight100x90 Back 100 pixels, turning right 90°.

BackArcRight200x45 Back 200 pixels, turning right 45°.

BackArcRight200x90 Back 200 pixels, turning right 90°.

A.2.4 Gun

TurnGunToEnemy Turns the gun to the last observed enemy location.
TurnGunLeftb

TurnGunLeft10

TurnGunRightb

TurnGunRight10

Firel

Fire2

Fire3

A.2.5 Radar

TurnRadar360

TurnRadarLeft20

TurnRadarLeft60

TurnRadarRight20

TurnRadarRight60

TurnRadarRightLeft20 Turns the radar right 10°, left 20°, then right 10°.
TurnRadarRightLeft60 Turns the radar right 30°, left 60°, then right 30°.
TurnRadarToEnemy Turns the radar to the last observed enemy location.
TurnRadarToGun Realigns the radar with the gun.

A.3 Tests

TestEnemyEnergy0
TestEnemyEnergyBelowl10
TestEnergyBelowl0
TestEnergyGreaterThanEnemys
TestEnergyLessThanEnemys
TestEnemyWithinlOTicks
TestEnemyWithin20Ticks
TestEnemyWithinb50Ticks

10

TestEnemyWithin10TicksOfFirel
TestEnemyWithinlOTicksO0fFire2
TestEnemyWithinlOTicksOfFire3
TestEnemyWithin20TicksOfFirel
TestEnemyWithin20TicksO0fFire2
TestEnemyWithin20TicksOfFire3
TestEnemyWithin50TicksO0fFirel
TestEnemyWithinb0Ticks0fFire2
TestEnemyWithinb50TicksOfFire3
TestEnemyWithinbTicksOfFirel
TestEnemyWithinbTicksO0fFire2
TestEnemyWithinbTicksOfFire3
TestGunIsHot
TestGunWithinbTicks
TestTurnToEnemyWithinl10Ticks
TestTurnToEnemyWithin5tTcks

11

