

UNIVERSITY *of* WASHINGTON

# Spatial Algebra & Kinematics

Jiafei Duan, 13 January 2026

CSE 571



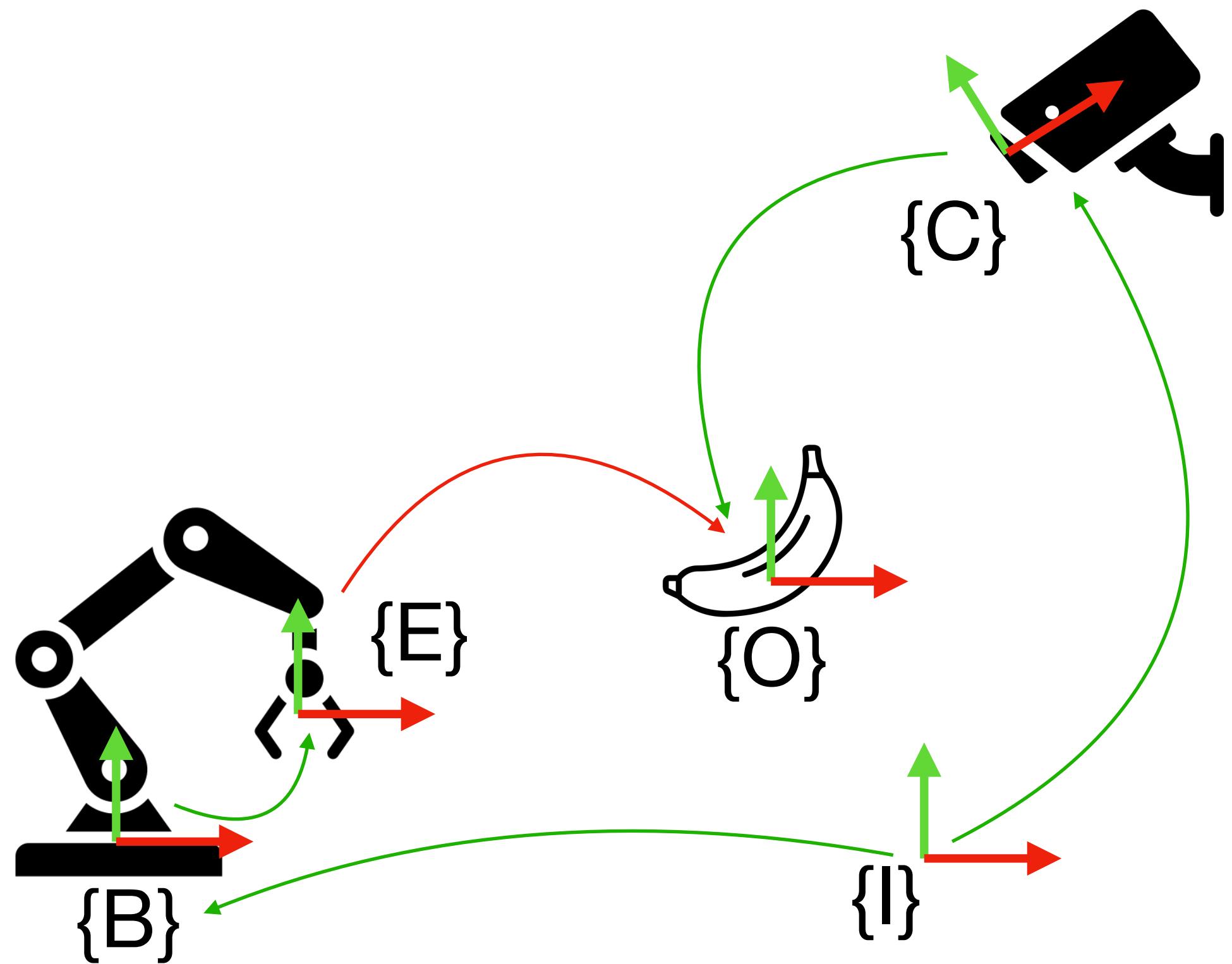
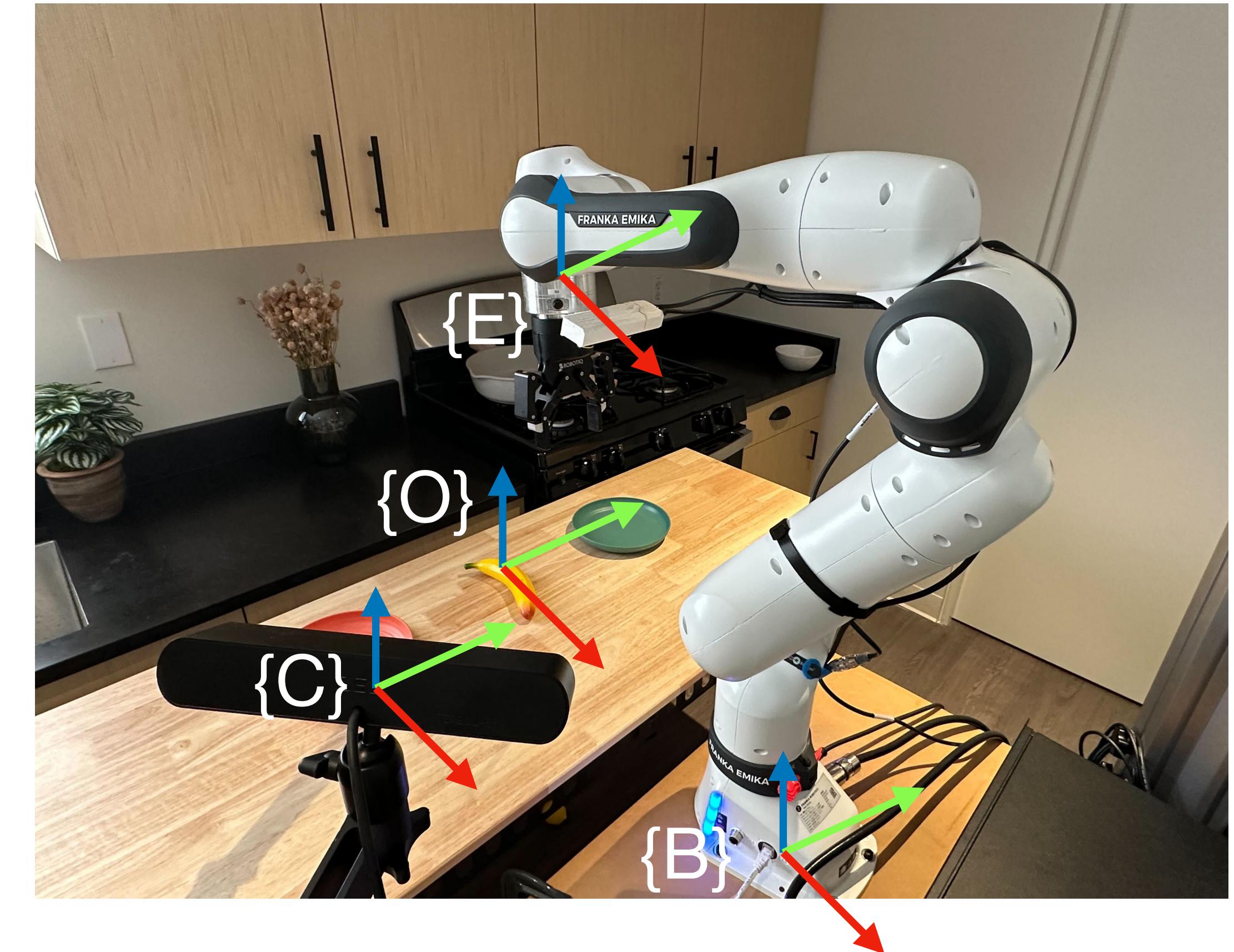
# Things to cover today:

- Relative Pose & Translation
- Rotation matrices in 2D
- Rotation matrices in 3D
- Homogeneous transformation matrices
- Forward kinematics
- DH Parameters

# Objective of the class



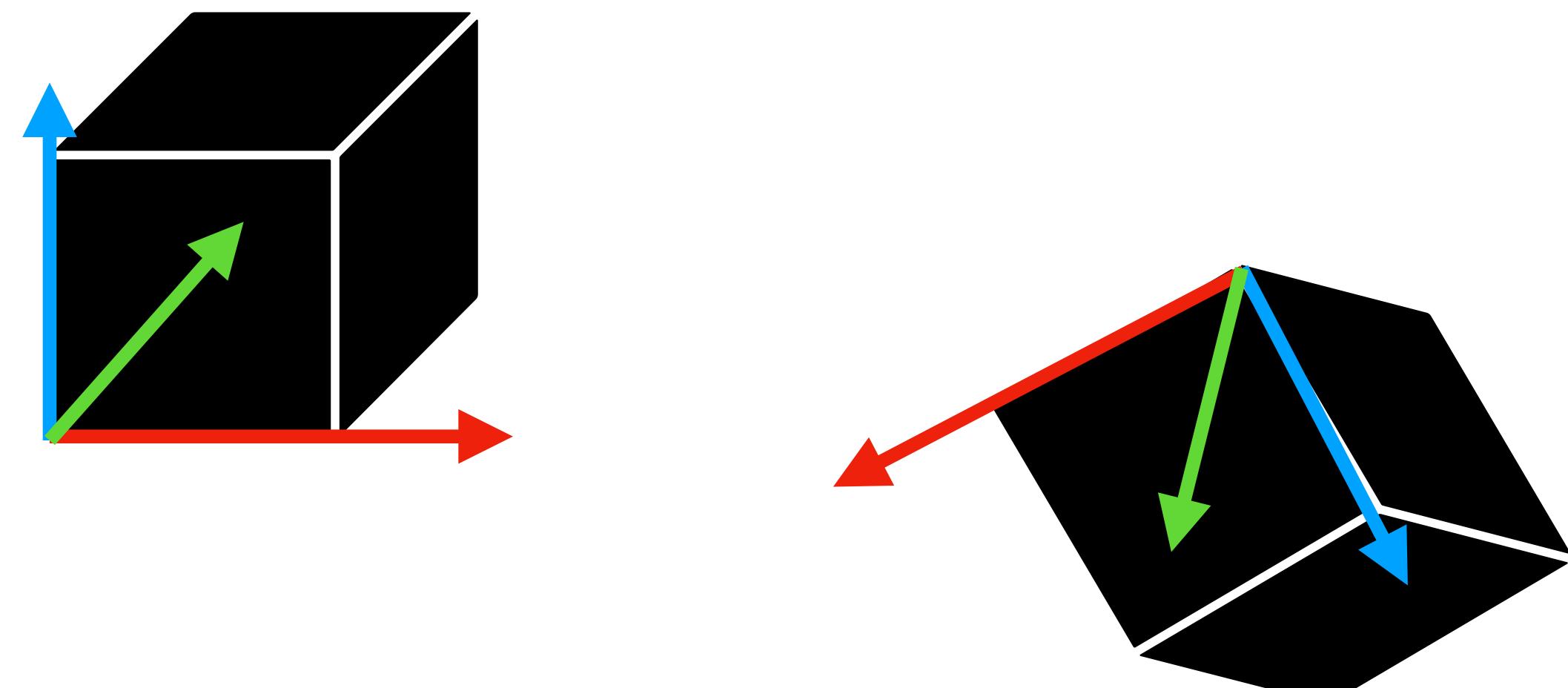
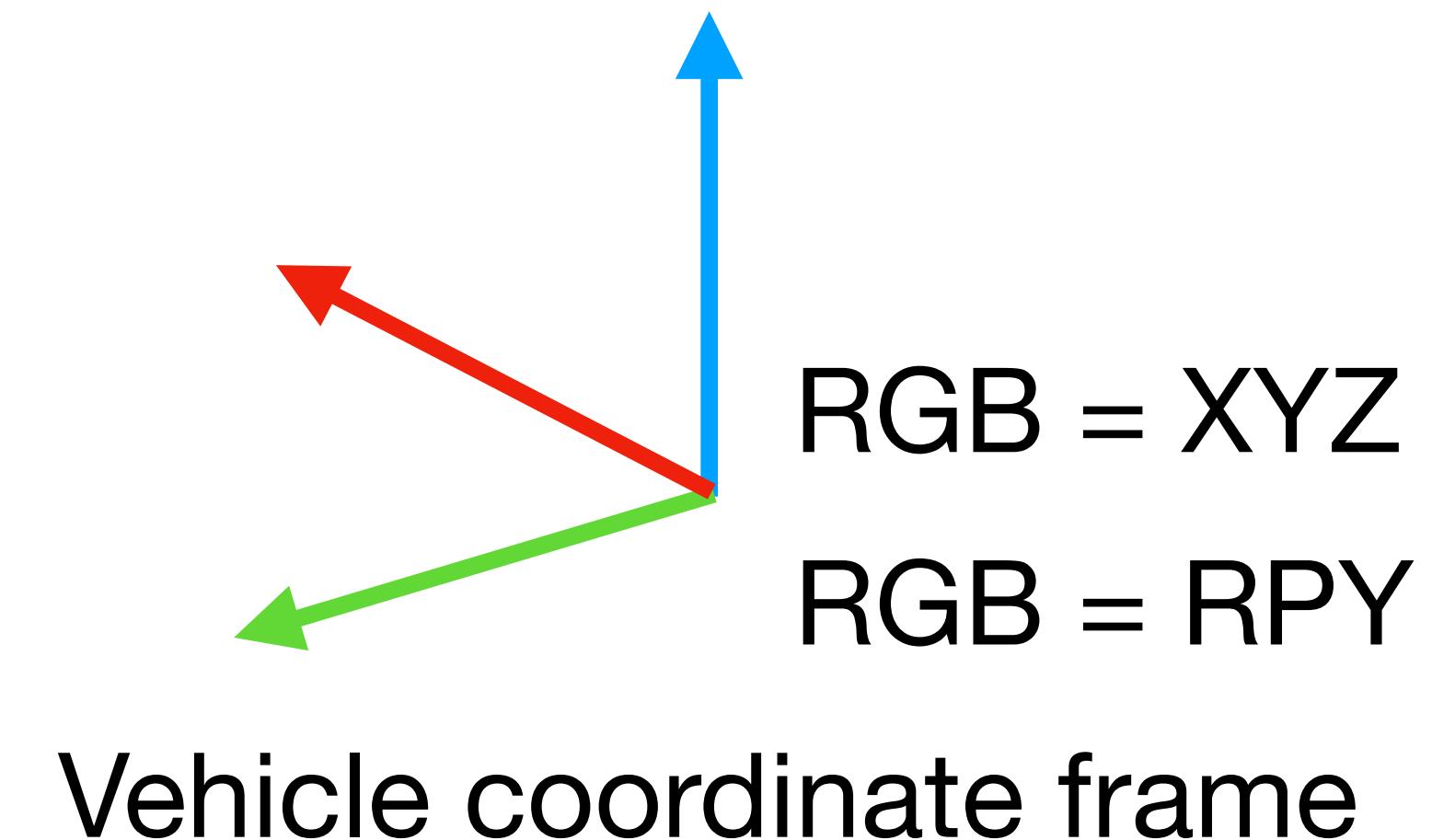
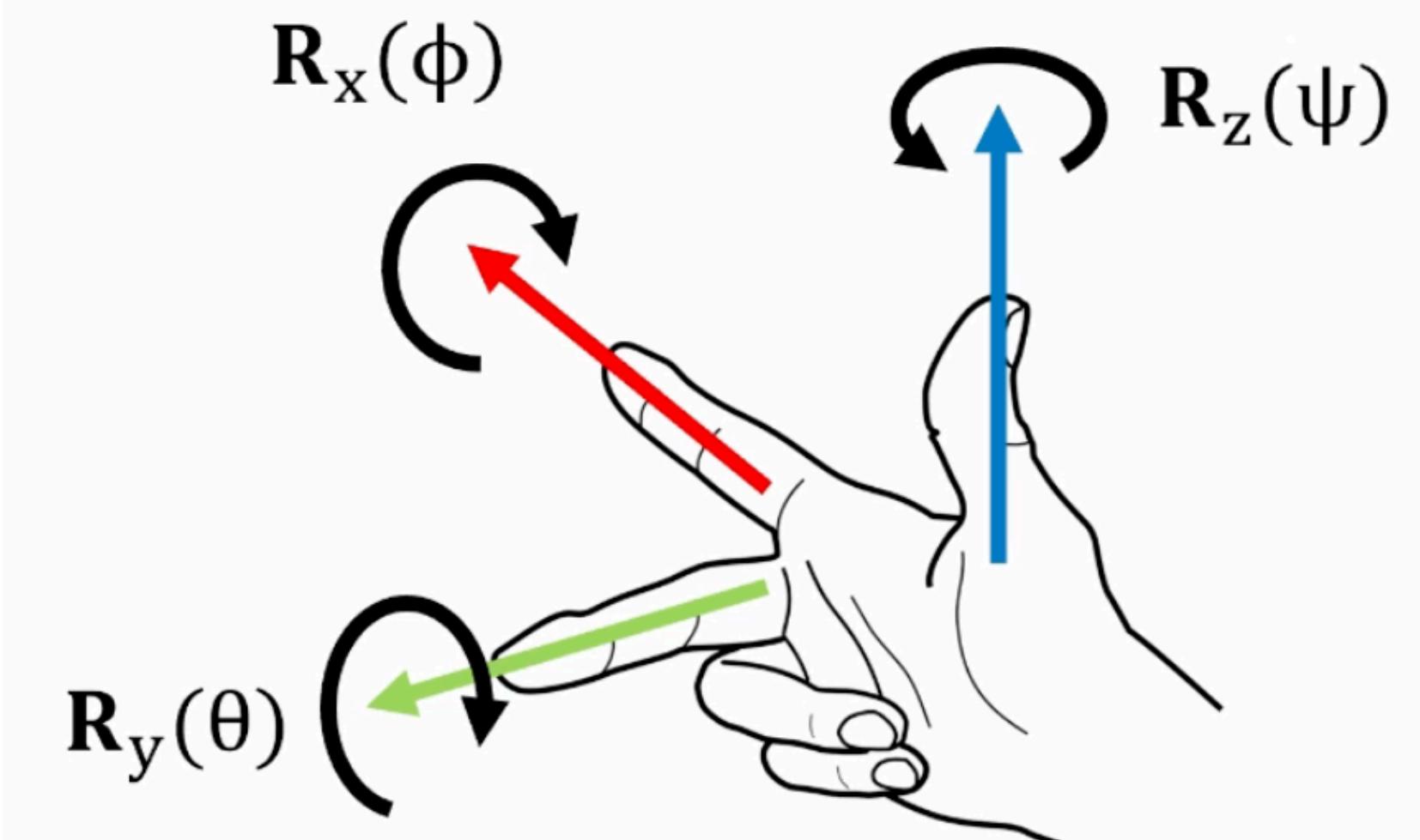
# Objective of the class



What is  $R_E^O$ ?

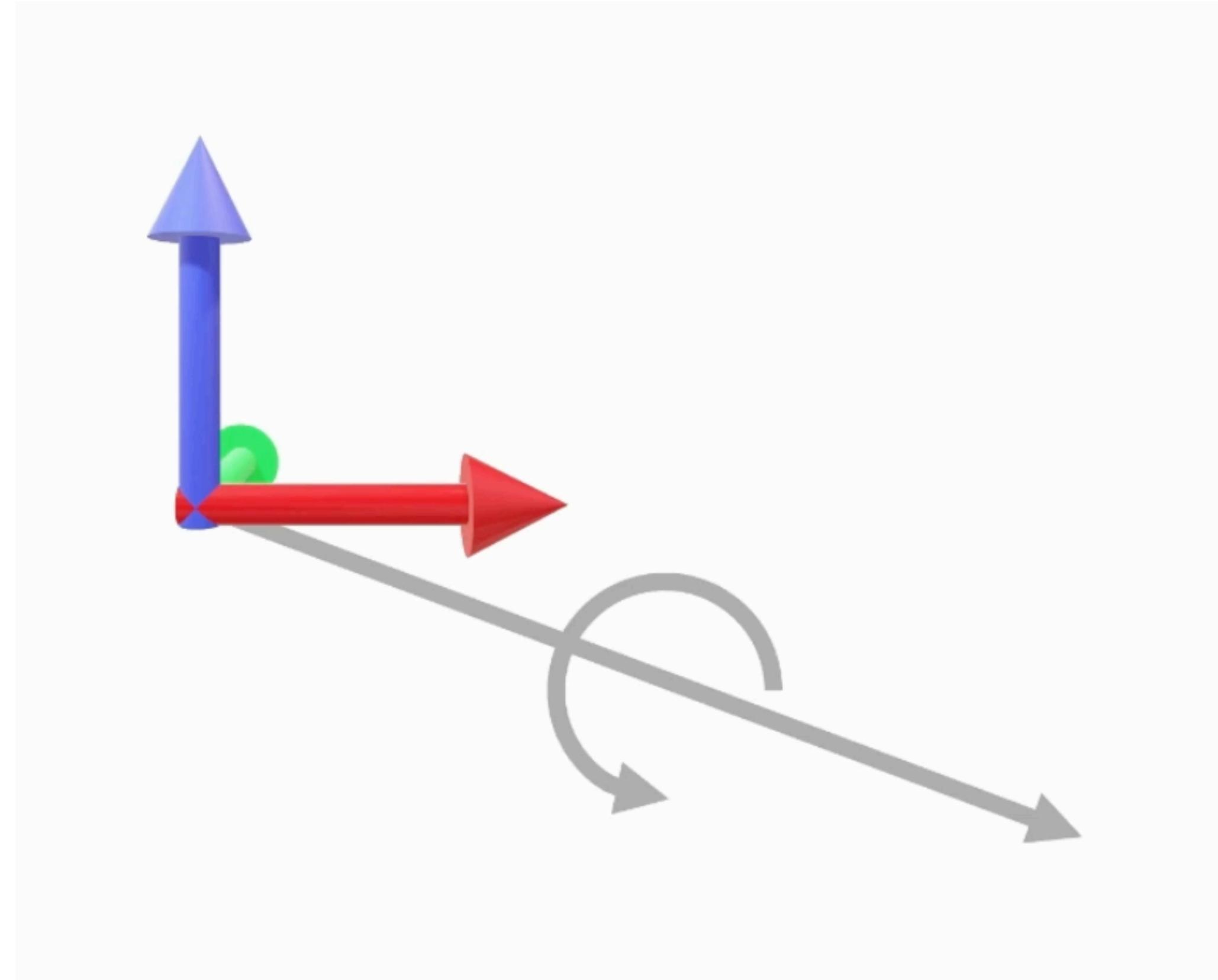
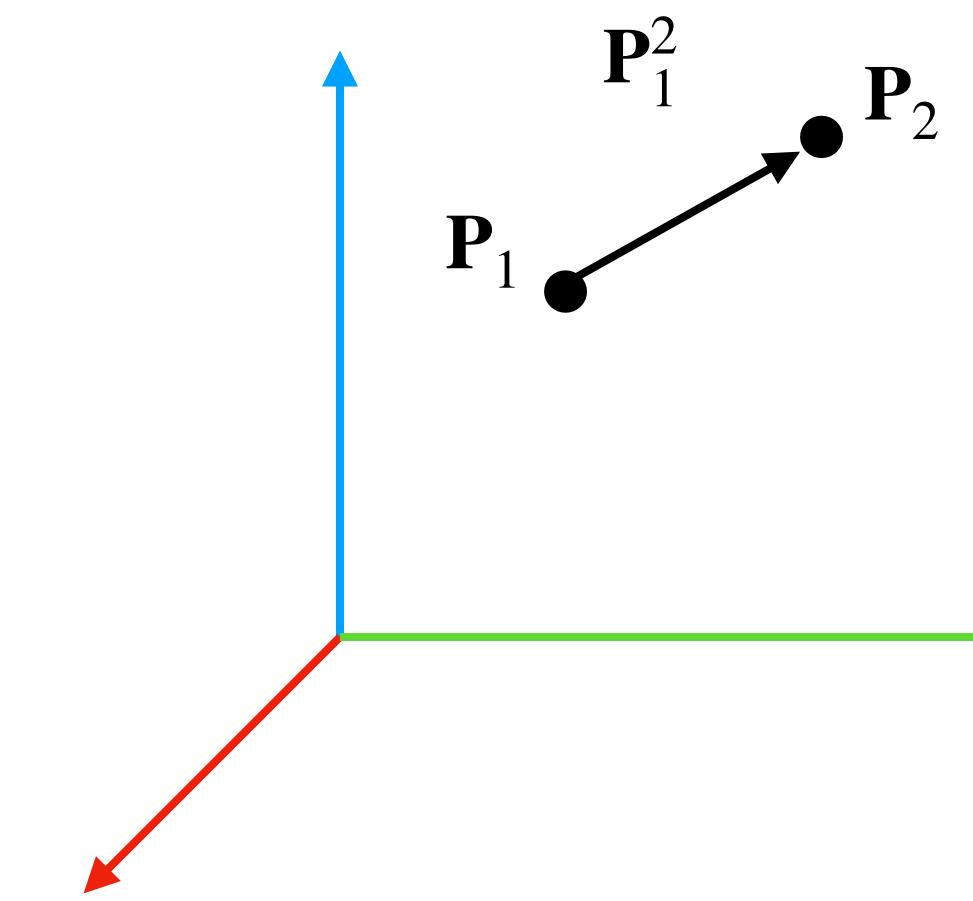
# Reference Frames

- > Position and orientation in space is relative
- > We need both to fully describe 3D
- > Pose = Position + Orientation



# Transformation between reference frames

> Moving between reference frames involves both a translation and rotation.



Two points in 3D Euclidean space:

$$\mathbf{p}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \in \mathbb{R}^3$$

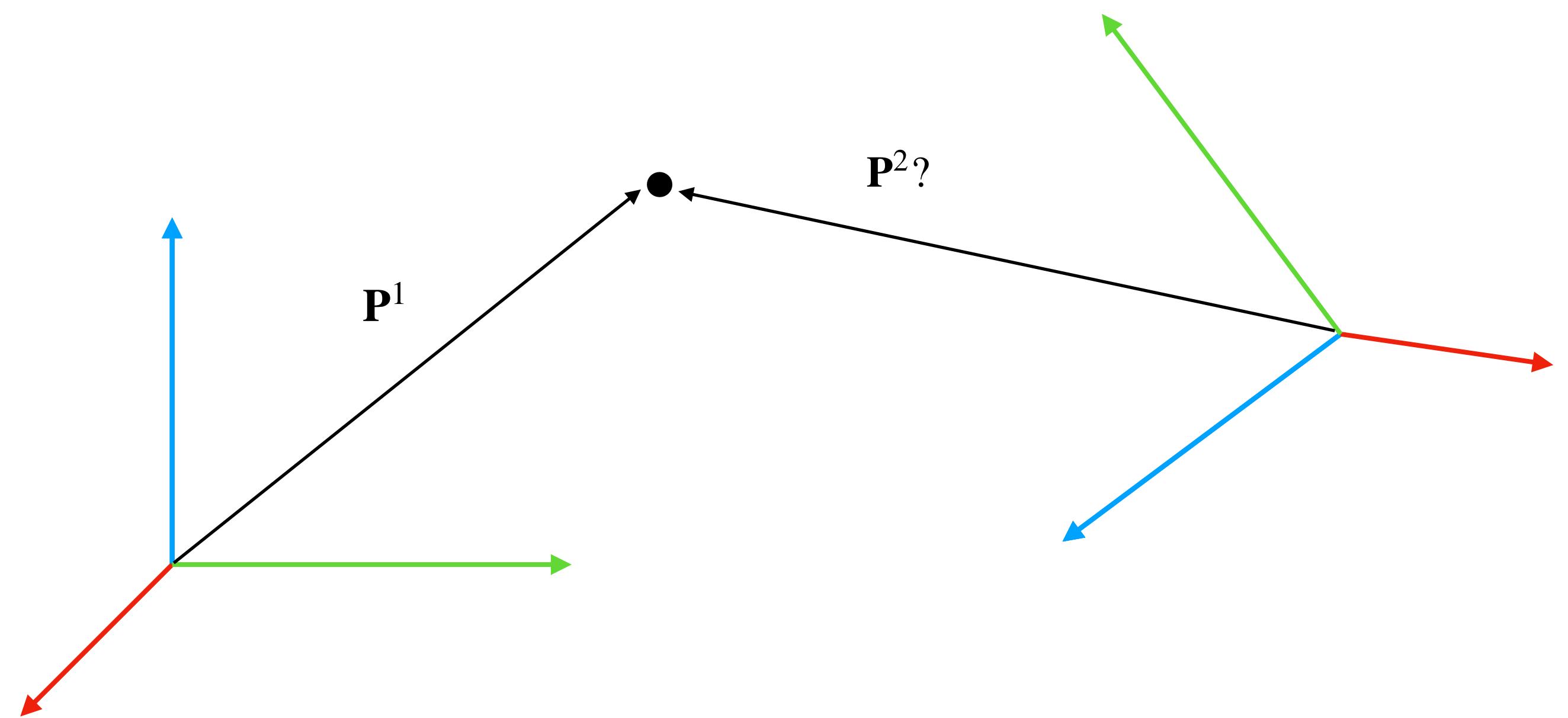
$$\mathbf{p}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} \in \mathbb{R}^3$$

Translation between points?

$$\mathbf{p}_1^2 = \mathbf{p}_2 - \mathbf{p}_1 = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix} \in \mathbb{R}^3$$

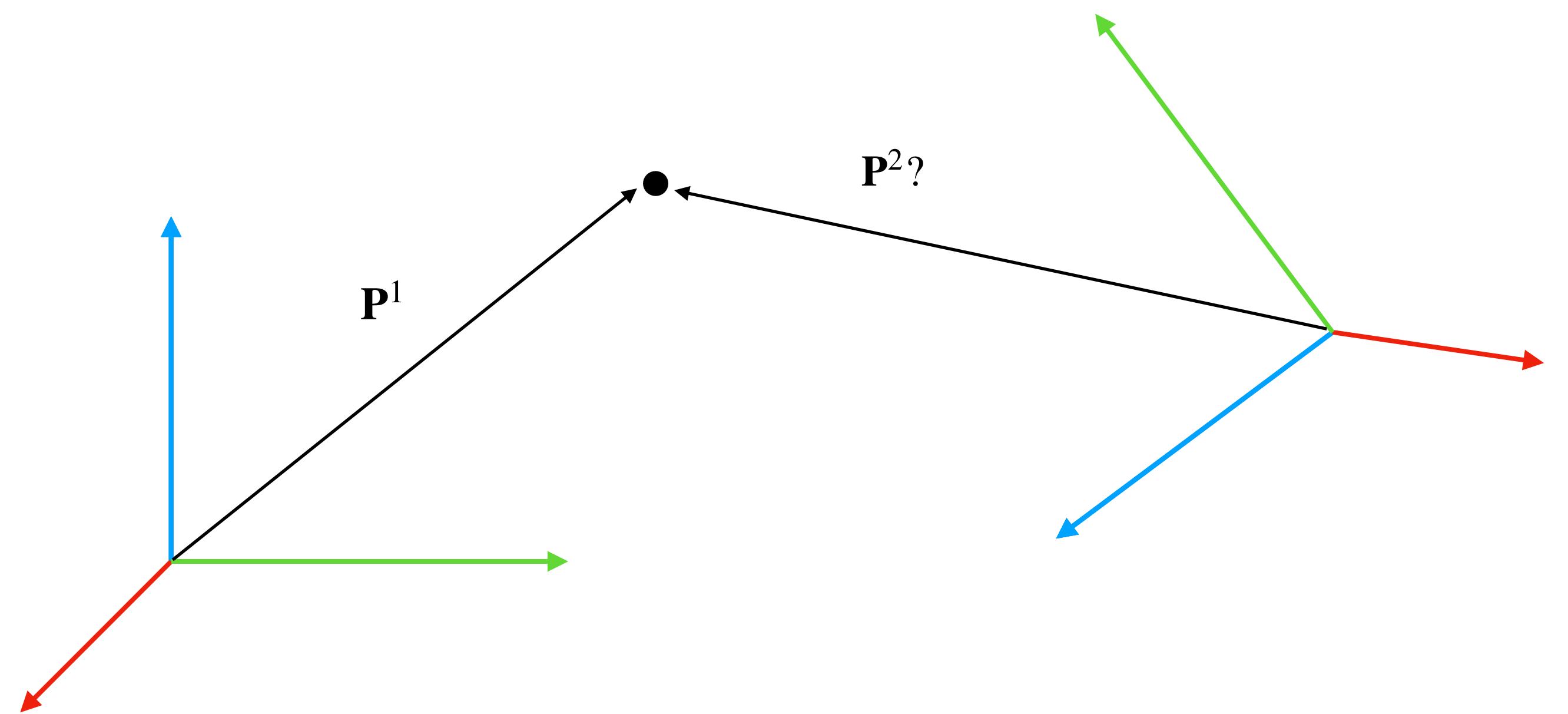
# Transformation between reference frames

- > The question to ask is two reference frames with different position and orientation.
- > What is the distance from frame  $\{2\}$  to the point? What is the orientation?
- > Need to consider the relative orientation between reference frames.



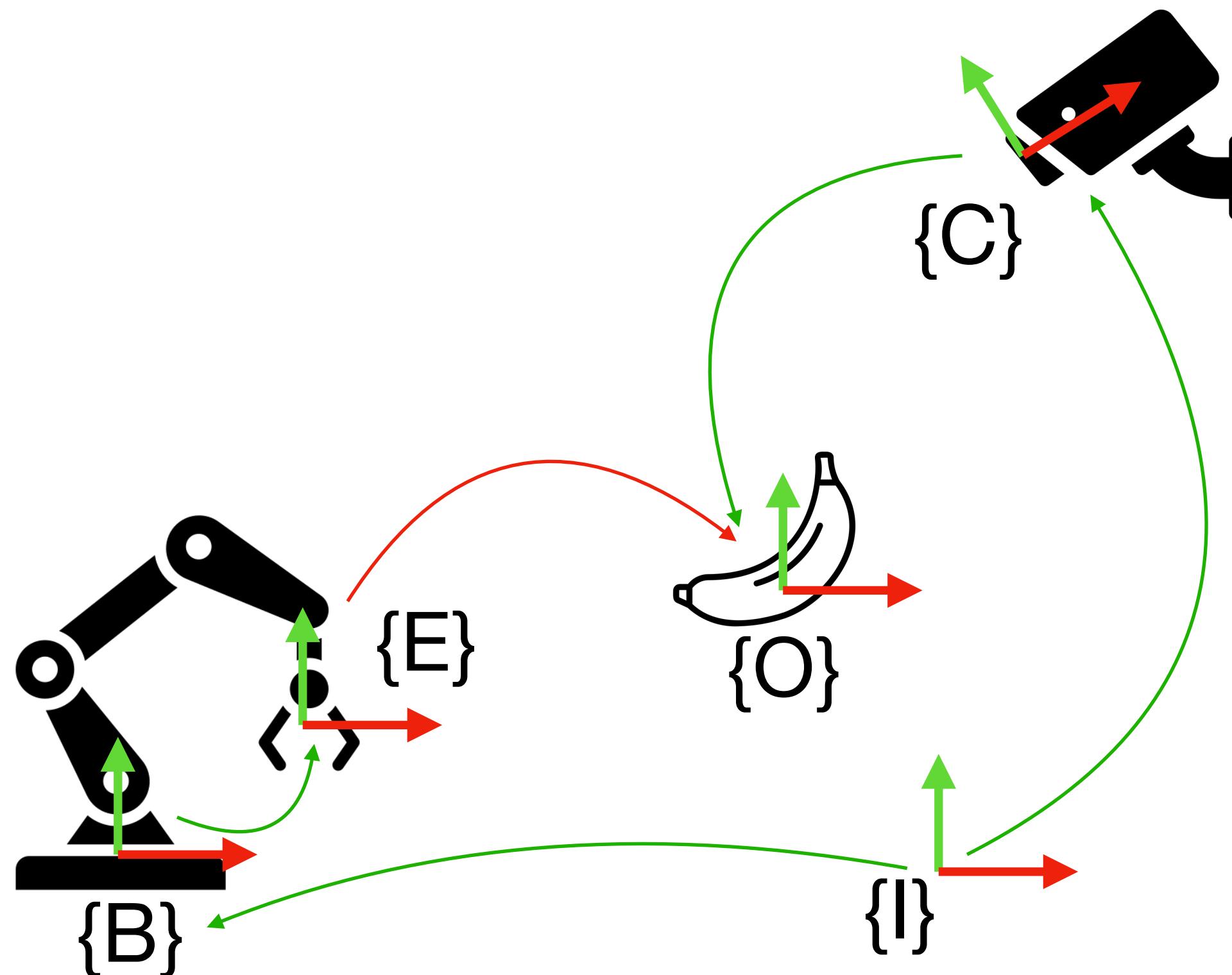
# Transformation between reference frames

- > The question to ask is two reference frames with different position and orientation.
- > What is the distance from frame  $\{2\}$  to the point? What is the orientation?
- > Need to consider the relative orientation between reference frames.



# Rotation matrices in 2D

The goal: how can we describe the relative orientation between reference frames?

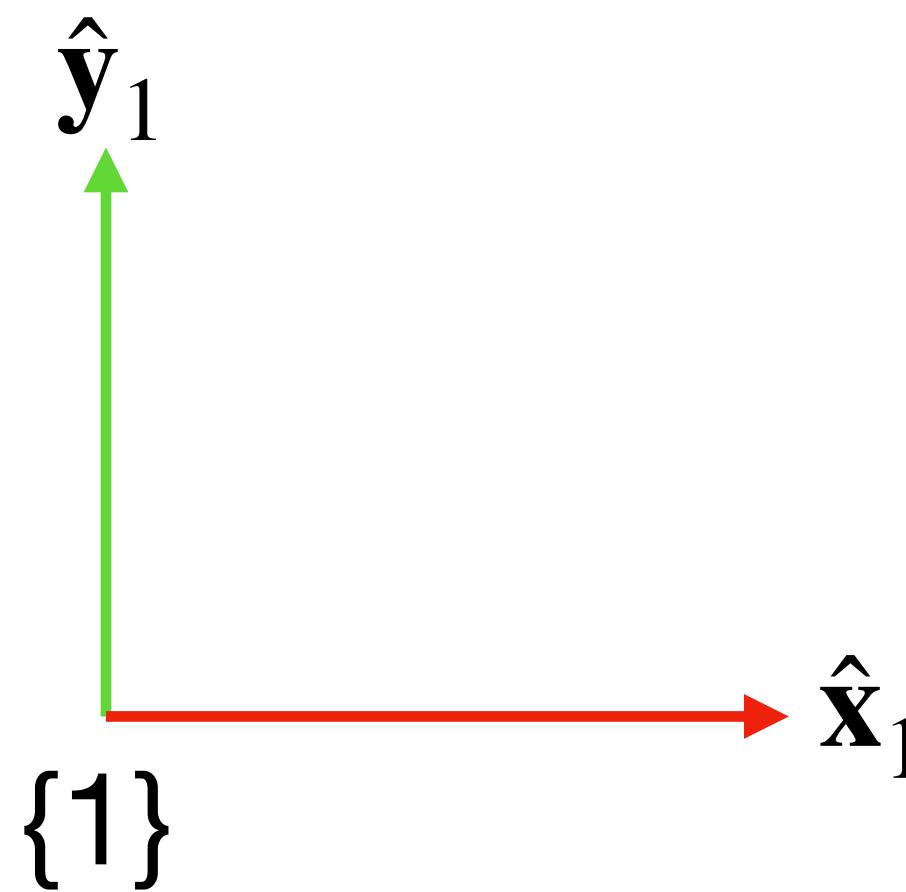


Given the following rotation:

- $\mathbf{R}_I^C$  -> Inertial to camera
- $\mathbf{R}_C^O$  -> Camera to Object
- $\mathbf{R}_B^I$  -> Intertial to Base
- $\mathbf{R}_B^E$  -> Base to End-effector

What is  $\mathbf{R}_E^O$ ?

# Constructing a Reference Frame in 2D



$\hat{x}$  and  $\hat{y}$  are unit vectors:

$$\|\hat{x}\| = 1$$

$$\|\hat{y}\| = 1$$

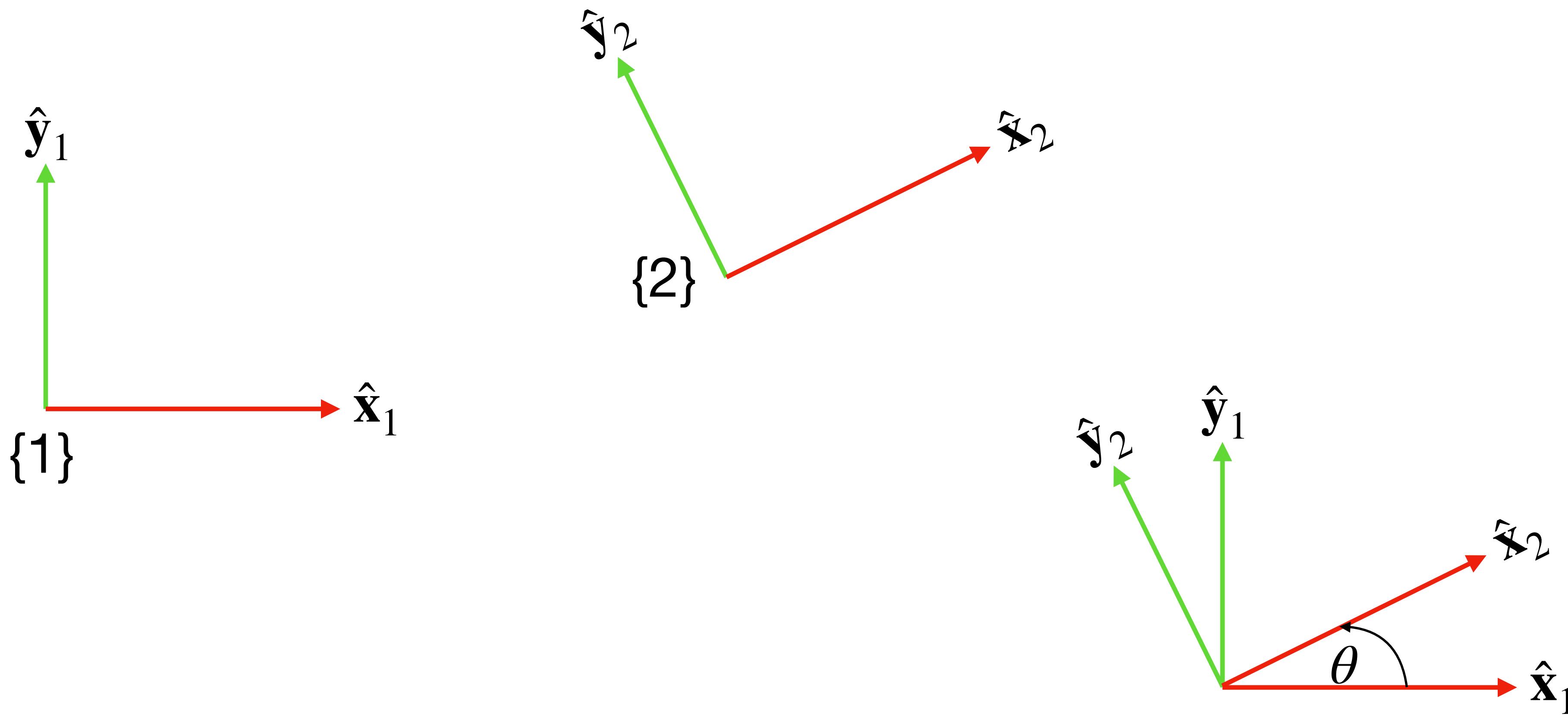
$\hat{x}$  is orthogonal to  $\hat{y}$ .

$$\hat{x}^\top \hat{y} = 0$$

$\hat{x}$  and  $\hat{y}$  are orthonormal.

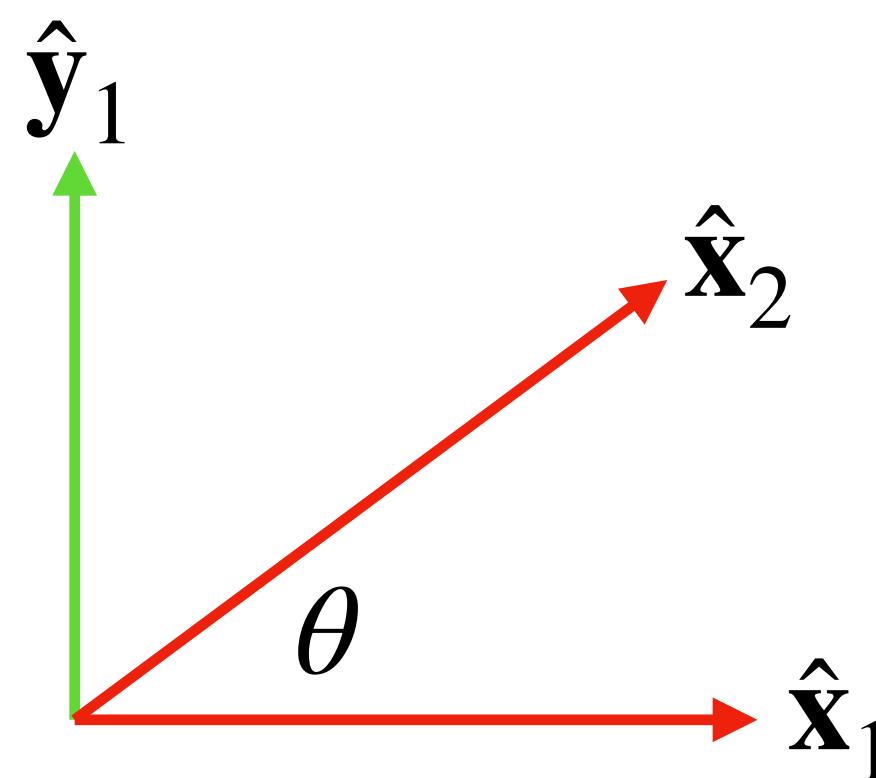
Orthogonal + normalized

# Rotation between 2 Reference Frames in 2D



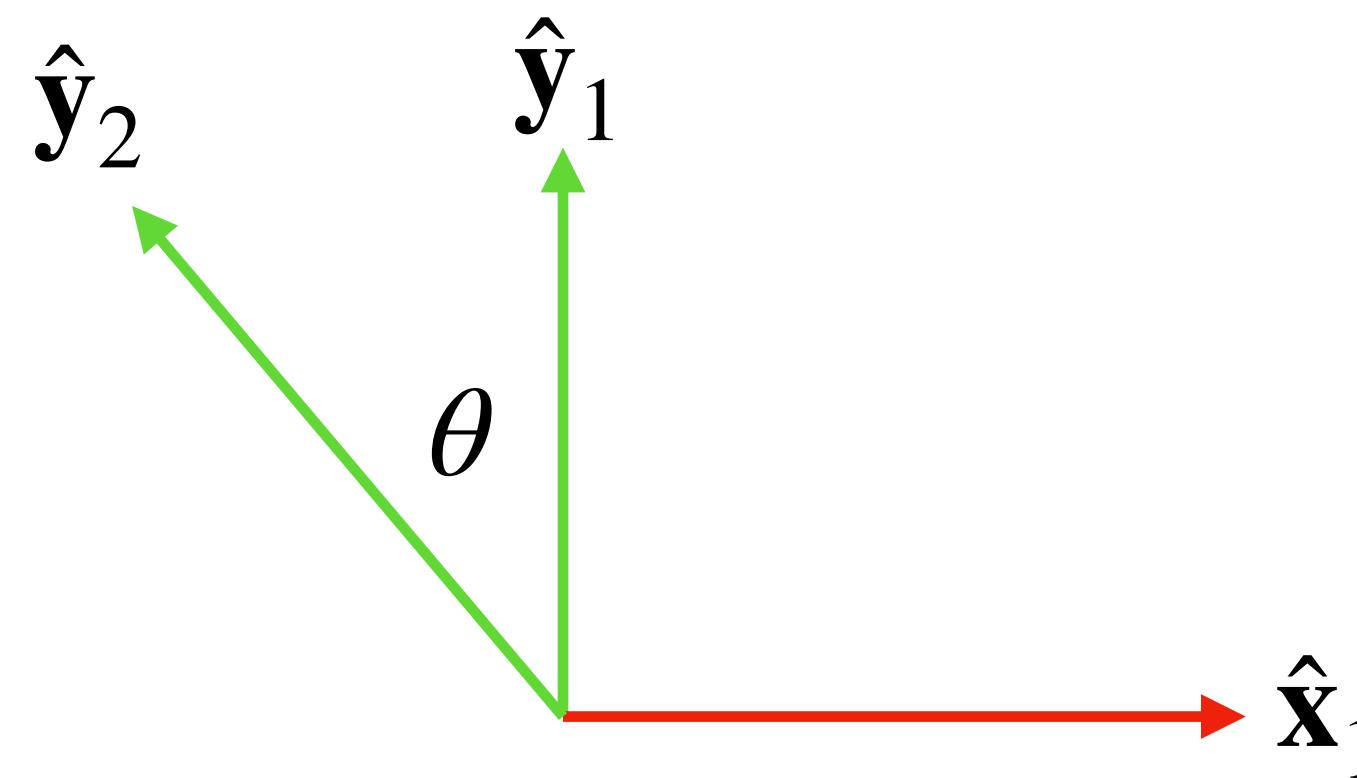
How can we describe  $\{2\}$  with respect to  $\{1\}$  mathematically?

# Rotation between 2 Reference Frames in 2D



Express axes of frame {1} as functions of axes of frame {2}:

$$\begin{bmatrix} \hat{x}_1 \\ \hat{y}_1 \end{bmatrix} = \begin{bmatrix} \hat{x}_2 \cos(\theta) - \hat{y}_2 \sin(\theta) \\ \hat{x}_2 \sin(\theta) + \hat{y}_2 \cos(\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \hat{x}_2 \\ \hat{y}_2 \end{bmatrix}$$



Define the Rotation Matrix from {1} to {2} as:

$$\mathbf{R}_1^2(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

# The transpose of a rotation matrix is equivalent to its inverse

Multiply the rotation matrix by its transpose:

$$\begin{aligned}\mathbf{R}\mathbf{R}^T &= \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix} \begin{bmatrix} \cos(\psi) & \sin(\psi) \\ -\sin(\psi) & \cos(\psi) \end{bmatrix} \\ &= \begin{bmatrix} \cos^2(\psi) + \sin^2(\psi) & \cos(\psi)\sin(\psi) - \cos(\psi)\sin(\psi) \\ \sin(\psi)\cos(\psi) - \sin(\psi)\cos(\psi) & \sin^2(\psi) + \cos^2(\psi) \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}\end{aligned}$$

We also know that:

$$\begin{aligned}\mathbf{R}\mathbf{R}^{-1} &= \mathbf{I} \\ \therefore \mathbf{R}^{-1} &= \mathbf{R}^T\end{aligned}$$

The Rotation Matrix is **orthogonal**.

# The transpose of a rotation matrix is equivalent to its inverse

Rotation from  $\{1\}$  to  $\{2\}$ :

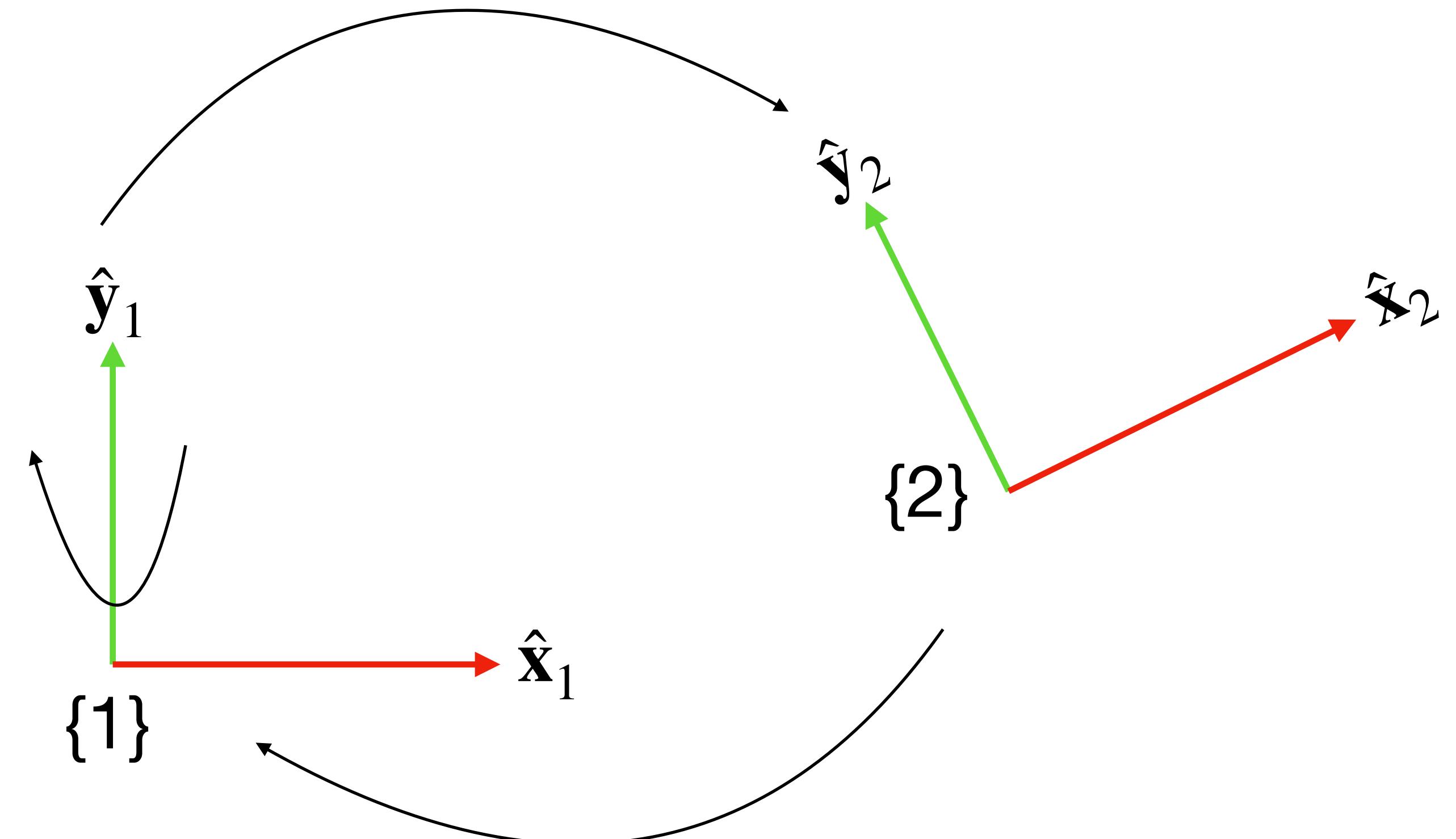
$$\mathbf{R}_1^2$$

Rotation from  $\{2\}$  to  $\{1\}$ :

$$\mathbf{R}_2^1 = (\mathbf{R}_1^2)^T$$

Rotation from  $\{1\}$  to  $\{1\}$ :

$$\begin{aligned}\mathbf{R}_1^1 &= \mathbf{R}_1^2 \mathbf{R}_2^1 \\ &= \mathbf{R}_1^2 (\mathbf{R}_1^2)^T\end{aligned}$$



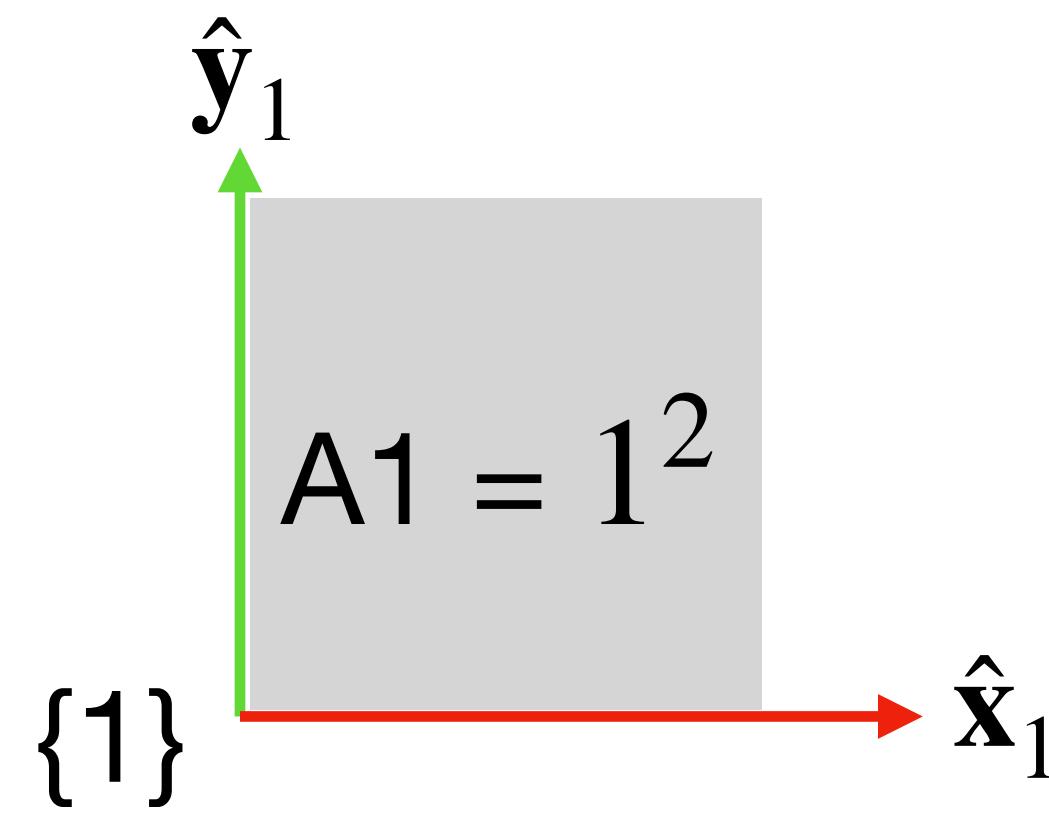
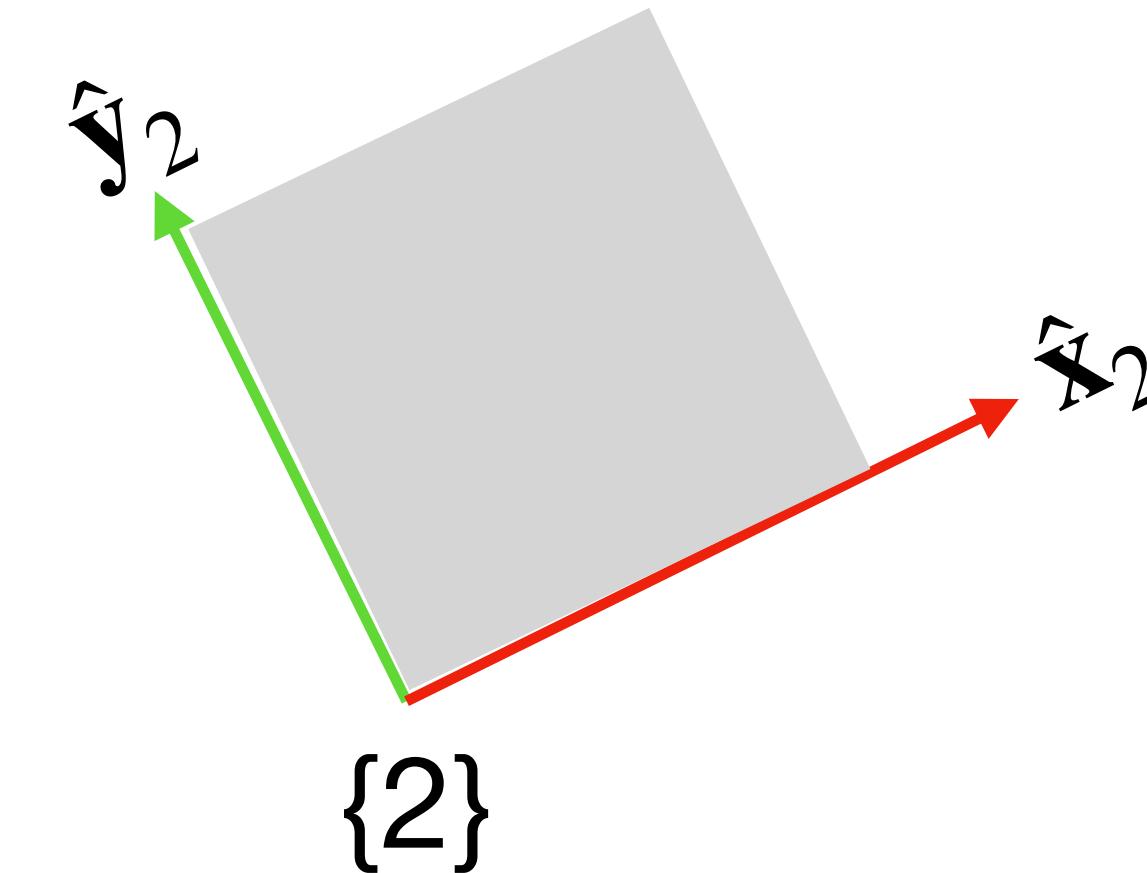
# The Determinant of a Rotation Matrix is 1

$$\det(\mathbf{R}) = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} = \cos(\theta)\cos(\theta) - \sin(\theta)(-\sin(\theta)) = \cos^2(\theta) + \sin^2(\theta) = 1$$

This means the area (or volume for 3D) bounded by the axes remains constant.

i.e scaled by 1

$$A_2 = \det(R)A_1 = 1^2$$



# A Rotation Matrix is in the Special Orthogonal Group (SO)

$$\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$$

$$\|\mathbf{R}\| = 1$$

$$\det(\mathbf{R}) = 1$$

If  $\mathbf{R}$  is an  $n \times n$  matrix with the above properties, then  $\mathbf{R}$  is  $\text{SO}(n)$ .

# Implications to Invariance Under Rotation

Velocity for observer {A}:

$${}^A\mathbf{v}$$

Velocity for observer {B}:

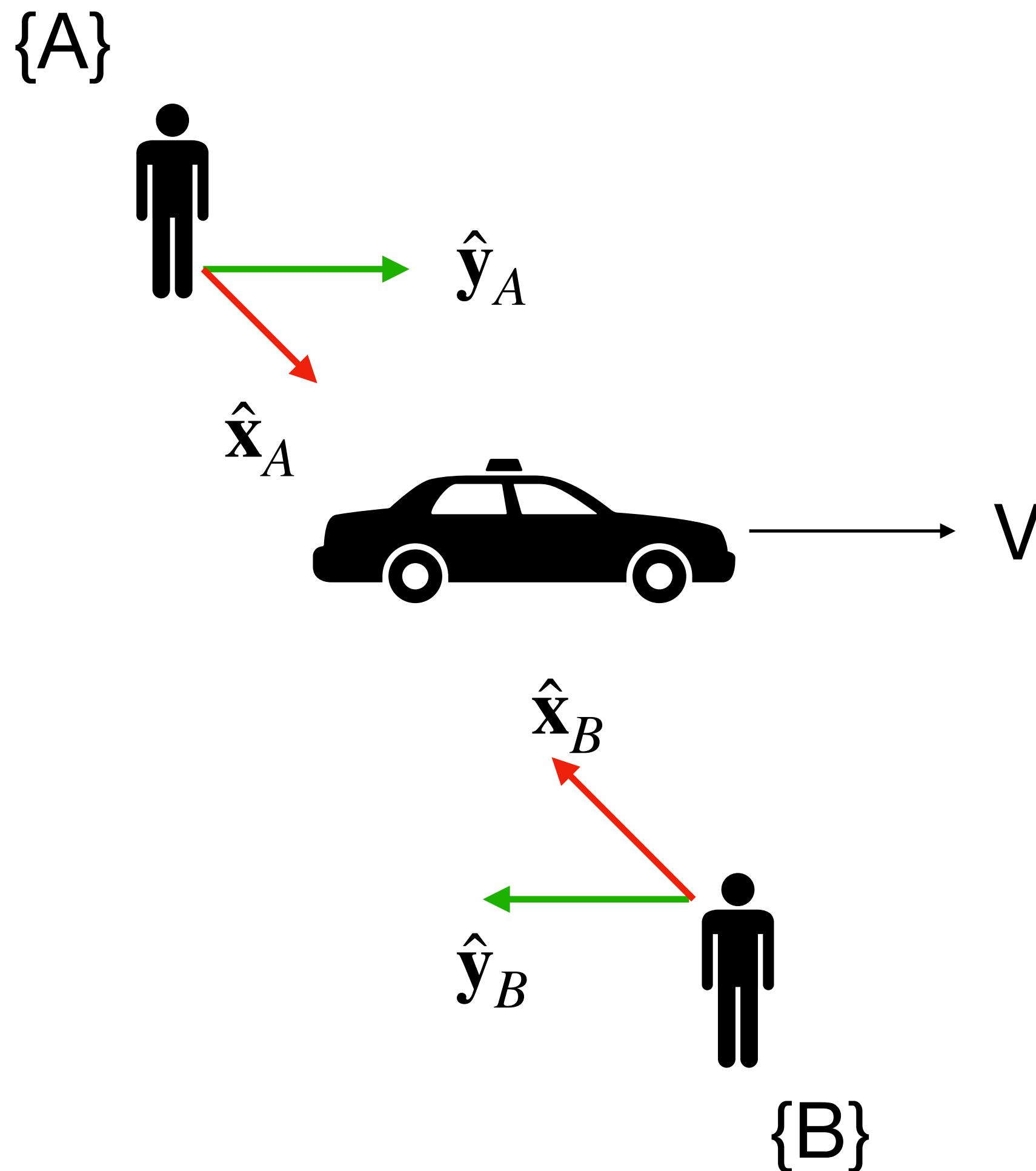
$${}^B\mathbf{v} = \mathbf{R}_B^A \cdot {}^A\mathbf{v}$$

Direction of the vectors is different:

$${}^A\mathbf{v} \neq {}^B\mathbf{v}$$

But the magnitude will be the same:

$$\|{}^A\mathbf{v}\| = \|{}^B\mathbf{v}\|$$

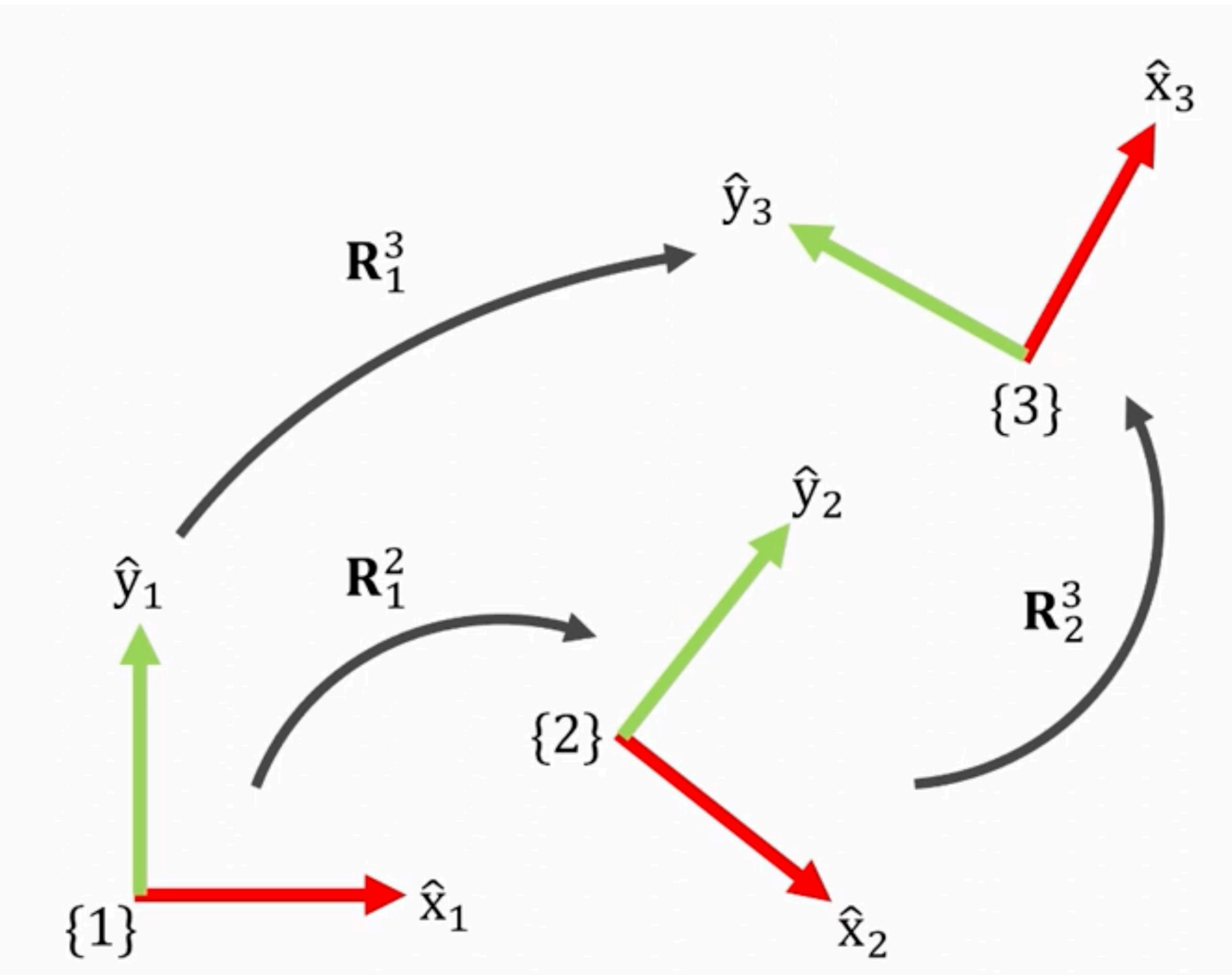


$$\mathbf{R}_1^3 = \mathbf{R}_1^2 \mathbf{R}_2^3$$

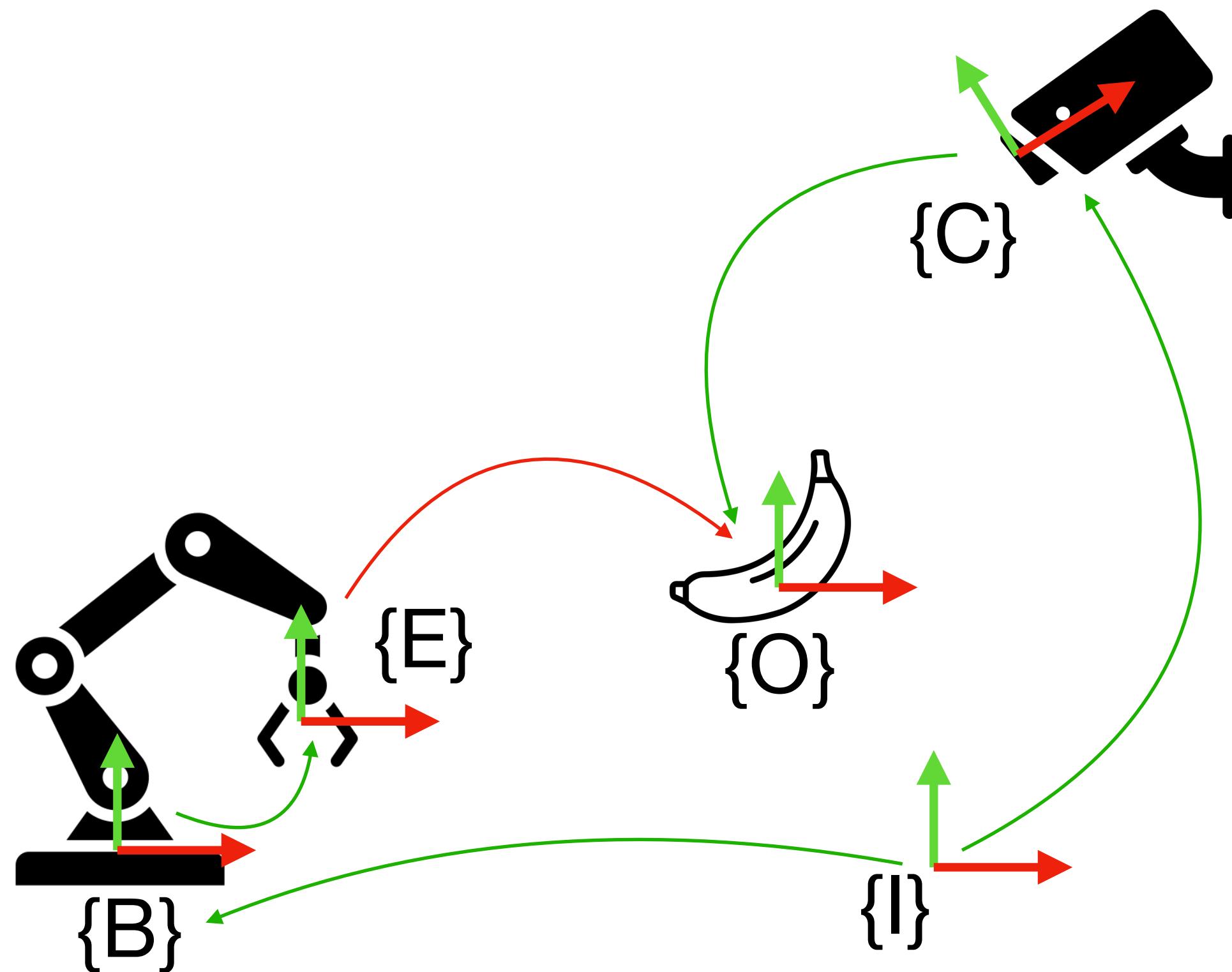
$$\begin{aligned}\mathbf{R}_1^3 (\mathbf{R}_1^3)^T &= (\mathbf{R}_1^2 \mathbf{R}_2^3)^T (\mathbf{R}_1^2 \mathbf{R}_2^3) \\ &= (\mathbf{R}_2^3)^T (\mathbf{R}_1^2)^T \mathbf{R}_1^2 \mathbf{R}_2^3 \\ &= (\mathbf{R}_2^3)^T \mathbf{R}_2^3 \\ &= \mathbf{I}\end{aligned}$$

$$\begin{aligned}\det(\mathbf{R}_1^3) &= \det(\mathbf{R}_1^2 \mathbf{R}_2^3) \\ &= \det(\mathbf{R}_1^2) \det(\mathbf{R}_2^3) \\ &= 1 \times 1 \\ &= 1\end{aligned}$$

$\mathbf{R}_1^3 \in \mathbb{SO}$  is another rotation matrix!



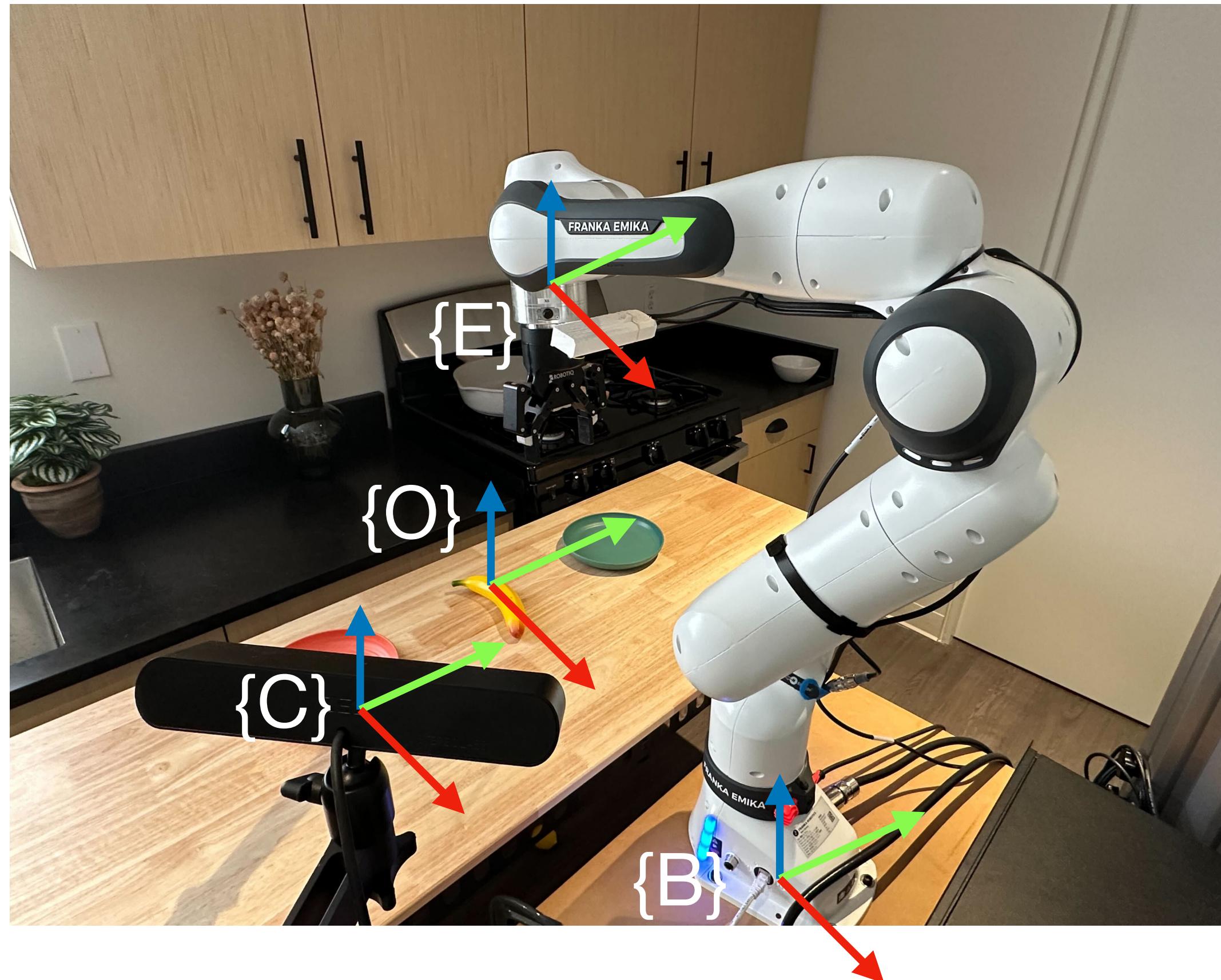
# How should the robot orient its End-effector?



$$\mathbf{R}_E^O = \mathbf{R}_E^B \mathbf{R}_B^I \mathbf{R}_I^C \mathbf{R}_C^O$$

# Rotation matrices in 3D

The goal: how can we describe the relative orientation between reference frames?



What is  $\mathbf{R}_E^O$ ?

# 3D Rotation Matrix (Properties)

Add a 3rd dimension to the rotation matrix:

$$\mathbf{R} = [\hat{\mathbf{x}} \ \hat{\mathbf{y}} \ \hat{\mathbf{z}}] \in \text{SO}(3)$$

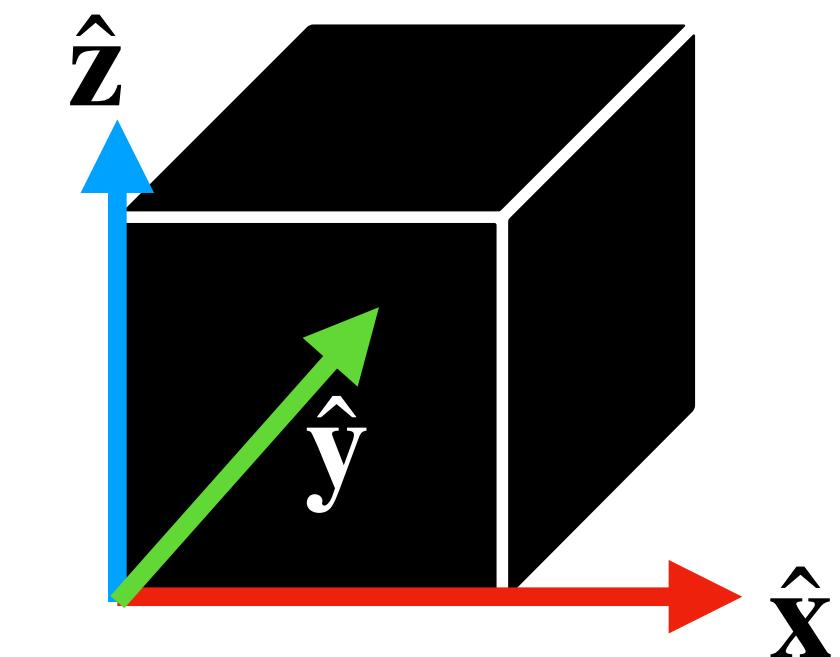
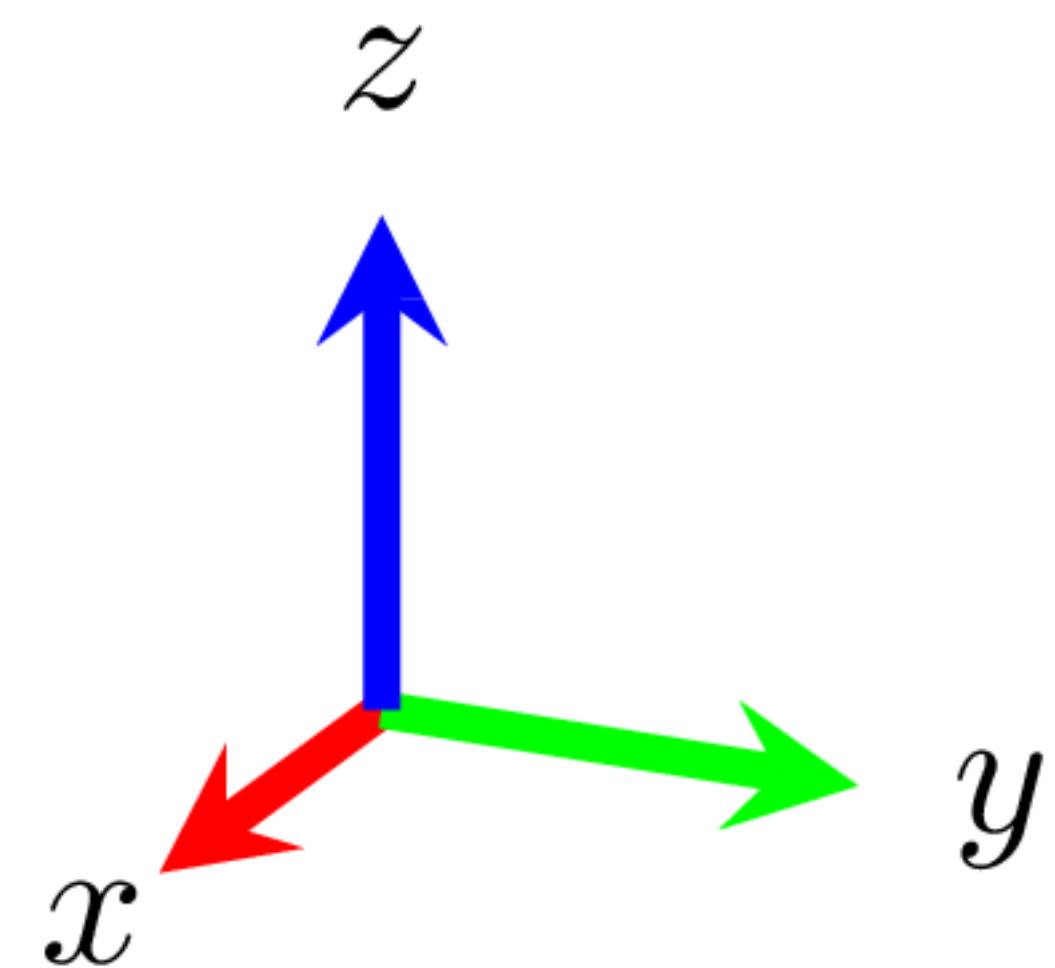
Each column is a 3D unit vector

$$\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}} \in \mathbb{R}^3$$

$$\| \hat{\mathbf{x}} \| = \| \hat{\mathbf{y}} \| = \| \hat{\mathbf{z}} \| = 1$$

All columns are orthonormal

$$\hat{\mathbf{x}}^T \hat{\mathbf{y}} = \hat{\mathbf{x}}^T \hat{\mathbf{z}} = \hat{\mathbf{y}}^T \hat{\mathbf{z}} = 0$$



# 3D Rotation Matrix (Properties)

Add a 3rd dimension to the rotation matrix:

$$\mathbf{R} = [\hat{\mathbf{x}} \ \hat{\mathbf{y}} \ \hat{\mathbf{z}}] \in \text{SO}(3)$$

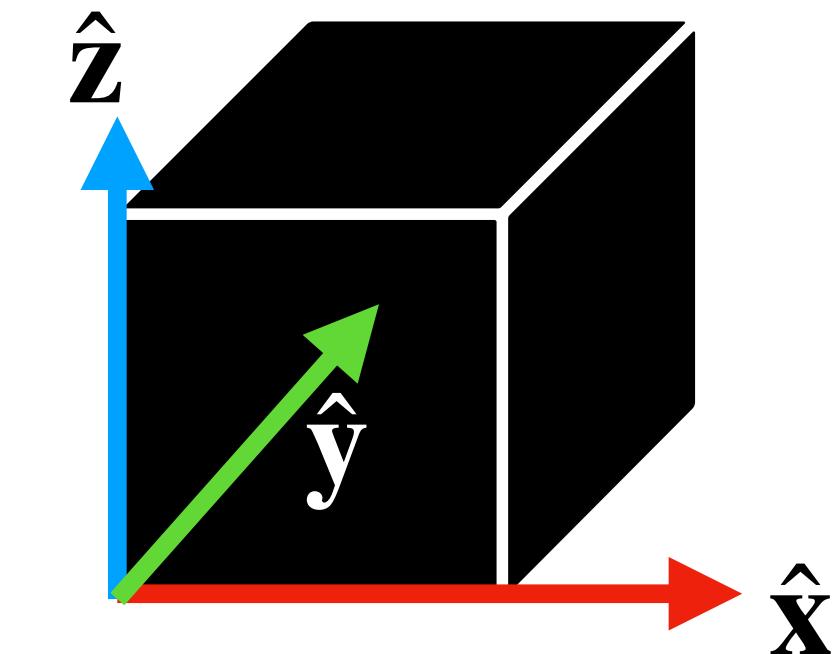
Each column is a 3D unit vector

$$\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}} \in \mathbb{R}^3$$

$$\| \hat{\mathbf{x}} \| = \| \hat{\mathbf{y}} \| = \| \hat{\mathbf{z}} \| = 1$$

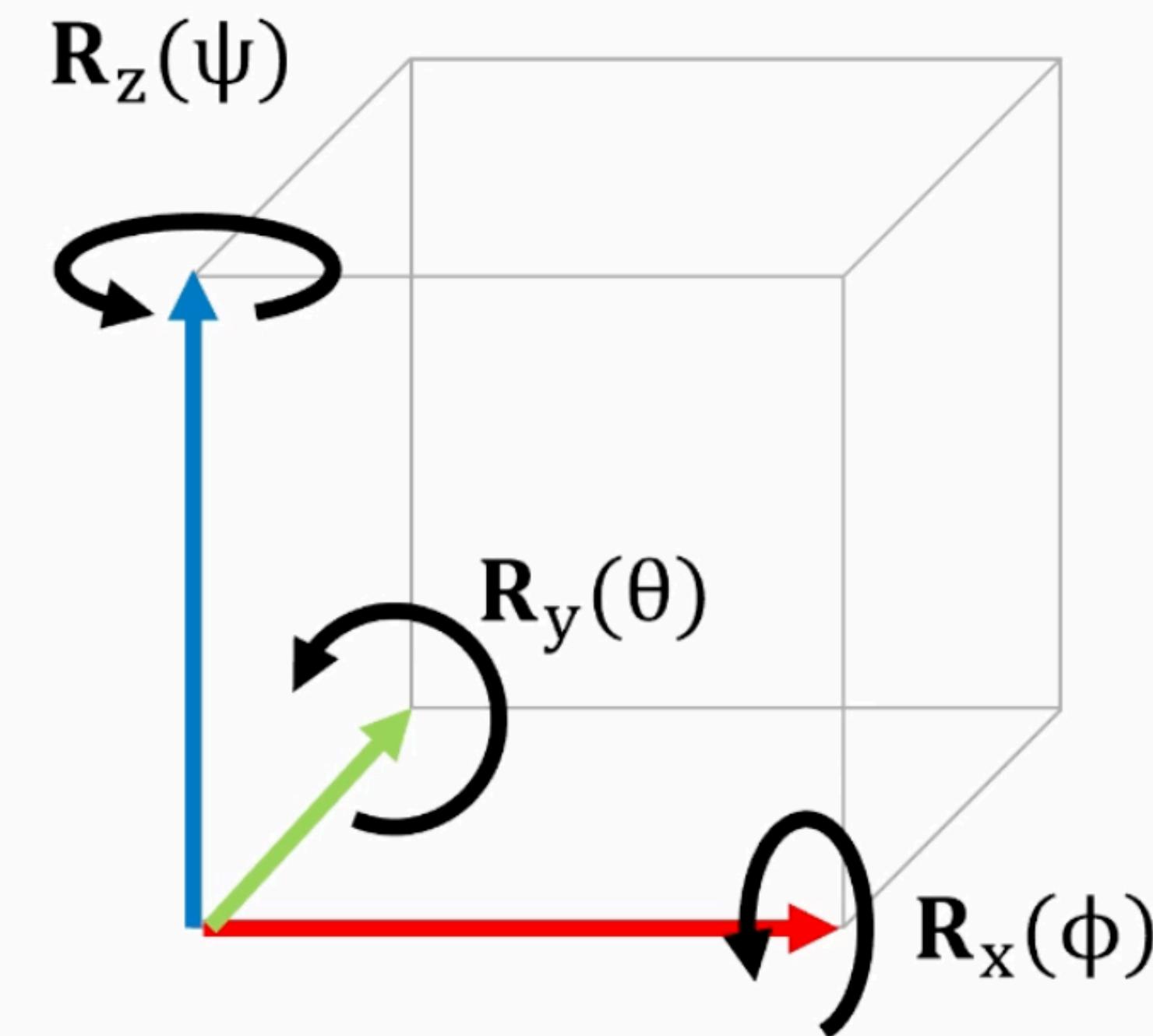
All columns are orthonormal

$$\hat{\mathbf{x}}^T \hat{\mathbf{y}} = \hat{\mathbf{x}}^T \hat{\mathbf{z}} = \hat{\mathbf{y}}^T \hat{\mathbf{z}} = 0$$



# Elementary Rotations

$$\mathbf{R}_x(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$
$$\mathbf{R}_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
$$\mathbf{R}_z(\psi) = \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



# Build any rotation from 3 sequential rotations

- In 3D, any orientation can be represented as at most three rotations about coordinate axes.
- You cannot rotate about the same axis twice in a row.
- In total, there are  $3 \times 2 \times 2 = 12$  total combinations:
  1. First axis: 3 choices
  2. Second axis: 2 choices (cannot equal first)
  3. Third axis: 2 choices (cannot equal second)

## Euler Angles:

Same axis twice

$3 \times 2 \times 1 = 6$  combinations

|     |     |     |     |
|-----|-----|-----|-----|
| XYX | XYZ | XZX | XZY |
| YXY | YXZ | YZX | YZY |
| ZXY | ZXZ | ZYX | ZYZ |

## Cardan Angles:

All 3 axes

$3 \times 2 \times 1 = 6$  combinations

|     |     |     |     |
|-----|-----|-----|-----|
| XYX | XYZ | XZX | XZY |
| YXY | YXZ | YZX | YZY |
| ZXY | ZXZ | ZYX | ZYZ |

# Order of Rotation matters!

Matrices are not commutative

$$R_X R_Y R_Z \neq R_Z R_Y R_X$$

Proof:

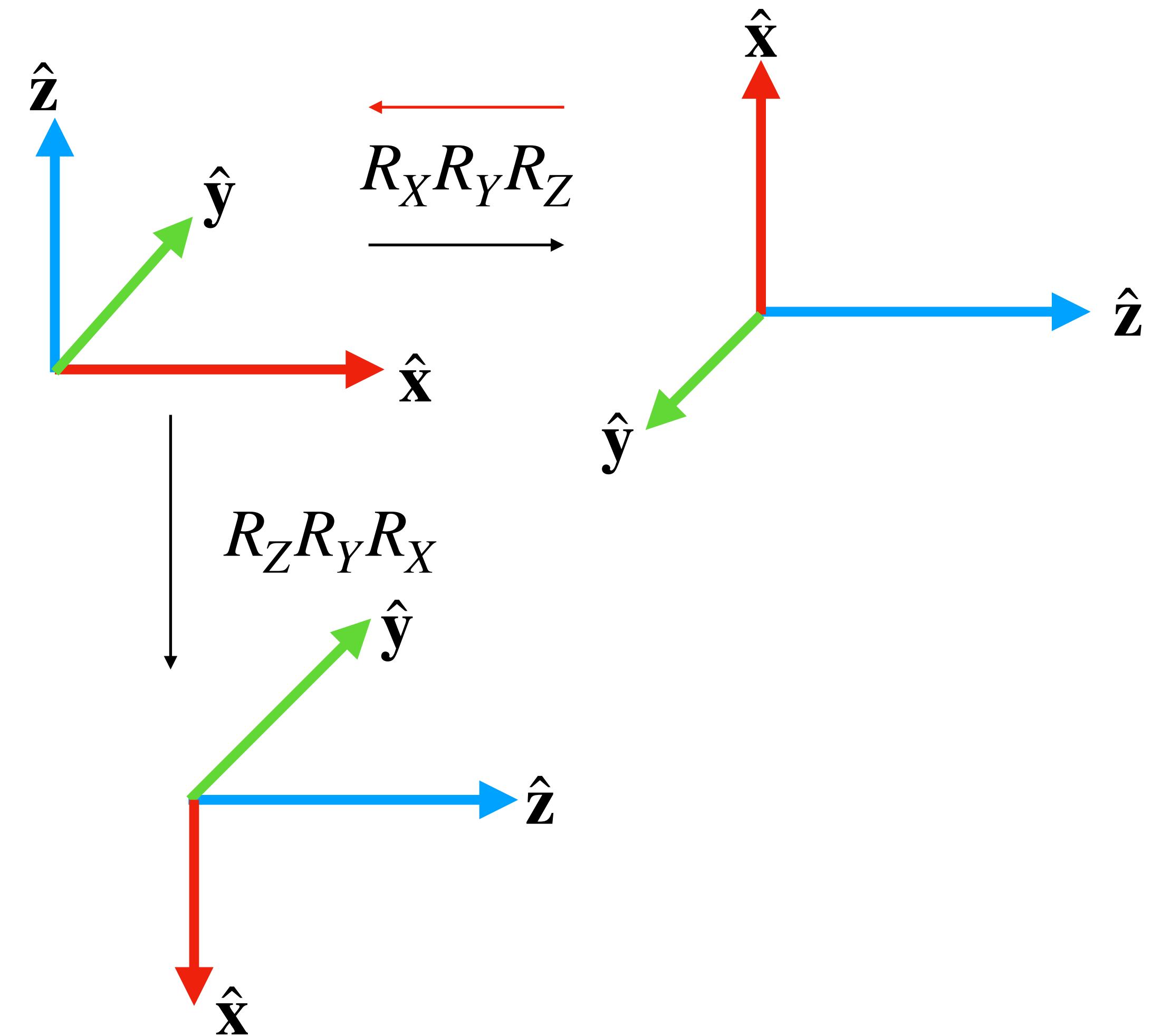
$$(AB)^{-1} = B^{-1}A^{-1}$$

Such that:

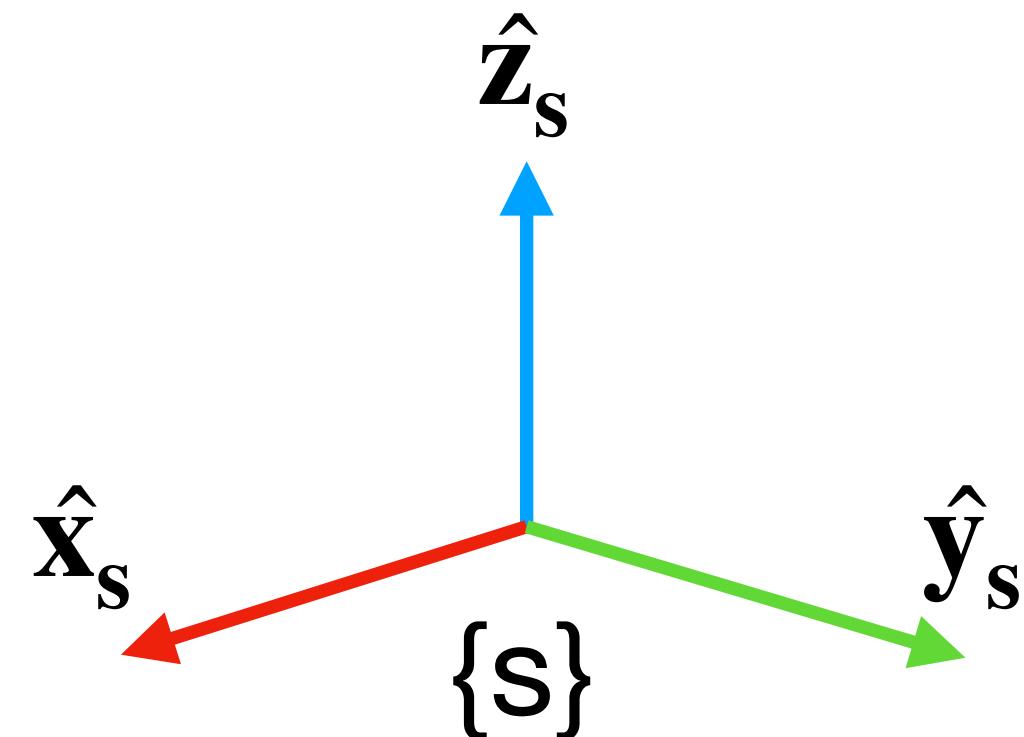
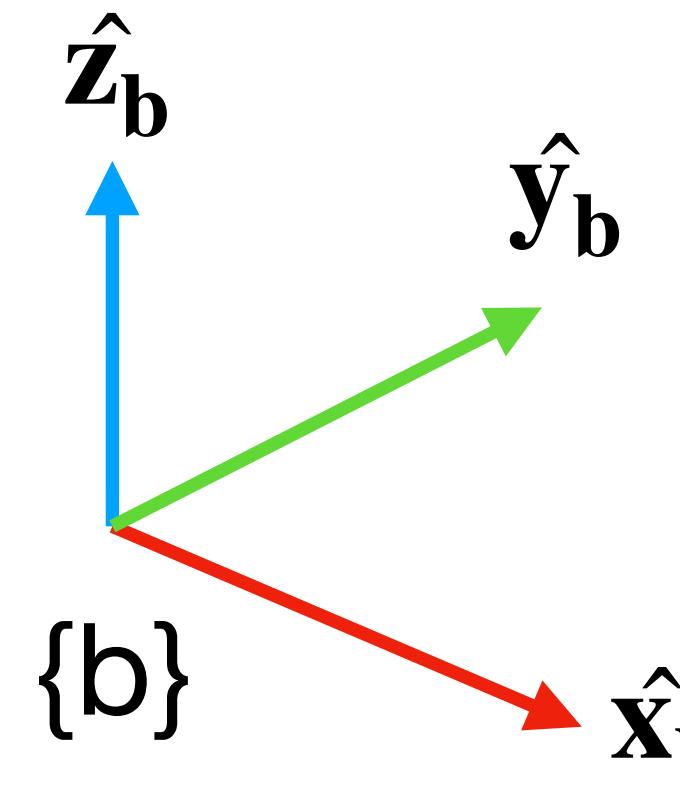
$$\begin{aligned} AB(AB)^{-1} &= ABB^{-1}A^{-1} \\ &= AA^{-1} \\ &= I \end{aligned}$$

But,

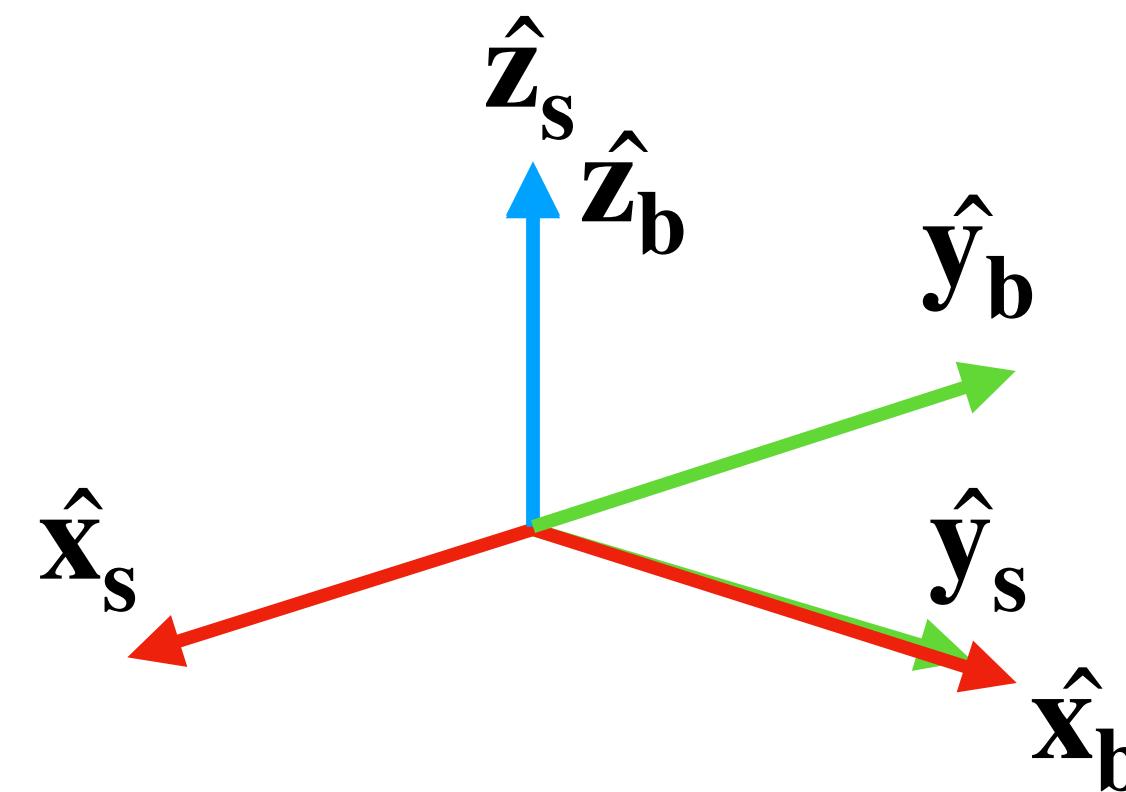
$$\begin{aligned} BA(AB)^{-1} &= BAB^{-1}A^{-1} \\ &\neq I \\ \therefore AB &\neq BA \end{aligned}$$



# How to use Rotation Matrices

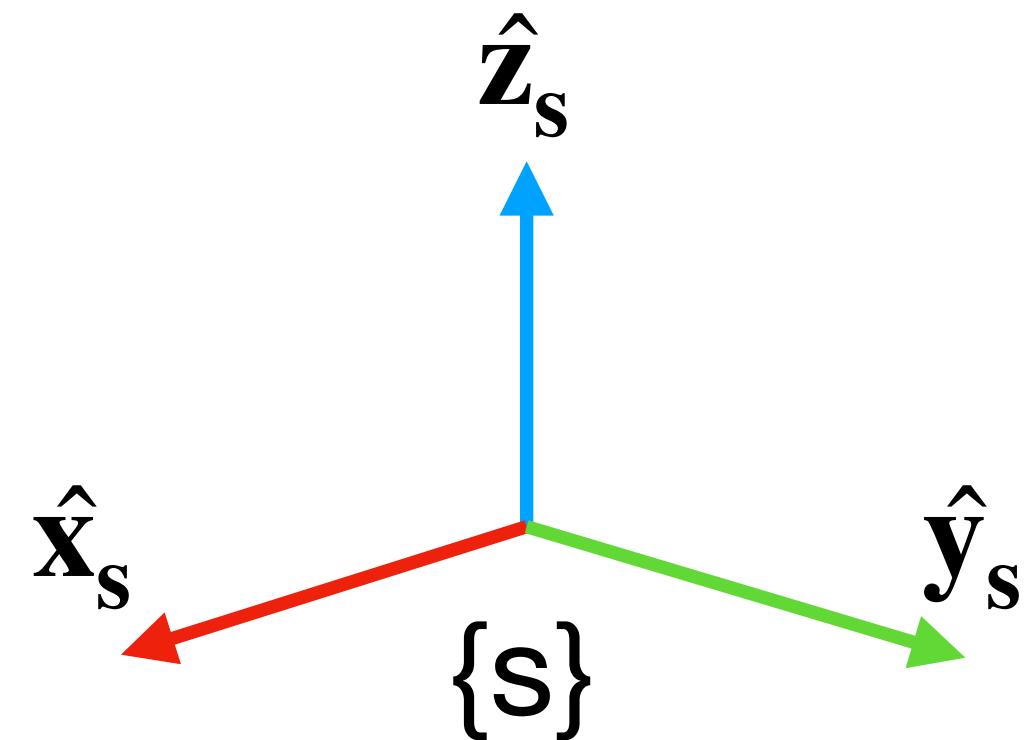
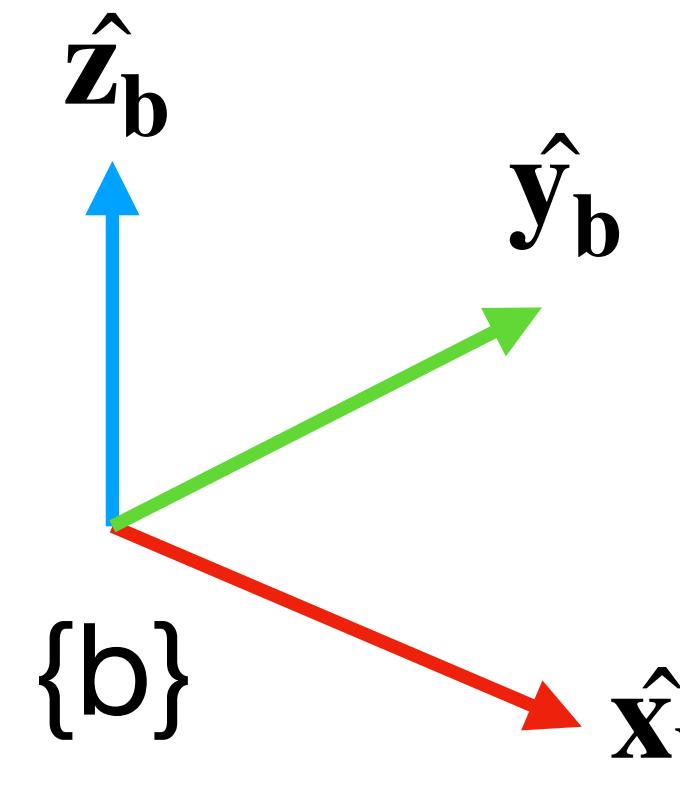


$$\hat{x}_b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \hat{y}_b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \quad \hat{z}_b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

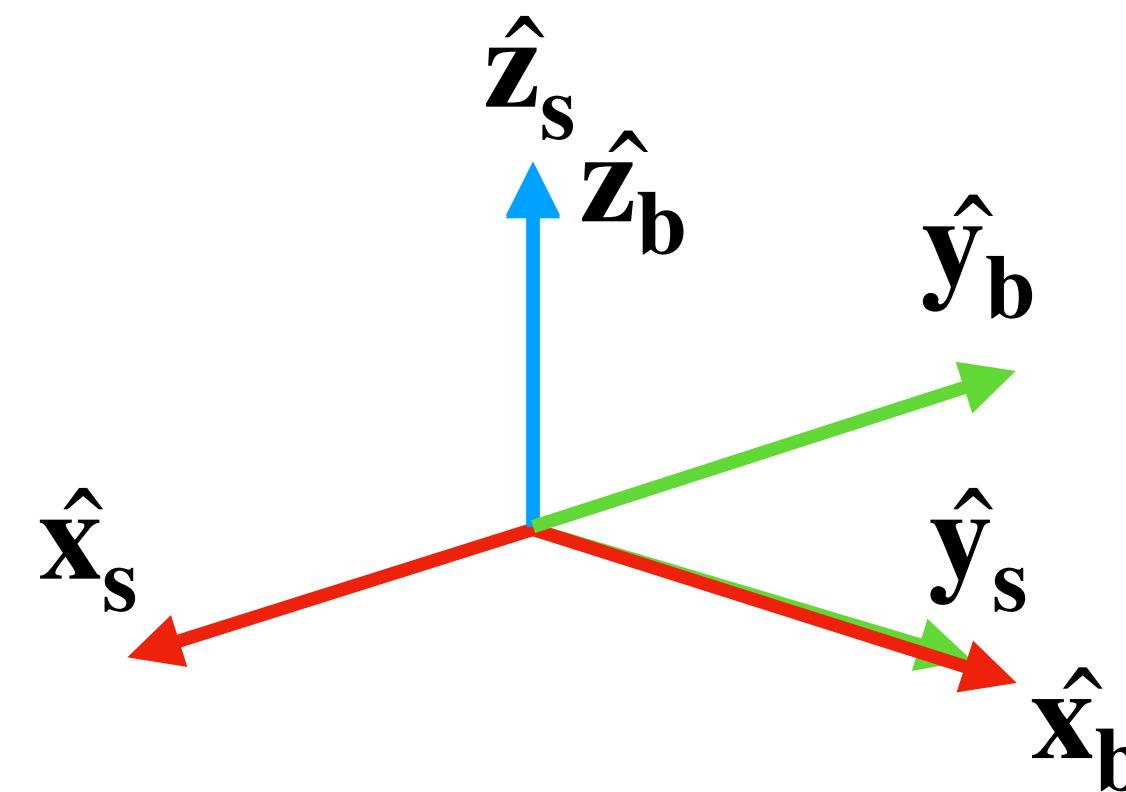


$$R_{sb} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

# How to use Rotation Matrices



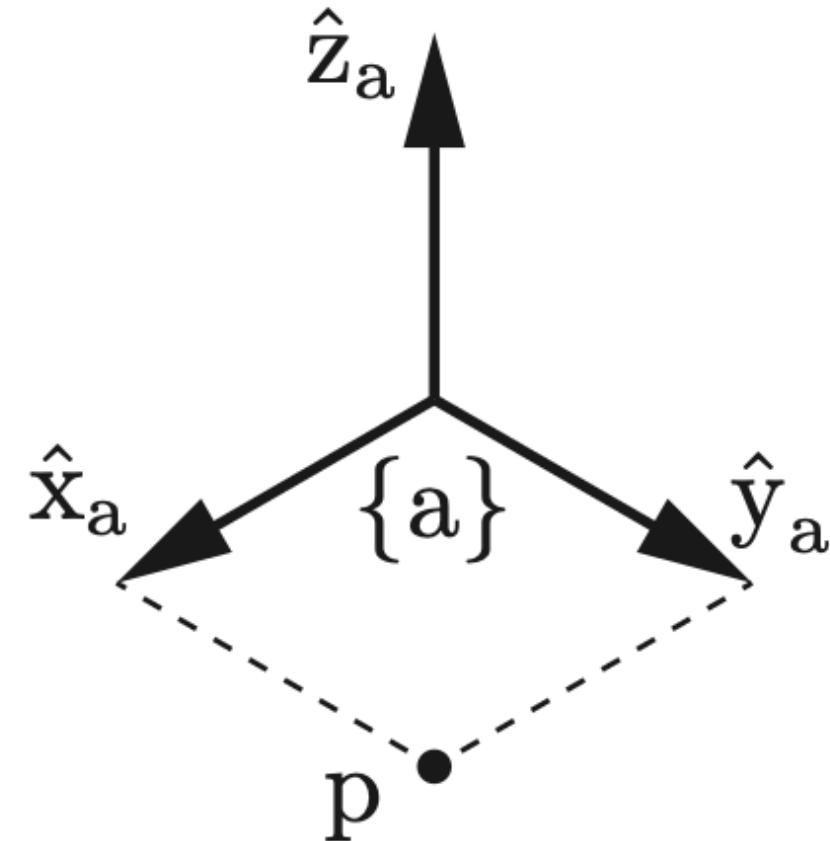
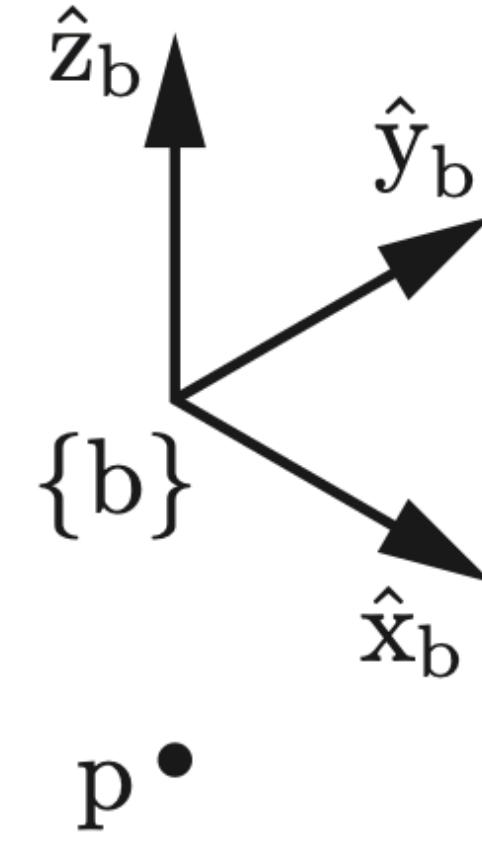
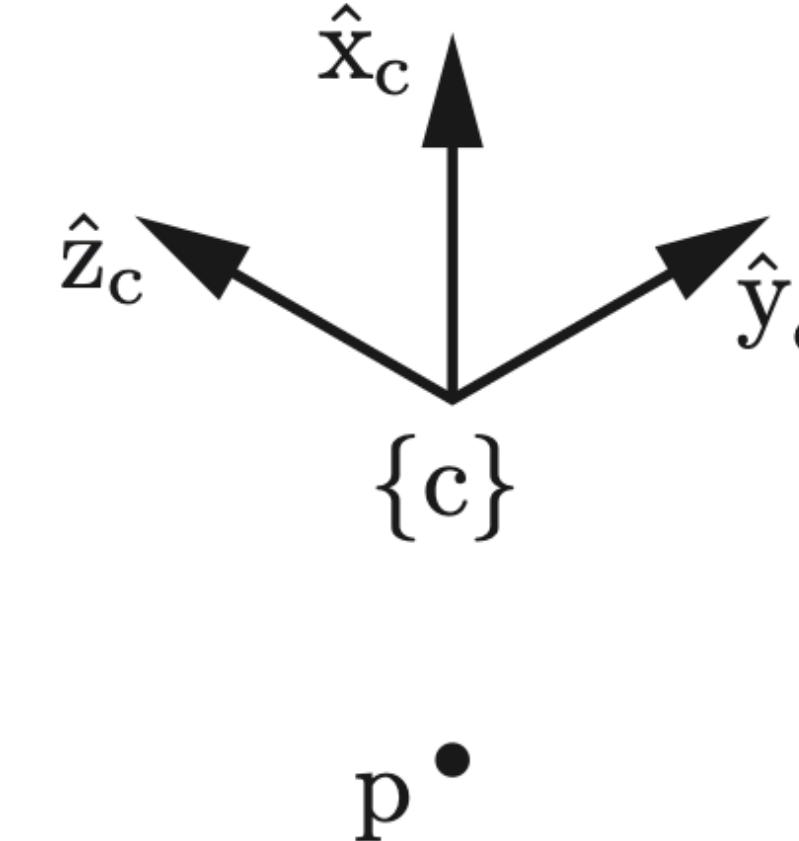
$$\hat{x}_b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \hat{y}_b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \quad \hat{z}_b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$



$$R_{sb} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

# Uses of Rotation Matrices - Represent an orientation

Imagine the three frames have the same origin



Rac frame {c} relative to frame {a}

$$R_{ac} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

When we write  $R_c$ , we are implicitly referring to the orientation of frame {c} relative to the fixed frame {s}. Hence, it can also be  $R_{sc}$ .

$$R_{ca} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Transpose this, switch the rows with column

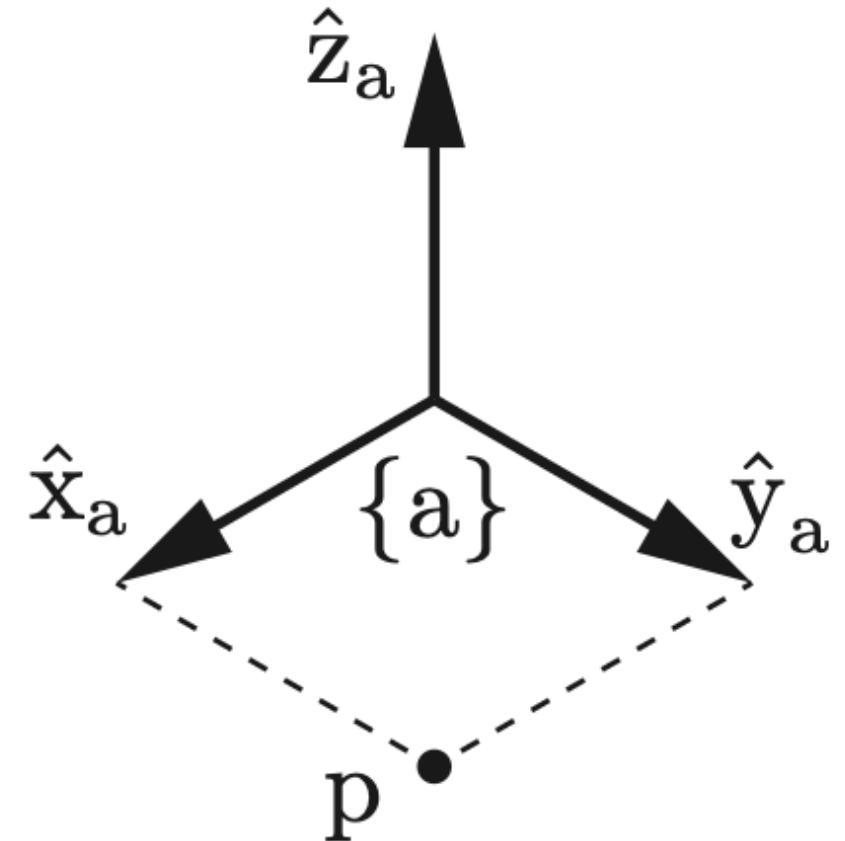
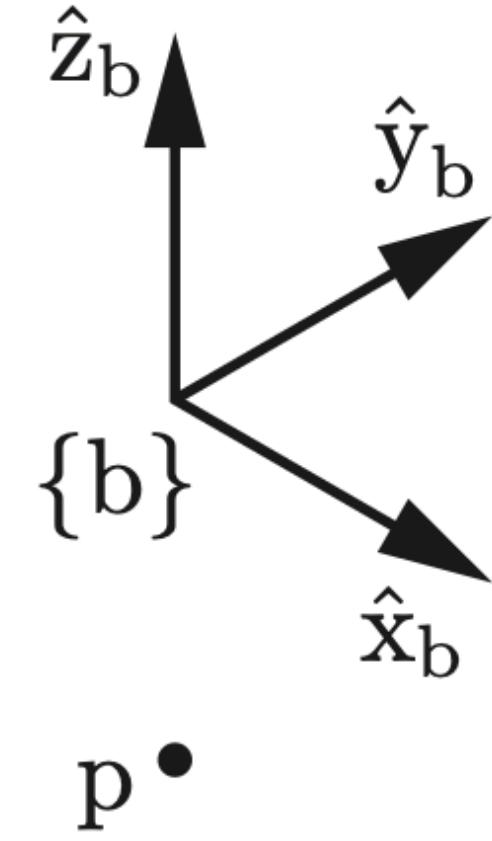
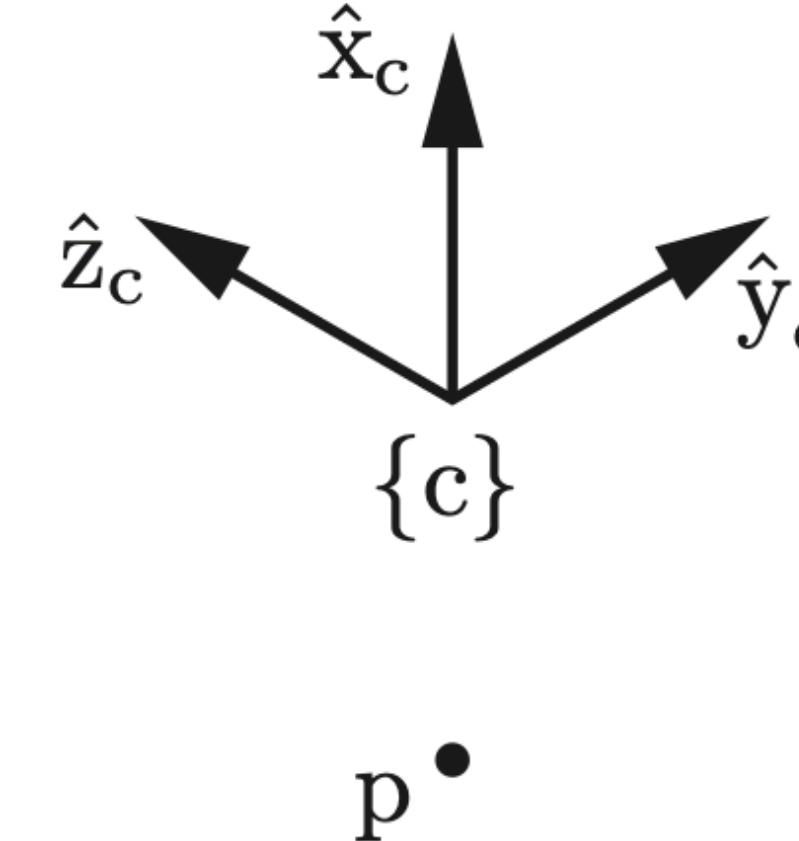
$$R_{ac}R_{ca} = I$$

$$R_{ac} = R_{ca}^{-1}$$

$$R_{ac} = R_{ca}^T$$

# Uses of Rotation Matrices - Change reference frame

Imagine the three frames have the same origin



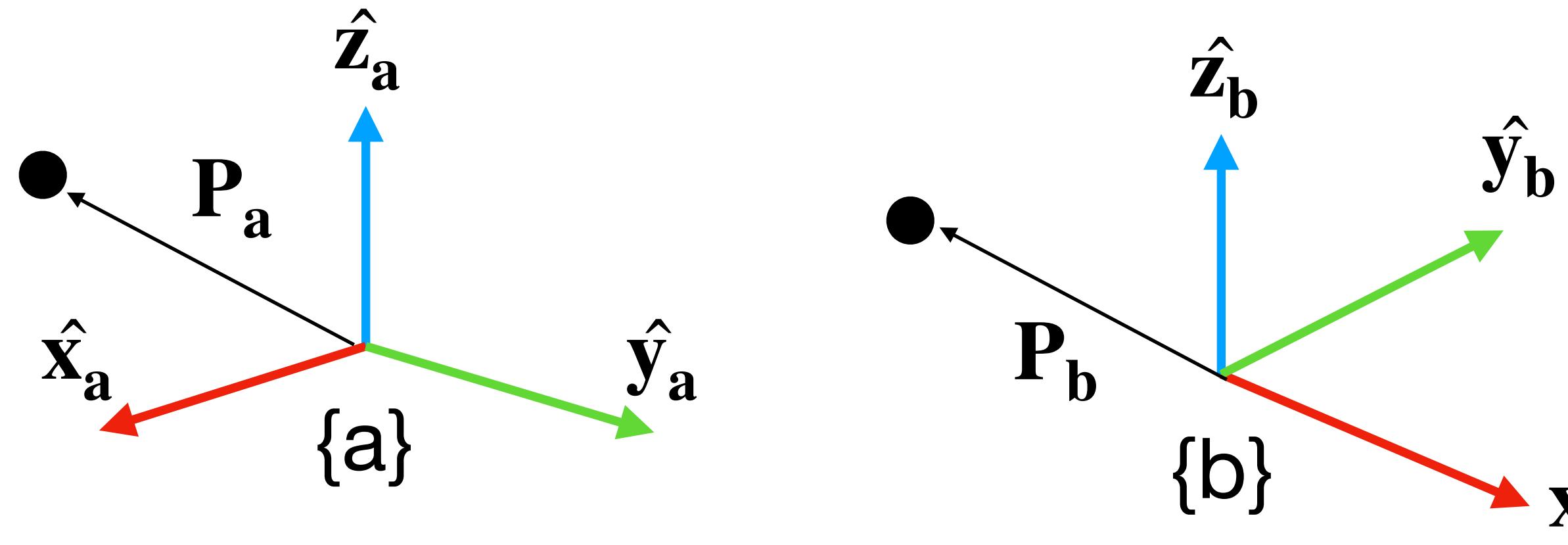
$$R_{bc} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

When we write  $R_c$ , we are implicitly referring to the orientation of frame {c} relative to the fixed frame {s}. Hence, it can also be  $R_{sc}$ .

$$R_{ac} = R_{ab} R_{bc} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$R_{ac} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

# Uses of Rotation Matrices - Change reference frame



How can I get  $P_s$  from  $P_b$  given  $R_{ab}$ ?

$$p_b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$p_s = R_{sb} p_b = R_{sb} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$

# Changing the Reference Frame

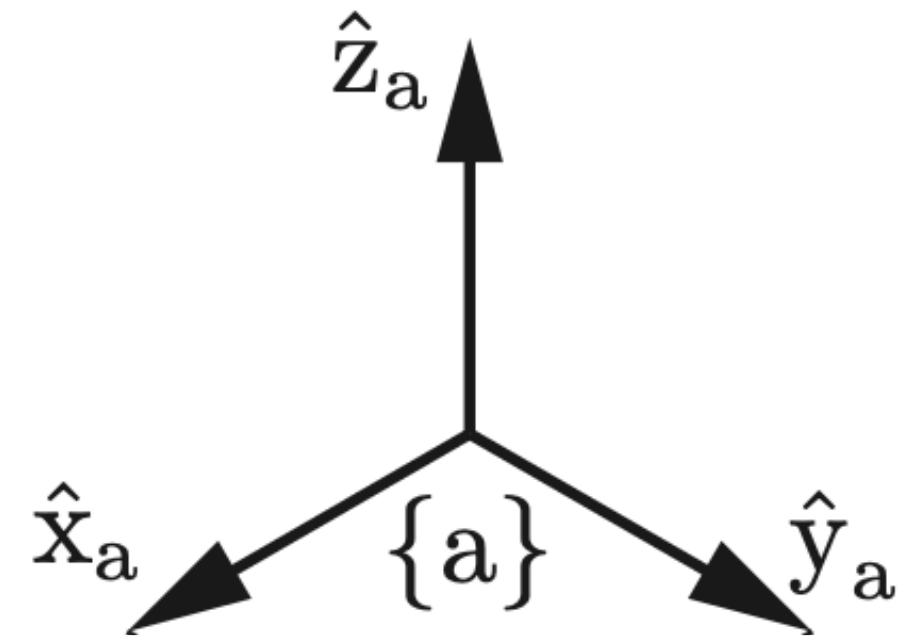
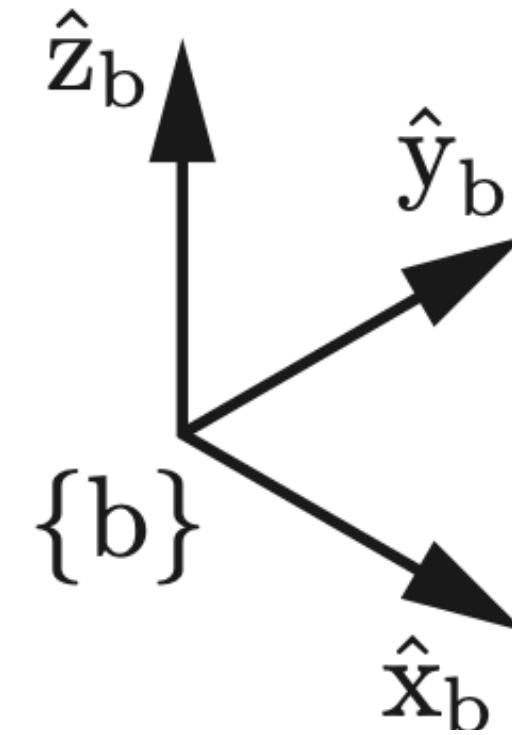
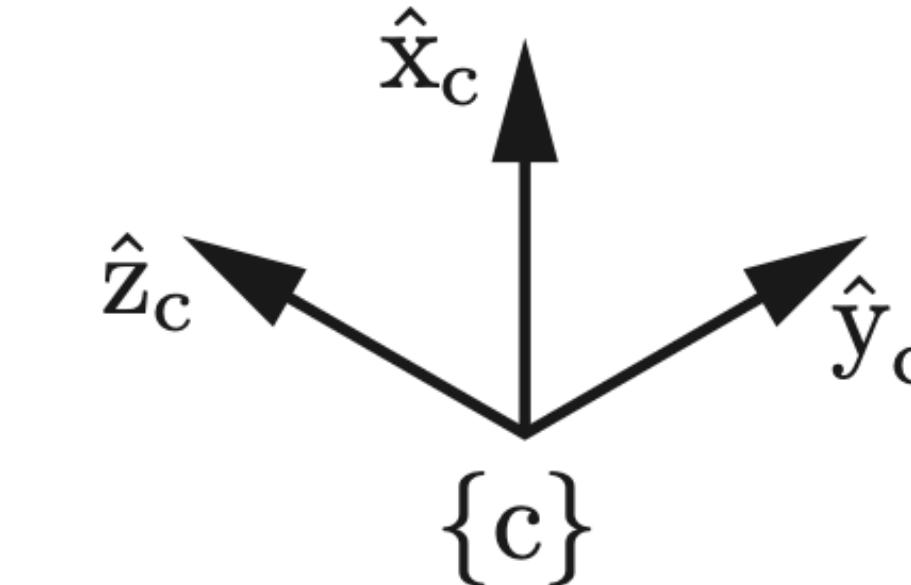
- Orientation of  $\{b\}$  in  $\{a\}$   $R_{ab}$
- Orientation of  $\{c\}$  in  $\{b\}$   $R_{bc}$
- Orientation of  $\{c\}$  in  $\{a\}$

$$R_{ac} = R_{ab}R_{bc} = \text{change\_reference\_frame\_b\_to\_a}(R_{bc})$$

- Subscript cancel rule

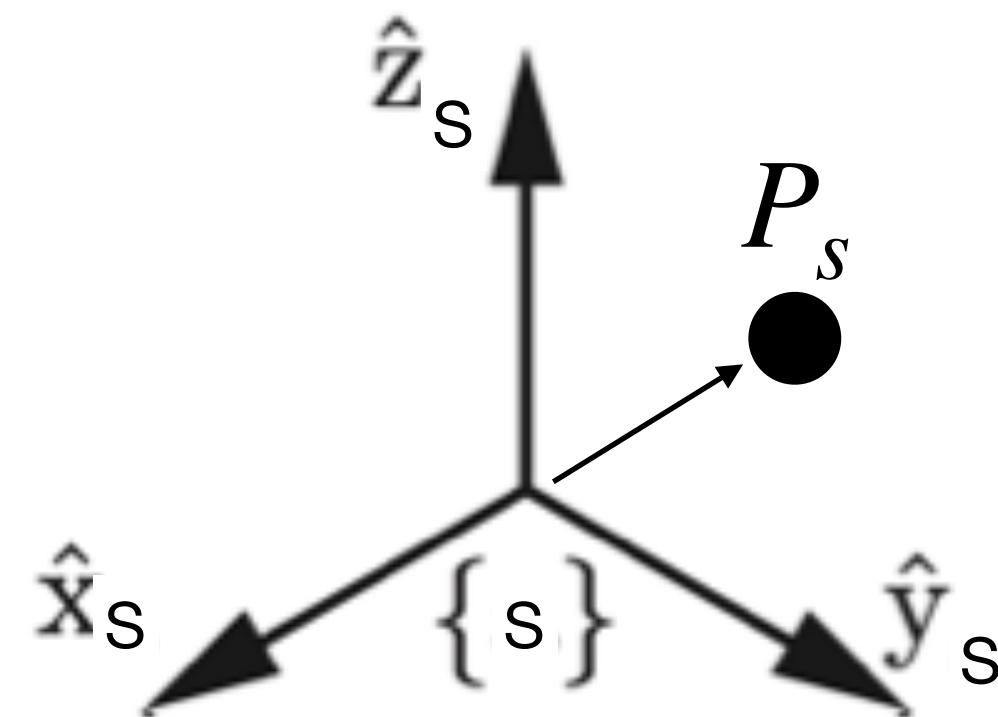
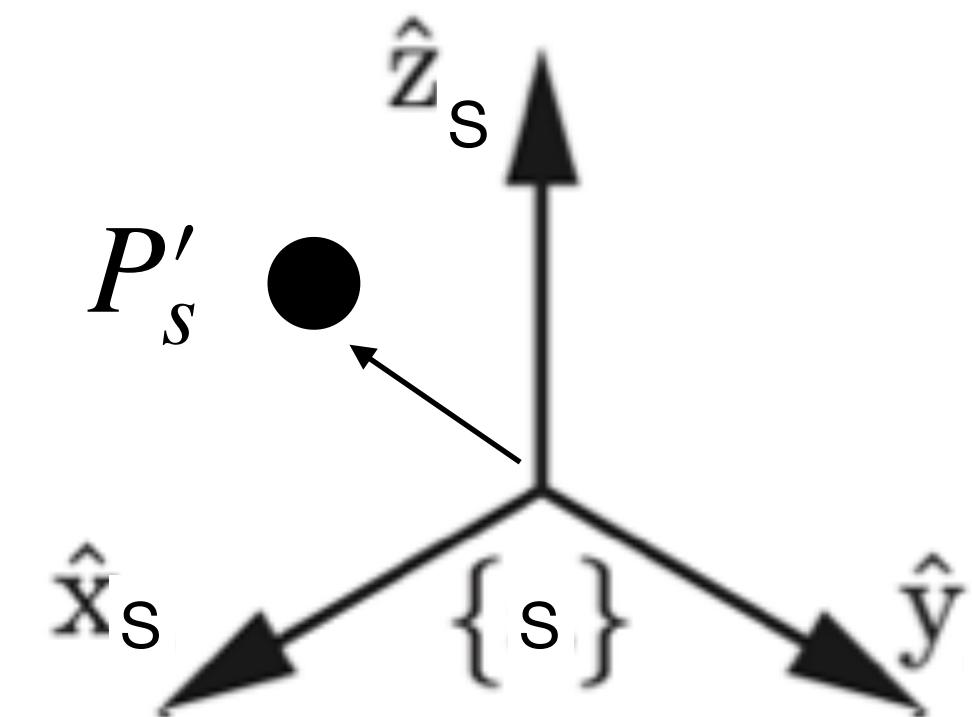
$$R_{ab}R_{bc} = R_{a\cancel{b}}R_{\cancel{b}c} = R_{ac} \quad R_{ab}p_b = R_{a\cancel{b}}p_{\cancel{b}} = p_a$$

# Rotate a vector or frame - Vector

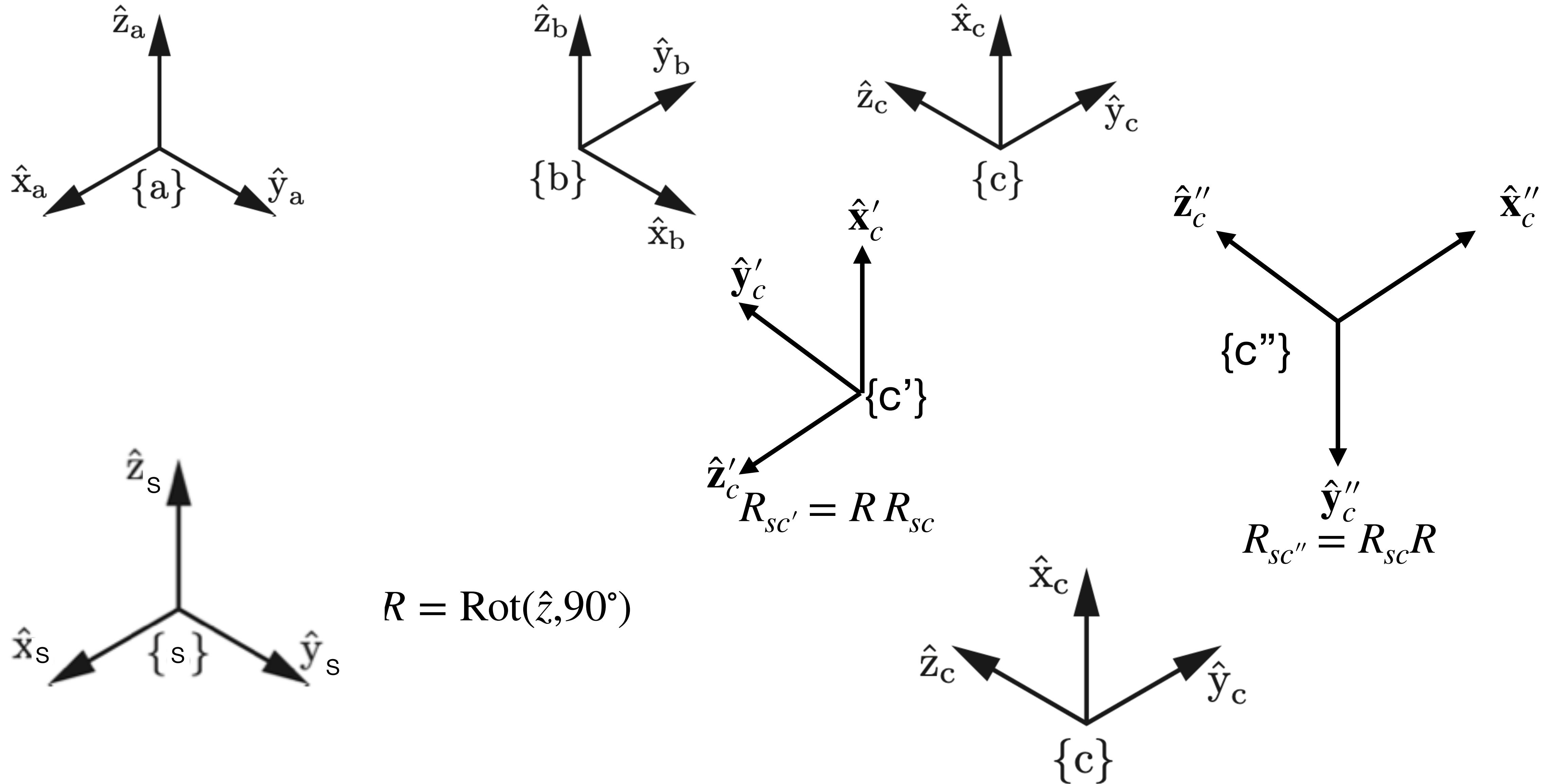


$$R_{sb} = R = \text{Rot}(\hat{z}, 90^\circ)$$

$$P'_s = RP_s$$

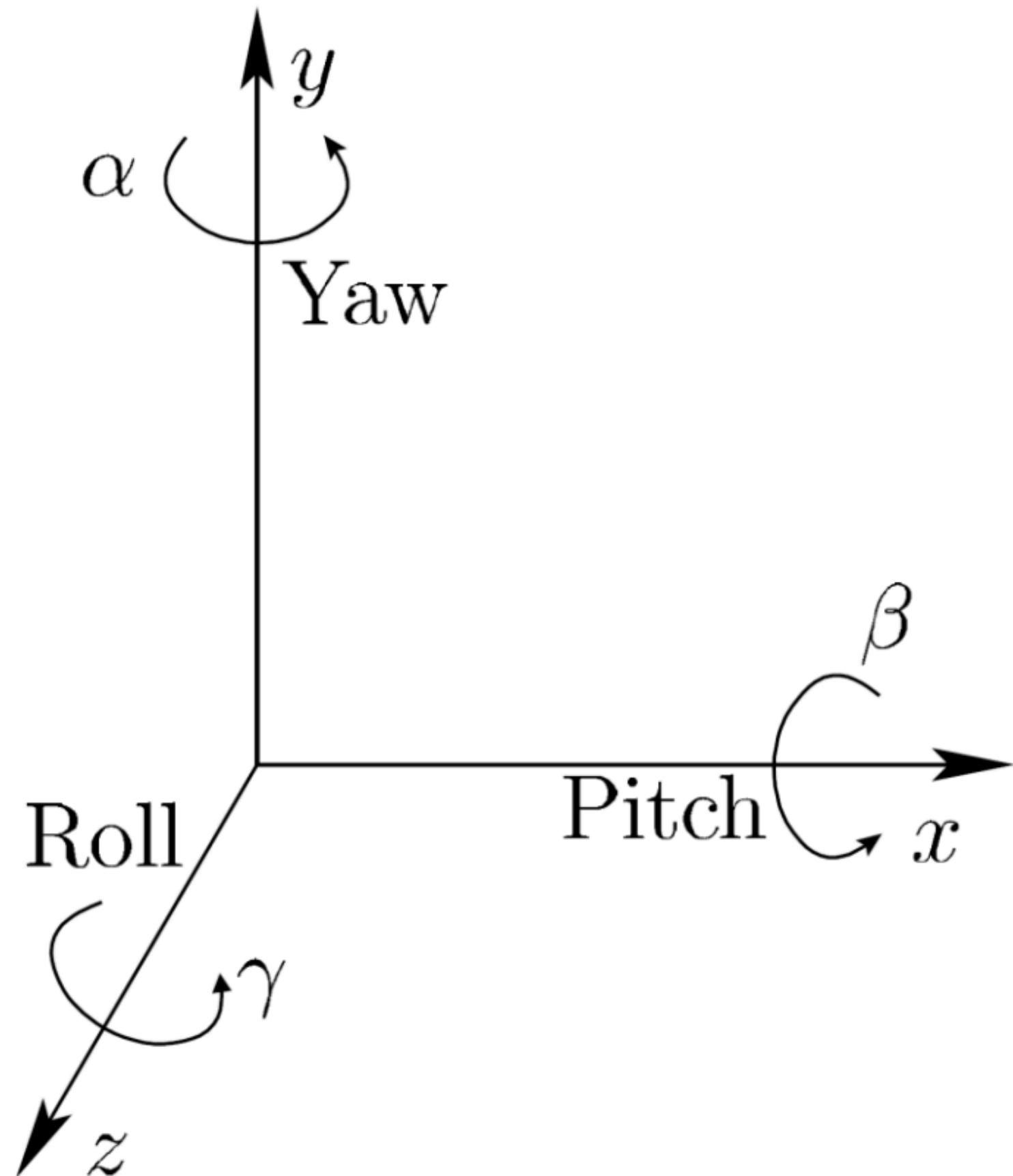


# Rotate a vector or frame - Frame



# Euler Angles: Yaw, Pitch, Roll

- Counterclockwise rotation



Roll

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Pitch

$$R_x(\beta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix}$$

Yaw

$$R_y(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

# Euler Angles: Yaw, Pitch, Roll

$$R = R_z(\psi)R_y(\theta)R_x(\phi)$$

$$R = \begin{bmatrix} c_\psi c_\theta & c_\psi s_\theta s_\phi - s_\psi c_\phi & c_\psi s_\theta c_\phi + s_\psi s_\phi \\ s_\psi c_\theta & s_\psi s_\theta s_\phi + c_\psi c_\phi & s_\psi s_\theta c_\phi - c_\psi s_\phi \\ -s_\theta & c_\theta s_\phi & c_\theta c_\phi \end{bmatrix}$$

where

$$c = \cos, s = \sin$$

Pitch comes from a single element.

$$R_{31} = -\sin \theta \quad \theta = \arcsin(-R_{31})$$

Yaw comes from the first column.

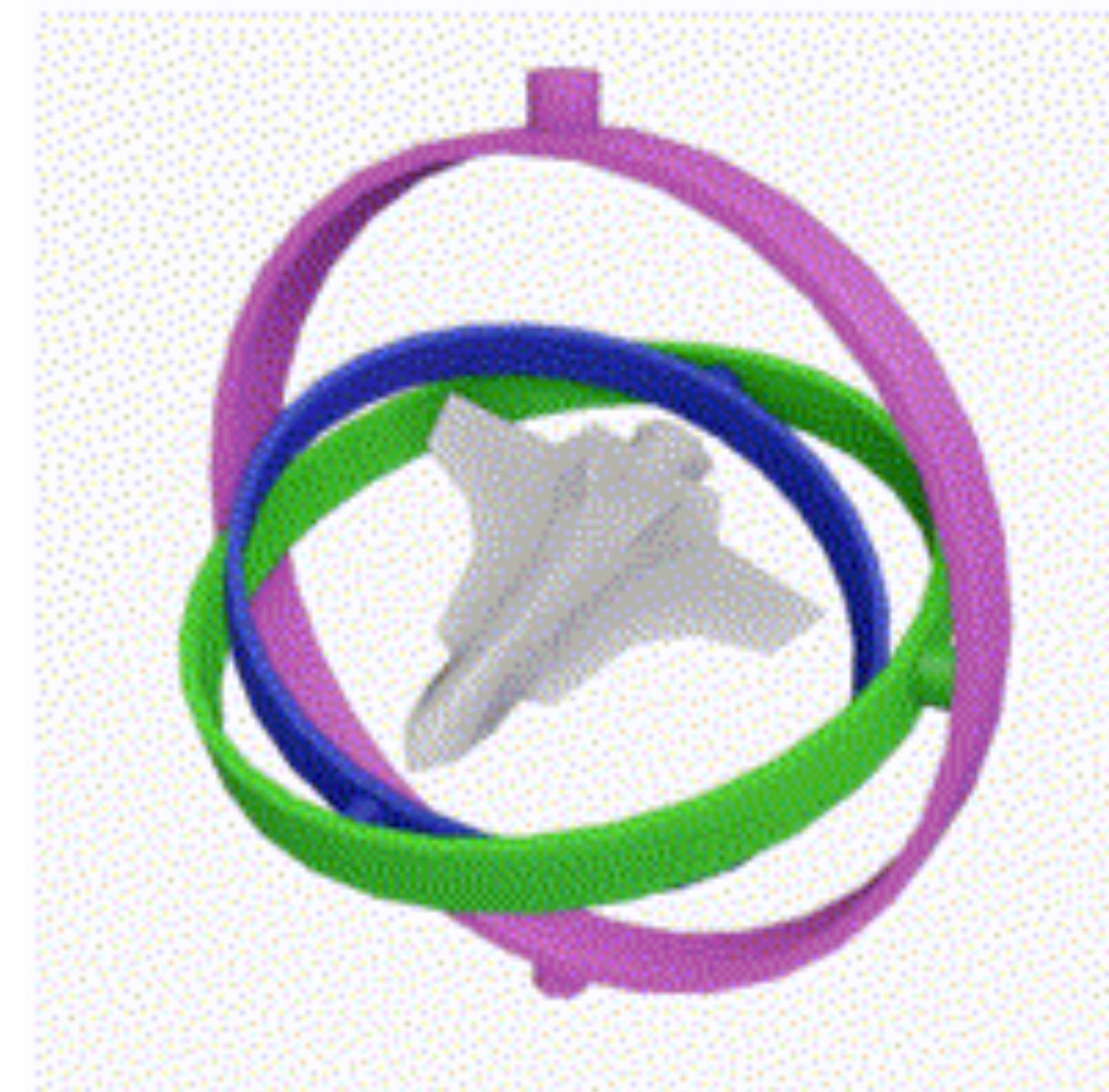
$$R_{11} = \cos \psi \cos \theta \\ R_{21} = \sin \psi \cos \theta$$

$$\arctan\left(\frac{R_{21}}{R_{11}}\right)$$

Roll comes from the three row.

$$R_{32} = \cos \theta \sin \phi \\ R_{33} = \cos \theta \cos \phi$$

$$\arctan\left(\frac{R_{32}}{R_{33}}\right)$$

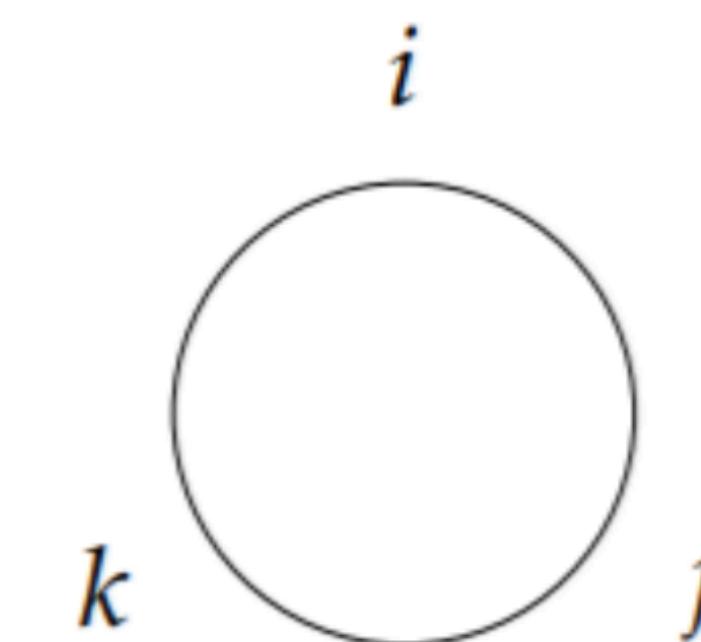


# Quaternions

- Quaternions generalize complex numbers and can be used to represents 3D rotations

$$q = w + \underbrace{xi + yj + zk}_{\substack{\text{Scale (real part)} \\ \uparrow \\ \text{Vector (imaginary part)}}}$$

- Properties  $i^2 = j^2 = k^2 = -1$   
 $ij = k, ji = -k$   
 $jk = i, kj = -i$   
 $ki = j, ik = -j$



# Unit Quaternions as 3D Rotations

-For unit quaternions, axis-angle:

$$q = (w, \mathbf{v})$$

- $w$  is the **scalar (real) part**
- $\mathbf{v} \in \mathbb{R}^3$  is the **vector (imaginary) part**

Sometimes you'll also see it written as

$$q = (w, \mathbf{v}) = \left( \cos \frac{\theta}{2}, \sin \frac{\theta}{2} \hat{\mathbf{n}} \right) \quad q = w + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}.$$

## Why Quaternions over Matrices/Euler Angles?

-No gimbal lock (unlike Euler angles)

-Compact (4 numbers vs 9)

-Stable interpolation

-Numerical stability: Avoids accumulating errors that break orthogonality in rotation matrices.